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Abstract: The onset of instability is investigated in a micropolar fluid layer heated from below in the presence of suspended particles

(fine dust) and uniform vertical magnetic field H (0, 0, H). Using the Boussinesq approximation, the linearized stability

theory and normal mode analysis method, the exact solutions are obtained for the case of two free boundaries. It is
found that the presence of coupling between thermal and micropolar effects, the suspended particles number density, the

magnetic field intensity and the micropolar coefficients bring oscillatory modes and over stability in the system which

were non–existent in their absence. The behaviour of the Rayleigh numbers for the stationary convection and the case of
over stability are computed numerically using Newton-Raphson method through the software Fortran-90 and Mathcad.

The graphs show that Rayleigh number for the case of over stability and stationary convection increase with increase
in magnetic field intensity H (0, 0, H) and decrease with increase in micropolar coefficients (the dynamic microrotation

viscosity κ and coefficient of angular viscosity γ′), for a fixed wave-number, implying thereby the stabilizing effect of

magnetic field intensity and destabilizing effect of micropolar coefficients on the thermal convection of micropolar fluids.
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1. Introduction

Eringen [1] gave a continuum theory of miicrofluids which takes into accounts the local motions and deformations of the

permitive elements of the fluids. Micromorphic or microstructure theory, in which each element of the fluid is associated

with two sets of degrees of freedom: (a) translatory degrees of freedom giving rise to classical mean motion (or velocity)

and (b) rotation and stretch allowing the particles of the fluid to undergo independent intrinsic spins and homogeneous

deformation. Eringen [2] introduced a theory of micropolar fluids, that is, fluids whose behaviour is determined in part by

their microstructure, in particular by spin inertia and by the presence of stress moments and body moments. Eringen [3, 4]

showed that if the skew–symmetric property of the gyration tensor is imposed; in addition to a condition of microisotropy, the

simple microfluid system of nineteen equations reduces to seven equations in seven unknowns; which is the case of micropolar

fluids. Under these assumptions deformation of the fluid, microelements are ignored; nevertheless, microrotational effects

are still present and surface and body couples are permitted.

Thus in micropolar fluids, rigid particles contained in a small volume element can rotate about the centroid of the volume

element in an average sense described by the microrotational vector. Micropolar theory was introduced by Eringen [3] in

order to describe some physical systems which do not satisfy the Navier Stokes equations. These fluids are able to describe
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the behaviour of colloidal solutions, liquid crystals, animal blood etc.For example fluids consisting of bar-like elements,

dumb-bell molecules, other polymeric fluids.The equations governing the flow of micropolar fluids theory involve a spin

vector and a microinertia tensor in addition to velocity vector. A generalization of the theory including thermal effects has

been developed by Kazakia and Ariman [5] and Eringen [6].

Micropolar fluids stabilities have become an important field of research these days. A particular stability problem is the

Rayleigh–Bénard instability in a horizontal thin layer of fluid heated from below. A detailed account of thermal convection

in a horizontal thin layer of Newtonian fluid heated from below has been given by Chandrasekhar [7]. Ahmadi [8] and

Pérez–Garcia et al. [9] have studied the effects of the microstructures on the thermal convection and have found that in the

absence of coupling between thermal and micropolar effects, the principle of exchange of stabilities may not be fulfilled and

consequently micropolar fluids introduce oscillatory motions. The existence of oscillatory motions in micropolar fluids has

been depicted by Lekkerkerker in liquid crystals [10], Bradley in dielectric fluids [11] and Laidlaw in binary mixture [12].

In the study of problems of thermal convection, it is frequent practice to simplify the basic equations by introducing an

approximation which is attributed to Boussinesq [13].

In geophysical situations, the fluid is often not pure but contains several suspended particles. Motivation for the study of

certain effect of particles immersed in the fluid such as particle heat capacity, particle mass fraction and thermal force is due

to the fact that the knowledge concerning fluid–particles mixture is not commensurate with their industrial and scientific

importance. Saffman [14] has considered the stability of laminar flow of a dusty gas. Sharma et al. [15] have considered the

effect of suspended particles on the onset of Bénard convection in hydromagnetics and have found that the critical Rayleigh

number is reduced because of the heat capacity of particles thereby destabilizing the system. The suspended particles were

thus found to destabilize the layer. Palaniswami and Purushotham [16] have studied the stability of shear flow of stratified

fluids with the fine dust and found that the presence of dust particles increases the region of instability.

