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Abstract: Both supersonic (mach number M > 1) and subsonic (M < 1) compressive solitary waves of high amplitudes are shown
to exist in this plasma for quantum mechanical effects of electrons. Consideration of electron inertia facilitating its drift

motion and quantum effects are responsible to the growth of high amplitude solitary waves. Highly energetic plasma
particles are trapped in the pseudopotential of great depths under the quantum effects to result much higher amplitude

compressive solitons.
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1. Introduction

The microscopic behaviour of plasma particles demand the use of quantum mechanical effects in the formation of nonlinear

waves subject to de-Broglie condition. The quantum mechanical effects when the de-Broglie wave length λBe of the charge

carriers is comparable to the dimensions of the system are expected to be employed frequently in coming years. With the

help of Schrodinger-Poisson and the Winger-Poisson equations, quantum plasmas can be modeled consisting of electrons of

extremely high particle number densities and low temperatures unlike classical plasma. S. Ali, W.M. Moslem, P.K.Shukla, I.

Kourakis [12] studied fully nonlinear ion-sound waves in a dense Fermi magneto plasma. The non-linear effects in quantum

dusty plasma was first attempted by S. Ali and P. K. Shukla [13]. Abdi kian [1] studied non linear Propagation of Acoustic

Soliton Waves in dense quantum Electron-Positron Magneto plasma. O subsonic ion-acoustic solitary waves are shown to

exist based on mach number and propagation direction. C.Bhowmik and A. P. Misra [2] investigated oblique modulation of

electron-acoustic waves in a Fermi electron-ion plasma modulational instability (MI ) of electron acoustic wave (EAW) in a

quantum plasma consisting of inertialess hot electrons, inertial cold electrons and one component of immobile ions using non

linear Schrodinger equation (NLSE). P. Bertrand, V. T. Nguyen, M. Gros, B. Izrar, M. R. Feix and J. Gutierrez [11] studied

classical Vlasov Plasma description through quantum numerical methods through computer simulations. S. Chandra, S.

N. Paul, B. Ghosh [14] studied effect of electron-inertia and ion-streaming on Ion-Acoustic Waves in Quantum Plasma.

The hydrodynamic formalism of the plasma model with quantum effects is more convenient for direct use of macroscopic

plasma quantities like density and average velocity. F. Hass, L. G. Garcia. Geodert and G. Manfredi [5] establishes quantum

ion-acoustic waves. Recently, quantum effects are being used even to establish ion-acoustic solitary waves (IASW), dust ion-

acoustic waves which attract immense interests from the researchers of the world. F. Hass [4] studied magnetohydrodynamic
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model for quantum plasmas. Y. Jung [15] investigated quantum-mechanical effects on electron-electron scattering in dense

high- temperature plasmas. M. Marklund and G. Brodin [7] studied short-wavelength soliton in a fully degenerate quantum

plasma.

The properties of non-linear stability of plasma oscillations were first studied by D.Pines, [3] for high density and low

temperature plasmons. P. K. Shukla and S. Ali [10] establishes dust acoustic waves in quantum plasmas. P. K. Shukla [9]

investigated a new dust mode in quantum plasmas. L. Stenflo, P. K. Shukla and M. Marklund [6] studied new low frequency

oscillations in quantum dusty plasmas. N. Sadiq and M. Ahmed [15] investigated kinetic Alfven waves in dense quantum

plasmas with effect of spin magnetization. For the higher values of equilibrium number density, the plasma frequency

w2
p =

4πnα0e
2

mα
, (α = e, p) of course is sufficiently high. Hence strong density corrections significantly change the states of

plasma when the de-Broglie wavelength λBe is larger than the average inter-particle distance such that ne0λ
3
Be ≥ 1.

The parameters-quantum diffraction (H ) and the equilibrium density ratio of the cold to the hot electrons are shown to

significantly effect the MI of the system. Further Ali et.al have studied in an electron-positron-ion quantum unmagnetized

plasma, the existence of linear and non-linear ion-acoustic waves with the help of the Korteweg-de-vries (KdV) equation

and the energy integral for He = 0 and only with quantum statistical effects. The quantum corrections are shown to result

significantly in the formation of IAW. Further quantum transport models in order to study the dispersion properties and

non-linear dynamics of unmagnetized and magnetized quantum plasmas are investigated by Hass [7] and many other authors.

