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1. Introduction

Let V m be a C∞ m-dimensional Riemannian manifold imbedded in a C∞ n-dimensional Riemannian manifold Mn, where

m < n. The imbedding being denoted by R.Nivas & S.Yadav [7] and K.Yano [6]

f : V m −→ Mn.

Let B be the mapping induced by f i.e. B = df .

df : T (V ) −→ T (M) .

Let T (V,M) be the set of all vectors tangent to the submanifold f(V ). It is well known that according to A.Bejanc [1] and

B.Prasad [2]

B : T (V ) −→ T (V,M) .

Is an isomorphism. The set of all vectors normal to f (V ) forms a vector bundle over f (V ), which we shall denote by

N (V,M). We call N (V,M) the normal bundle of V m. The vector bundle induced by f from N (V,M) is denoted by N (V ).

We denote by C : N (V ) −→ N (V,M) the natural isomorphism and by ηrs (V ) the space of all C∞ tensor fields of

type (r, s) associated with N(V ). Thus ζ0
0 (V ) = η0

0 (V ) is the space of all C∞ functions defined on V m while an element

of η1
0 (V ) is a C∞ vector field normal to V m and an element of ζ1

0 (V ) is a C∞ vector field tangential to V m.
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Let X̄ and Ȳ be vector fields defined along f (V ) and X̃, Ỹ be the local extensions of X̄ and Ȳ respectively. Then
[
X̃, Ỹ

]
is a vector field tangential to Mn and its restriction

[
X̃, Ỹ

]/
f (V ) to f (V ) is determined independently of the choice of

these local extension X̃ and Ỹ . Thus
[
X̄, Ȳ

]
is defined as

[
X̄, Ȳ

]
=
[
X̃, Ỹ

]/
f (V ) (1)

Since B is an isomorphism

[BX, BY ] = B [X,Y ] for all X,Y ∈ ζ1
0 (V ) . (2)

Let Ḡ be the Riemannain metric tensor of Mn, we define g and g∗ on V m and N(V ) respectively as

g (X1, X2) = G̃ (BX1, BX2) f, and (3)

g∗ (N1, N2) = G̃ (CN1, CN2) (4)

For all X1, X2 ∈ ζ1
0 (V ) and N1, N2 ∈ η1

0 (V ). It can be verified that g and g∗ are the induced metrics on V m and N(V )

respectively. Let ∇̃ be the Riemannian connection determined by G̃ in Mn, then ∇̃ induces a connection ∇ in f (V ) defined

by

∇X̄ Ȳ = ∇̃X̃ Ỹ
/
f (V ) (5)

where X̄ and Ȳ are arbitrary C∞ vector fields defined along f (V ) and tangential to f (V ). Let us suppose that Mn is a

C∞ ψ̃ (5,−3) structure manifold with structure tensor ψ̃ of type (1, 1) satisfying

ψ̃5 − ψ̃3 = 0 (6)

Let L̃ and M̃ be the complementary distributions corresponding to the projection operators

l̃ = ψ̃4, m̃ = I − ψ̃4 (7)

where I denotes the identity operator. From (6) and (7), we have

(a) l̃ + m̃ = I (b) l̃2 = l̃ (c) m̃2 = m̃ (d) l̃ m̃ = m̃l̃ = 0. (8)

Let Dl and Dm be the subspaces inherited by complementary projection operators l and m respectively. We define

Dl = {X ∈ Tp (V ) : lX = X, mX = 0}

Dm = {X ∈ Tp (V ) : mX = X, lX = 0} .

Thus Tp (V ) = Dl + Dm. Also

Ker l = {X : lX = 0} = Dm

Ker m = {X : mX = 0} = Dl

at each point p of f (V ).
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2. Invariant Submanifold of ψ̃ (5,−3) Structure Manifold

H.B.Pandey & A.Kumar [5], we call V m to be invariant submanifold of Mn if the tangent space T p (f (V )) of f (V ) is

invariant by the linear mapping ψ̃ at each point p of f (V ). Thus

ψ̃BX = BψX, for all X ∈ ζ1
0 (V ) , (9)

and ψ being a (1, 1) tensor field in V m.