On the other hand, multiphase fluid systems are concerned with the motion of liquid or gas containing immiscible inert

identical particles of all multiphase fluid systems observed in nature, blood flow in arteries, flow in rocket tubes, dust-in-

gas cooling system to enhance heat transfer processes, movement of inset solid particles in atmosphere, and sand or other

particles on sea or ocean beaches are the most common examples of multiphase fluid systems. Sharma and Kumar ([17],

[18]) have studied the effect of rotation and magnetic field separately, on the thermal convection in micropolar fluids.

The constitutive equations for micropolar fluids which are polar and isotropic with stress tensor T and couple stress tensor

C given by Eringen [3] and Petrosyan [19] are

Tij = (−p+ λ ekk) δij + 2µ eij + 2 κ W ij − 2 κ εmijGm (1)

and

Cij = ε′ωk,kδij + 2β′ W[ij] + γ′ W(ij). (2)

Here eij = 1
2

(vi, j + vj, i), 2Wij = vj,i − vi,j , 2W[ij] = ωi,j + ωj, i and 2W(ij) = ωi,j − ωj, i and

Tij , eij, Wij , Cij , W[ij], W(ij), Gm, εmij , v and λ, µ are stress tensor, symmetric part of Tij , the vorticity tensor, the

couple-stress tensor, symmetric part of spin tensor, antisymmetric part of spin tensor , vorticity vector, the alternating

unit tensor, velocity field and material constants, respectively. The dimensions of λ and µ are those of viscosity. Also

µ ≥ 0 , 3λ + 2µ ≥ 0.The positive constant κ in equation (1) represents the dynamic microrotation viscosity. In equation

(2) ε′, β′, γ′ are constants called coefficients of angular viscosity. The problem of hydromagnetics of micropolar fluids has

relevance and importance in chemical engineering, bio-mechanics, astrophysics and electrically conducting colloidal suspen-

sions. Sharma and Kumar [20] have studied the stability of micropolar fluids heated from below in the presence of suspended
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particles (fine dust) and have found that suspended particles number density has destabilizing effect on the convection of

micropolar fluids. Sharma and Gupta [21] have studied the effect of rotation on the thermal convection of micropolar fluid

in the presence of suspended particles.

The present paper, therefore, deals with the stability of electrically conducting micropolar fluid heated from below in the

presence of suspended particles in a uniform vertical magnetic field.

2. Mathematical Formulation of the Problem

An infinite horizontal layer of an incompressible electrically conducting micropolar fluids of thickness d permeated with

suspended particles (or fine dust) is considered. A uniform vertical magnetic field H (0, 0, H) pervades the system. This

fluid–particles layer is heated from below but convection sets in when the temperature gradient
(
β =

∣∣ dT
dz

∣∣) between the lower

and upper boundaries exceeds a certain critical value. The critical temperature gradient depends upon the bulk properties

and boundary conditions of the fluid.

Let v , ϑ, H , p, ρ, T, g, kT , cpt, cv, µe, η, êz, u, δ and j denote the velocity, the spin, the magnetic field intensity,

the pressure, the density, the temperature, the acceleration due to gravity, the thermal conductivity, the heat capacity of

particles, the specific heat at constant volume, the magnetic permeability, the electrical resistivity, the unit vector in

z−direction, the particle velocity, the coefficient giving account of coupling between spin and heat flux and microinertial

constant, respectively. Assume that external couples and heat sources are not present. If N is the number density and mN

is the mass of suspended particles per unit volume,K = 6 π µ r′, r′ being the particle radius, is the Stoke’s drag coefficient.

Assuming dust particles of uniform size, spherical shape and small relative velocities between the two phases (fluid and

particles), the net effect of the particles on the fluid is equivalent to an extra body force term per unit volume KN (u − v),

as has been taken in equations of motion. The force exerted by the fluid on the particles is equal and opposite to that

exerted by the particles on the fluid. The distance between the particles is assumed to be so large compared with their

diameter that inter particle reactions are ignored. The buoyancy force on the particles is also neglected. The equation of

state is

ρ = ρ0 [1− α (T − T0)] , (3)

where ρ0, T0 are reference density, reference temperature at the lower boundary and α is the coefficient of thermal expansion.