The cold quantum dusty plasmas supporting new dust modes have been investigated by many authors [12, 13, 14, 15]. At

extremely low temperatures, the plasma behaves like a Fermi gas and quantum mechanical effects are expected to play a

significant role in the behavior of charged particles.

In this paper, the quantum effects are introduced in electron populations in the plasma without Fermi pressures. The paper

is organized in the following manner- the basic equations governing the plasma is formulated in section 2, the energy integral

to investigate solitary waves is derived in section 3, section 4 contains the conditions of existence for solitary waves, and

results for the existence of solitary waves are analyzed in section 5.

2. Basic Equations

We consider the two component plasmas having ions and electrons under the influence of quantum effects and electron

inertia. The normalized fluid equations of motion with quantum parameter He (for electrons) are given by

∂ni
∂t

+
∂

∂x
(nivi) = 0, (1)

∂vix
∂t

+ vix
∂vix
∂x

= −
[
∂ϕ

∂x
+
α

ni

∂ni
∂x

]
, (2)

∂ne
∂t

+
∂

∂x
(neve) = 0, (3)

∂vex
∂t

+ vex
∂vex
∂x

=
1

Q

[
∂ϕ

∂x
− 1

ne

∂ne
∂x

]
+
He

2

2

∂

∂x

[
1√
ne

∂2

∂x2
(
√
ne)

]
(4)

for electrons, where

Q =
me

mi
, He

2 =
}ωpe

2kBTe
, α =

Te
Ti

=
electrontemperature

iontemperature
.

We have normalized densities ni, ne by the equilibrium density n velocities vix, vex by Cs time t by λD
Cs

and potential ϕ by

Te
e

.
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3. Derivation of Energy Integral

Let us consider the transformation η = kxx−Mt, where M = wave velocity
Cs

. Therefore

∂

∂x
= kx

∂

∂η
,

∂

∂t
= −M ∂

∂η
.

Using the above transformation in (1)-(4) and applying vix = 0, vex = v′e(initial drift), ϕ = 0 at ne = ni = 1 we get,

kxvix = M

(
1− 1

ni

)
(5)

kxvix
2 − 2Mvix + 2kxϕ+ 2αkxlogni = 0 (6)

kxvex = M

(
1− 1

ne

)
+
kxv
′
e

ne
(7)

Qkx
(
vex

2 − v′e
2
)
− 2QM(vex − v′e)− 2kxϕ+ 2kxlogne =

Qkx
3He

2

√
ne

∂

∂η

{
1

2
√
ne

∂ne
∂η

}
(8)

Using the charge neutrality condition ni = ne = n and eliminating vix from (5) and (6), vex from (7) and (8) we get,

M2

kx

(
1− 1

n

)2

− 2M2

kx

(
1− 1

n

)
+ 2kxϕ+ 2αkxlogn = 0 (9)

M2Q

kx

(
1− 1

n

)2

− 2M2Q

kx

(
1− 1

n

)
+Qkxv

′
e
2
(

1

n2
− 1

)
+ 2QMv′e

(
1− 1

n2

)
− 2kxϕ+ 2kxlogn =

kx
3

√
n
QHe

2 ∂

∂η

(
1

2
√
n

∂n

∂η

)
(10)

Addition of (9) and (10) can be expressed as

M2(1 +Q)

Kx

(
1− 1

n

)2

− 2M2 (1 +Q)

Kx

(
1− 1

n

)
+ 2Kx (1 + α) logn+QKxv

′
e
2
(

1

n2
− 1

)
+ 2QMv′e

(
1− 1

n2

)
(11)

Multiplying both sides of (11) by
(

1
2
√
n
∂n
∂η

)
, it can be simplified as

(
1

2
√
n

∂n

∂η

)
∂

∂η

(
1

2
√
n

∂n

∂η

)
=

1

2kx
3QHe

2

 M2(1+Q)
kx

(
1− 2

n
+ 1

n2

)
− 2M2(1+Q)

kx

(
1− 1

n

)
+

2kx(1 + α)logn+Qkxv
′
e
2 ( 1

n2 − 1
)

+ 2QMv′e
(
1− 1

n2

)
 dn
dη

(12)