Theorem 2.1. Let Ñ and N be the Nijenhuis tensors determined by ψ̃ and ψ in Mn and V m respectively, then

Ñ (BX, BY ) = BN (X, Y ) , for all X, Y ∈ ζ1
0 (V ) . (10)

Proof. We have, by using (2) and (9)

Ñ (BX, BY ) =
[
ψ̃BX, ψ̃BY

]
+ ψ̃2 [BX,BY ]− ψ̃

[
ψ̃BX,BY

]
− ψ̃

[
BX, ψ̃BY

]
(11)

= [BψX,BψY ] + ψ̃2B [X,Y ]− ψ̃ [BψX,BY ]− ψ̃ [BX,BψY ]

= B [ψX,ψY ] +Bψ2 [X,Y ]− ψ̃B [ψX, Y ]− ψ̃B [X,ψY ]

= B
{

[ψX,ψY ] + ψ2 [X,Y ]− ψ [ψX, Y ]− ψ [X,ψY ]
}

= BX +Bψ3X

3. Distribution M̃ Never Being Tangential to f (V )

Theorem 3.1. If the distribution M̃ is never tangential to f (V ), then

m̃ (BX) = 0 for all X ∈ ζ1
0 (V ) (12)

and the induced structure ψ on V m satisfies

ψ4 = I (13)

Proof. If possible m̃ (BX) 6= 0. From (9) We get,

ψ̃4BX = Bψ4X; (14)

from (7) and (14)

m̃ (BX) =
(
I − ψ̃4

)
BX

= BX −Bψ4X

m̃ (BX) = B
(
X − ψ4X

)
(15)

This relation shows that m̃ (BX) is tangential to f (V ) which contradicts the hypothesis. Thus m̃ (BX)= 0. Using this

result in (15) and remembering that B is an isomorphism, We get

ψ4 = I, (16)
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Theorem 3.2. Let M̃ be never tangential to f (V ), then

Ñ
m̃

(BX,BY ) = 0 (17)

Proof. We have

Ñ
m̃

(BX,BY ) = [m̃BX, m̃BY ] + m̃2 [BX,BY ]− m̃ [m̃BX,BY ]− m̃ [BX, m̃BY ] (18)

Using (2), (8) (c) and (12), we get (17).

Theorem 3.3. Let M̃ be never tangential to f (V ), then

Ñ
l̃

(BX,BY ) = 0 (19)

Proof. We have

Ñ
l̃

(BX,BY ) =
[
l̃BX, l̃BY

]
+ l̃2 [BX,BY ]− l̃

[
l̃BX,BY

]
− l̃
[
BX, l̃BY

]
(20)

Using (2), (8) (a), (b) and (12) in (20); we get (19).

Theorem 3.4. Let M̃ be never tangential to f (V ). Define

H̃
(
X̃, Ỹ

)
= Ñ

(
X̃, Ỹ

)
− Ñ

(
m̃X̃, Ỹ

)
− Ñ

(
X̃, m̃Ỹ

)
+ Ñ

(
m̃X̃, m̃Ỹ

)
. (21)

For all X̃, Ỹ ∈ ζ1
0 (M), then

H̃ (BX,BY ) = BN (X,Y ) . (22)

Proof. Using X̃ = BX, Ỹ = BY and (10), (12) in (21) We get (22).

4. Distribution M̃ Always Being Tangential to f (V )

Theorem 4.1. Let M̃ be always tangential to f (V ), then

(a) m̃ (BX) = Bm X (b) l̃ (BX) = Bl X. (23)

Proof. from (15), we get (23) (a). Also

l = ψ4 (24)

lX = ψ4X

BlX = Bψ4 X. (25)

Using (9) in (25)

BlX = ψ̃4 BX = l̃ (BX) , (26)

which is (23) (b).
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Theorem 4.2. Let M̃be always tangential to f (V ), then l and m satisfy

(a) l +m = I (b) lm = ml = 0 (c) l2 = l (d) m2 = m. (27)

Proof. Using (8) and (23) We get the results.

Theorem 4.3. If M̃ is always tangential to f (V ), then

ψ5 − ψ3 = 0. (28)

Proof. From (9)

ψ̃5 BX = B ψ5 X (29)

Using (6) in (29)

ψ̃3BX = Bψ5X

Bψ3X = Bψ5X or

ψ5 − ψ3 = 0.

Which is (28)

Theorem 4.4. If M̃ Is always tangential to f (V ) then as in (21)

H̃ (BX,BY ) = BH (X,Y ) . (30)

Proof. From (21) we get

H̃ (BX,BY ) = Ñ (BX,BY )− Ñ (m̃BX,BY )− Ñ (BX, m̃BY ) + Ñ (m̃BX, m̃BY ) (31)

Using (23) (a) and (10) in (31) we get (30).
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