The steady state solution is v = 0 , u = 0 , ϑ = 0 ,N = N0(constant), T = T0 − β z, ρ = ρ0 (1 + α β z), p = p0 −

gρ0
(
z + α β z2

2

)
, where p0 is the pressure at z = 0 and β = T0−T1

d
(T0 > T1) is the magnitude of uniform temperature

gradient.

Let v (u, v, w) , u (`, r, s) , ω, N, δp, δρ, θand h (hx, hy, hz) denote, respectively, the perturbations in fluid velocity

v (0, 0, 0), particles velocity u (0 , 0 , 0), spin ϑ, particles number density N0, pressure p, density ρ, temperature T and

magnetic field H (0, 0, H) so that the change in density δρ caused by the perturbation θ in temperature is given by

δρ = −ρ0α θ.

Then the perturbation equations relevant to the problem, using the Boussinesq approximation are

∇ · v = 0, (4)

ρ0

(
∂

∂ t
+ v · ∇

)
v = −∇δp+ (µ+ κ) ∇2v + κ ∇× ω + α ρ0 g θ êz +KN0 ( u − v ) +

µe
4π

(∇× h) ×H , (5)
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ρ0j

(
∂

∂ t
+ v · ∇

)
ω =

(
ε′ + β′

)
∇ (∇ · ω) + γ′∇2ω + κ ∇× v − 2 κ ω, (6)

H1

(
∂

∂ t
+ v · ∇

)
θ = β (w + h1s) + κT∇2θ +

δ

ρ0cv

[
∇θ · (∇× ω)− (∇× ω)z · β

]
, (7)

∂h

∂t
= ∇× (v × h) + η∇2h, (8)

∇ · h = 0, (9)

mN 0

(
∂

∂ t
+ u · ∇

)
u = KN 0 (v − u) , (10)

∂M

∂ t
+∇ · u = 0, (11)

where H1 = 1 + h1, h1 =
f cpt
cv

, f = mN0
ρ0

and M = N
N0

. Using the non–dimensional numbers

z = z∗d, θ = β dθ∗, t =
ρ0d

2

µ
t∗, v =

κT
d

v∗, u =
κT
d

u∗,

p =
µκT
d2

p∗, ω =
κT
d2
ω∗ ,h =

(µ κT
d2

) 1
2

h∗,∇ =
∇∗

d
(12)

and then removing the stars for convenience, the non–dimensional forms of equations (4)–(11) become

∇ · v = 0, (13)

(
∂

∂ t
+ v · ∇

)
v = −∇δp+ (1 +K1) ∇2v +K1∇× ω +Rθ êz +N2 (u− v) +

µe
4π

(∇× h)×H , (14)

j1

(
∂

∂ t
+ v · ∇

)
ω = C′1 ∇ (∇ · ω)− C′0∇× (∇× ω) +K1 (∇× v − 2 ω) , (15)

H1p1

(
∂

∂ t
+ v · ∇

)
θ = β (w + h1s) + κT∇2θ + δ̄

[
∇θ · (∇× ω)− (∇× ω)z

]
, (16)

∂ h

∂ t
= ∇×

(
v × ~h

)
+

1

p2
∇2h, (17)

∇ · h = 0, (18)[
a

(
∂

∂ t
+ v · ∇

)
+ 1

]
u = v , (19)

where new dimensionless coefficients are

K1 =
κ

µ
, j1 =

j

d2
, δ̄ =

δ

ρ0 cv d2
, C′0 =

γ′

µ d2
, C′1 =

ε′ + β′ + γ′

µ d2
, N2 = KN0

d2

µ
, κT =

kT
ρ0cv

and the dimensionless Rayleigh number R, thermal Prandtl number p1, the magnetic Prandtl number p2 are R =

gα β ρ0d
4

µ κT
, p1 = υ

κT
, p2 = υ

η
. Let us assume both the boundaries to be free, perfectly heat conducting and the medium

adjoining the fluid is electrically non–conducting. The case of two free boundaries, though little artificial is the most appro-

priate for stellar atmosphere. Since the surfaces are fixed and are maintained at fixed temperature, w = 0 =θ at z = 0 and

z = d. Then the appropriate boundary conditions are

w =
∂2w

∂ z2
=

∂

∂ z
(∇× v)z = 0 , (∇× h) z = (∇× ω)z = 0, θ =

∂hz
∂z

= 0 at z = 0 and z = d. (20)
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2.1. Linear Theory: Dispersion Relation

