**Abstract: ** In this article, we establish some oscillation criteria for the fractional order partial differential equation with continuous distributed deviating arguments of the form
\begin{align*}
\dfrac{\partial}{\partial t}\left[r(t)D_{+,t}^{\alpha}\left(u(x,t)-\int_{\gamma}^{\delta}{q_0}(t,\zeta)u(x,\rho(t,\zeta))d\eta(\zeta)\right)\right]&=a(t)\Delta u(x,t)+\int_{c}^{d}p(t,\xi)\Delta u[x,\tau(t,\xi)]d\omega(\xi)\\
-\int_{c}^{d}q(x,t,\xi)g\left(u[x,\sigma(t,\xi)]\right)d\omega(\xi)+f(x,t),~~(x,t)\in G&=\Omega\times \mathbb{R}_+,
\end{align*}
with subject to the boundary conditions
\begin{align*}
\dfrac{\partial u(x,t)}{\partial \nu}+\mu(x,t) u(x,t)=\psi(x,t), \hspace{0.15in} (x,t)\in\partial\Omega \times \mathbb{R}_{+}
\end{align*} and $u=\chi(x,t)$, $(x,t)\in\partial\Omega\times \mathbb{R}_{+}$. Using the generalized Riccati technique and integral averaging method, new oscillation criteria are obtained.

**Keywords: ** Fractional partial differential equation, continuous deviating arguments, oscillation.