Integrating (12) and using the condition dn
dη

= 0 at n = 1, we can have the energy integral

1

2

(
dn

dη

)2

+ ψ(n,M,α, kx, Hi, He) = 0, (13)

where

(n,M,α, kx, He) =
−2n

kx
3QHe

2


M2(1+Q)

kx
( 1
n
− n+ 2logn) + 2M2(1+Q)

kx
(n− 1− logn)+

2kx(1 + α)(n− 1− nlogn) +Qkxv
′
e
2 (
n+ 1

n
− 2
)

+

2QMv′e
(
2− n− 1

n

)
 (14)

which is called the Sagdeev Potential.
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4. Conditions for the Existence of Solitary Waves

From (14), Ψ′(n) can be found as follows:

ψ′(n) =
−2

kx
3QHe

2

 M2(1+Q)
kx

( 1
n
− n+ 2logn) + 2M2(1+Q)

kx
(n− 1− logn)+

2kx(1 + α)(n− 1− nlogn) +Qkxv
′
e
2 (
n+ 1

n
− 2
)

+ 2QMv′e
(
2− n− 1

n

)


− −2n

kx
3QHe

2

 M2(1+Q)
kx

(
2
n
− 1− 1

n2

)
+ 2M2(1+Q)

kx

(
1− 1

n

)
− 2kx(1 + α)logn+

Qkxv
′
e
2 (

1− 1
n2

)
+ 2QMv′e

(
1
n2 − 1

)
 (15)

From (14) and (15), it is clear that

ψ(1) = 0 = ψ′(1)

Again Ψ′′(n) can be found as,

ψ′′(n) =
−4

kx
3QHe

2

 M2(1+Q)
kx

(
2
n
− 1

n2 − 1
)

+ 2M2(1+Q)
kx

(
1− 1

n

)
− 2kx(1 + α)logn+

Qkxv
′
e
2 (

1− 1
n2

)
+ 2QMv′e

(
1
n2 − 1

)


− 2M

kx
3QHe

2

[
M2(1 +Q)

kx

(
2

n3
− 2

n2

)
+

2M2(1 +Q)

kx

1

n2
− 2kx (1 + α)

n

2Qkxv
′
e
2

n3
− 4QMv′e

n3

]
. (16)

For solitary wave solution, it is essential to investigate the behavior of ψ(n) near n = 1 and n = N , the maximum value N

of n called the solitary wave amplitude. For this purpose we expand ψ(n) as follows:

By Taylor series near n = 1 and n = N

ψ(n ≈ 1) = ψ(1) + (n− 1)ψ′(1) +
(n− 1)2

2
ψ′′(1) + ... (17)

ψ(n ≈ 1) =
−2(n− 1)2

kx
4QHe

2

[
M2(1 +Q) +Qkx

2v′e
2 − kx2 (1 + α)− 2QMkxv

′
e

]
(18)

and

ψ(n ≈ N) =
−4(n−N)

kx
4QHe

2

[
(N − 1)

{
M2(1 +Q) +Qkx

2v′e
2 − kx2 (1 + α)− 2QMkxv

′
e

}
− 2kx

2(1 + α)N logN
]

(19)

Near n ≈ 1, ψ(n ≈ 1) < 0 if

A < M2(1 +Q) +Qk2xv
′2
e − k2x (1 + α)− 2QMkxv

′
e > 0 (20)

And was near n ≈ N , ψ(n ≈ N) < 0 if

A <
2k2x(1 + α)N logN

(N − 1)
for N > 1 (21)

A >
2k2x(1 + α)N logN

(N − 1)
for N < 1 (22)
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5. Discussion

Figure 1: Plot of pseudopotential to characterize

compressive solitary waves in a plasma with quantum

effects He = 1.5(1); He = 2.5(2); He = 3.5(3) and for

fixed values of M = 0.6(< 1), α = 0.1, kx = 0.5 and v′e

(electron’s drift) = 1.

Figure 2: Plot of pseudopotential to characterize compressive

solitary wave in quantum plasma for He = 1.5(1);

He = 2.5(2) and He = 3.5(3) when mach number is

M = 1.5(> 1), α = 0.1, kx = 0.5 and v′e = 1

Figure 3: Amplitude N of compressive soliton in

quantum plasma versus v′e (= electrons’ drift) for fixed

M = 0.6(< 1), kx = 0.5, He = 1.5;

α = 0.1(1), 0.11(2), 0.12(3)

Figure 4: Amplitude N of compressive soliton in quantum

plasma versus temperature α for fixed M = 1.5(> 1),

kx = 0.5, He = 1.5 for v′e = 1(1), 5(2), 10(3)
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