Under the linearized theory, second and higher order terms are neglected and only the linear terms are retained. Accordingly,

the non–linear terms(v · ∇) v ,(v · ∇) θ, (v · ∇) ω, ∇θ ·(∇× ω) in equations (14)–(16) are neglected. Eliminating s between

equations (16) and (19) and applying the curl operator twice to resulting equation, we obtain

L2

[
H1p1

∂

∂ t
−∇2

]
θ =

(
a
∂

∂ t
+H1

)
β w − L2δ̄ Ωz . (21)

Eliminating u between (14) and (19), we obtain

L1v = L2

[
−∇δp+ (1 +K1) ∇2v +K1∇× ω +Rθ êz +

µe
4π

(∇× h) ×H
]
, (22)

where L1 = a ∂2

∂ t2
+ F ∂

∂ t
, L2 = a ∂

∂ t
+ 1 and F = f + 1. Applying the curl operator twice to equation (14) and taking

z–component, we get

L1∇2w = L2

[
R ∇2

1θ + (1 +K1) ∇4w +K1∇2Ωz +
µeH

4π

∂

∂ z
∇2hz

]
, (23)

where

∇2
1 =

∂2

∂ x2
+

∂2

∂ y2
, ∇2 =

∂2

∂ x2
+

∂2

∂ y2
+

∂2

∂ z2
, Ωz = (∇× ω)z . (24)

Applying the curl operator to equations (14), (15) and (17), taking z–component, we get

L2
∂

∂ t
ζz + n1ζz (L2 − 1) = (1 +K1) ∇2ζzL2 +

µeH

4π

∂ξz
∂ z

L2, (25)

j1
∂Ωz
∂ t

= C′0∇2Ωz −K1

(
∇2w + 2Ωz

)
, (26)

∂ξz
∂ t

= H
∂

∂ t
ζz +

1

p2
∇2ξz, (27)

where ξz = (∇× h)z, ζz = (∇× v)z are the z−components of current density and vorticity, respectively. K1 and C′0 account

for coupling between vorticity and spin effects and spin diffusion, respectively. Taking the z–component of equation (17),

we get

∂ hz
∂ t

= H
∂ w

∂ z
+

1

p2
∇2hz. (28)

Analyzing the disturbances into normal modes, we ascribe to all quantities describing the perturbation a dependence onx,y,

z and t of the form

[w, Ωz, ζz, ξz, θ, hz] = [W (z),Ω(z), Z(z), G(z),Θ(z), B(z)] exp ( ikxx+ ikyy + nt) , (29)

where k =
(
k2x + k2x

) 1
2 is the resultant wave-number, kx and ky are real constants and n is the stability parameter which is

complex, in general. Then the equations (21), (23) and (25)–(28) using expression (29) become

(an+ 1)
{
H1p1n−

(
D2 − k2

)}
Θ = (an+H1) W − (an+ 1) δ̄Ω, (30)

(
D2 − k2

) {(
an2 + Fn

)
− (an+ 1) (1 +K1)

(
D2 − k2

)}
W =

{
(an+ 1) −Rk2Θ +K1

(
D2 − k2

)
Ω

+
µeH

4π

(
D2 − k2

)
DB

}
, (31)
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{(
an2 + Fn

)
− (an+ 1)

(
D2 − k2

)
(1 +K1)

}
Z =

µeH

4π
(an+ 1)DG, (32)

{
`1n+ 2A−

(
D2 − k2

)}
Ω = −A

(
D2 − k2

)
W, (33){

n− 1

p2

(
D2 − k2

)}
G = H DZ, (34)

{
n− 1

p2

(
D2 − k2

)}
B = H DW, (35)

where A = K1
C′

0
, `1 = j1

A
K1

. Eliminating Θ, Z, B, Ω from equations (30)–(35), we get

(
D2 − k2

) {(
an2 + Fn

)
− (an+ 1) (1 +K1)

(
D2 − k2

)} {
H1p1n−

(
D2 − k2

)} {
`1n+ 2A−

(
D2 − k2

)}
{
`1n+ 2A−

(
D2 − k2

)}
W = −Rk2

{
`1n+ 2A−

(
D2 − k2

)}{
n− 1

p2

(
D2 − k2

)}
(an+H1)W

−Rk2
{
n− 1

p2

(
D2 − k2

)}
(an+ 1) δ̄A

(
D2 − k2

)
W −AK1

(
D2 − k2

)2
(an+ 1)

{
H1p1n−

(
D2 − k2

)}
{
n− 1

p2

(
D2 − k2

)}
W +

H2

4π

(
D2 − k2

) {
H1p1n−

(
D2 − k2

)}
(an+ 1)

{
`1n+ 2A−

(
D2 − k2

)}
D2W. (36)

The boundary conditions (20) transform to

W = 0, D2W = 0, DZ = 0, G = 0, Ω = 0, Θ = 0, DB = 0 at z = 0 and 1. (37)

Using boundary equations (36), equations (30)–(35) give

D2Θ = 0, D2Ω = 0, D3Z = 0, D3G = 0, D3B = 0. (38)

The proper solution of equation (36) satisfying the boundary conditions (37), (38) and characterizing the lowest mode is

W = W0 sinπ z, (39)

where W0 is a constant. Substituting the value of W from (39) in equation (36) and putting b = π2 + k2,we obtain the

dispersion relation

Rk2
{
n+

b

p2

}{
(an+H1) (`1n+ 2A+ b)− (an+ 1) δ̄Ab

}
= b

{(
an2 + Fn

)
+ (an+ 1) (1 +K1) b

}
(H1p1n+ b) (`1n+ 2A+ b)

{
n+

b

p2

}
−K1Ab

2 (an+ 1) (H1p1n+ b)

(
n+

b

p2

)
+
H2π

4

(
H1p1nb+ b2

)
(an+ 1) (`1n+ 2A+ b) (40)

2.2. The Case of Oscillatory Modes

Equating the imaginary parts of equation (40), we have

ni

[
n4
i (abH1p1`1 − abn) + n2

i

(
−2AH1p1

ab2

p2
−H1p1

ab3

p2
− `1n2

i
ab3

p2
− 2AFb− FH1p1b

2 − F`1b2

− FH1p1`1
b2

p2
−H1p1K1b

3 − ab3`1K1 − aH1p1`1K1
b3

p2
− 2AH1p1ab

2 −H1p1ab
4 − ab3`1 − 2AH1p1aK1b

2

−H1p1`1b
2 −H1p1`1

ab 3

p2
+Rk2a `1

)
+
ab 5

p2
(K1 + 1) +

b4

p2
(aK1 + 2Aa+ `1 +H1p1 + F ) +

b3

p2
(H1p12A+ 2AF )

+
b2

p2

(
−Rk2a+Rk2aδ̄A

)
+

b

p2

(
−2Rk2aA−Rk2H1`1

)
+ b

(
−Rk2H1 − δ̄A

)
+ b4 +2Ab3 − 2Rk2H1A

]
= 0. (41)
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Equation (41) yields that either ni =0 or ni 6=0, which means that the modes are either non–oscillatory or oscillatory. In the

absence of suspended particles number density, magnetic field intensity and magnetic permeability, equation (41) reduces to

ni
(
b4`1 +Rk2δ̄Ab

)
= 0 (42)

and term within the brackets is definitely positive, which implies that ni =0. Therefore, the oscillatory modes are not

allowed and principal of exchange of stabilities is valid in the absence of suspended particles and magnetic field.

2.3. The Case of Overstability

Since for overstability, we wish to determine Rayleigh number for the onset of overstability via a state of pure oscillations,

it suffices to find conditions for which equation (40) will admit of solution with ni real. Substituting n = ini in equation

(40), the real and imaginary parts of equation (40), yield

Rk2
[
b2

p2

{
2H1A+ b

(
1− δ̄A

)}
− ni2

{
b`1

(
1 +

a

p2

)
+
{

2aAH1 + b
(
1− δ̄A

)}}]
=

ni
4

[
H1p1`1b

2 {1 + a (1 +K1)}+ ab

{
b`1

(
1 +

H1p1
p2

)}
+H1p1 (2aA+ F`1)

]
− ni2

[{
(2A+ b)

(
1 +

H1p1
p2

)
+
H1b`1
p2

}
{1 + a (1 +K1)} b3 + b3 (2aA+ F`1)

{
H1p1 (1 +K1) +

a

p2

}
+ b4a`1 (1 +K1)

(
1 +

H1p1
p2

)
−K1Ab

3

{
p1H1 + a

(
1 +

p1H1

p2

)}]
+
πH2b

4

[
−ni2 {b`1 (H1p1 + a) +H1p1 (2A+ b)}+ (2A+ b) b2

]
+

[
1

p2
(1 +K1) b6 +

A

p2
(2 +K1) b5

]
(43)

and

Rk2
[
−a`1ni3 + 2AniH1 + niH1b− niδ̄Ab+

2Ab

p2
ani +

b2

p2
ani +

b

p2
H1`1ni −

1

p2
aniδ̄Ab

2

]
= abH1p1`1ni

5 − 2Aab2ni
4 − abni5 − 2AH1p1ni

3 ab
2

p2
−H1p1ni

3 ab
3

p2
− `1ni3

ab3

p2
− 2AFni

3b

− Fni3H1p1b
2 − Fni3`1b2 − FH1p1`1ni

3 b
2

p2
+ 2AFni

b3

p2
+ Fni

b4

p2
−H1p1ni

3K1b
3 − ani3b3`1K1

− aH1p1`1ni
3K1

b3

p2
+ niaK1

b4

p2
+ aniK1

b5

p2
− 2H1p1ni

3ab2A−H1p1ni
3ab4 − ab3`1ni3

−H1p1`1ni
3 ab

3

p2
+ 2Aani

b4

p2
+
b5

p2
ani − 2AH1p1ni

3aK1b
2 −H1p1`1ni

3b2 + 2Ab3ni + b4ni +
b4

p2
`1ni

+ 2AH1p1ni
b3

p2
+H1p1ni

b4

p2
. (44)

Eliminating R between equations (43) and (44), we get

ni
6

[
−a2`21 {1 +H1p1 (1 +K1)} b2 + ab`1H1p1

(
H1`1 − abδ̄A− F`1

)
− b3a`1H1

(
1

p2
+ (1 +K1)

)]
+ n4

i

[
b5
{
H1p1a

2 (1− δ̄A)+H1p1`1δ̄Aa
1

p2
(1 +K1) +

p1
p2
δ̄A (H1 − 1)

}
+ b4

{
2H1p1a

2 (1 +K1)A− a2δ̄A`1 (1 +K1)− a2H1
2p1 (H1 − 1)

p1
p2

}
+ b3

{
H1p1Fa

(
1− δ̄A

)
+H1p1`

2
1
a2

p22
(H1 − 1)−H1p1`1K1a

(
2− δ̄A

)
+

1

p22
H1p1a`

2
1 (F − aK1)

}
+ b2

{
−2a

p2
AF`1 (H1 − 1)− H2π

4
a`1

(
a`1 −

p1
p2

+ p1δ̄A

)
− 2Aa`1H1 (H1 − 1)

}
+b

{
−2A2aH2

1p1 (H1 − 1)− πH2

4
a`12A

(
a`1 −

p1
p2
a`1 + p1δ̄A

)}]
13
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+ ni
2

[
b7
{
−H1p1

a

p22

(
1− δ̄A

)
− δ̄A a

p22
(1 +K1)

}
+ b6

{
a2

p2
δ̄A (1 +K1)−H1p1`1

1

p22

(
2− δ̄A

)
−2H2

1
p1
p2
aA (1 +K1)− H2π

4
H1p1

1

p2

(
2− δ̄A

)
−H1p1δ̄A

1

p2
(F − aK1)

}
+ b5

{
−H1p1`1

a

p2
(H1 − 1)

+H1p1a
2 1

p22
(1 +K1) +

aδ̄A

p2
(1 +K1)− `21

p22
(2Aa+ F`1)− 2A2 δ̄

p2
(H1 − F ) +H1p1

a

p22
(F − aK1)

+
K1Aa

p22

(
`1 +H1p1δ̄A

)
+

2Aa

p22
{2 + 2H1p1 (1 +K1)−K1p1}+ 2 {1 +H1p1 (1 +K1)}

(
1− δ̄A

)}
+ b4

{
H1p1 −

1

p2

(
F δ̄ − δ̄ − aK1

)
+
H1p1`1
p22

(F`1 +H1p1)− H2π

4

(
a2`1 −

p1
p2
a`1 + p1δ̄A

)
+
`21
p22

(H1 − F )− H2π

4

({
F

(
1− p1

p2

)
− H1p1`1

p2

} (
1− δ̄A

)
+
F`1
p2

(
H1p1 + δ̄A

))
+ 4A2 {1 +H1p1 (1 +K1)}

+
2A2F

p22
{2 + 2H1p1 (1 +K1)−K1p1}

}
+ b3

{
1

p2
2H2

1p1 A`1F (H1 − 1) +
H2π

4

[
H1p1

(
2− δ̄A

) (
1− H1p1

p2

)]
− H2π

4

[
F

(
1− H1p1

p2

)
H1p1`1
p2

]
+ 2H1p1A

1

p2

(
F δ̄ − δ̄ − aK1

)
− K1a`1

p2
(H1 − 1) +

H1`1
p22

(
`1 +H1p1δ̄A

)
+ 2H2

1p1F
1

p2
A
(
1− δ̄A

)}
+ b2

{
H2π

4
H1p1`1

a

p2

(
2− δ̄A

)
+
H2π

4
p1H1`1

(
1− δ̄A

)
+H1p1

1

p2
(2aA+ F`1)− πH2

4
H1p1`1F

(
1− p1

p2

)}
+ b

{
2H2π

4
H1p1`1FA

(
1− p1

p2

)}]
+ b8

[
1

p22

{
1 +H1p1 (1 +K1)

(
2− δ̄A

)
− F`1 (1 +K1) δ̄Aa

}]
+ b7

{
4A

p22
{1 +H1p1 (1 +K1)}

(
1− δ̄A

)
+ 2aA {1 +H1p1 (1 +K1)}

}
+ b6

[
2A2F

p22
{1 +H1p1 (1 +K1)}

(
1− δ̄A

)
+

1

p22
H1p1 (H1 − 1) +

H2π

4

{(
H1p1
p2
− 1

) (
2− δ̄A

)
− H1p1`1

p2
δ̄AF

}]
+ b5

[
4H1p1A

2 1

p22

(
2− δ̄A

)
+

2

p22
AH1 (F − aK1) +

H2π

4

{
2AF

(
H1p1
p2
− 1

) (
2− δ̄A

)
− H1p1F

p2
δ̄AF

}]
+ b4

[
−4

p2
A2H1 (1 +K1)

+
H2π

4

{(
1− δ̄A

) (H1p1
p2
− 1

)
+ 2A2 a

p22
K1 (H1 − 1)

}]
+ b3

[
−H2π

2

Aa

p2
(H1 − 1) +

H1a

p2
(1 +K1)

]
+ b2

[
H2π

4

{(
2− δ̄A

) `1H1

p2

}
− H2π

4

H1a

p2

]
= 0. (45)

It is evident from the equation (45) that overstable modes will not be present for all values of parameters. For example, in

the absence of coupling between spin and heat flux
(
δ̄ = 0

)
, magnetic field (H = 0) and in the absence of suspended particles

(a = 0 = f = h1), equation (45) allows only ni = 0 and so overstable solution will not take place if K1p1 < 2. Thus for

stationary convection i.e. ni = 0 and in the presence of coupling between spin and heat fluxes
(
δ̄ 6= 0

)
, equation (43) reduces

to

R =
b4 (1 +K1) +A b3 (2 +K1) + H2π

4
(2A+ b) bp2

k2
{
H12A+ b

(
1− δ̄A

) } . (46)

In the absence of magnetic field intensity (H = 0), equation (46) reduces to

R =
b4 (1 +K1) +Ab3 (2 +K1)

k2
{

2H1A+ b
(
1− δ̄A

) } , (47)

a result in good agreement with Sharma and Kumar [20].

3. Results and Discussions

Equation (45) has been examined numerically using the Newton–Raphson method through the software Fortran 90 and

Mathcad. The variation of Rayleigh number with respect to wave-numbers using equation (43) satisfying equation (45)

for overstable case and equation (47) for stationary case, for the fixed permissible values of the dimensionless parameters

K1 = 1, A = 0.5, δ̄ = 1, `1 = 1, p1 = 5, p2 = 1,a = 10, F = 1.005 and H1 = 1.01. These values are the permissible values
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for the respective parameters and are in good agreement with the corresponding values usedby Chandrasekhar [7] while

describing various hydrodynamic and hydromagnetic stability problems.

Figures 1–4 represent the behaviour of the Rayleigh number for both the cases of overstability and stationary convection

w.r.t. k for four different values of the magnetic field intensity H = 70, 100, 120 and 0 Gauss, respectively. From the

curves we observe that Rayleigh number increases with increase in magnetic field intensity for a fixed wave-number depicting

thereby the stabilizing effect of magnetic field intensity.

Figures 5–7 correspond to three values of micropolar coefficient κ = 0.5, 0.7 and 1.0, respectively, accounting for dynamic

microrotation viscosity. The graphs show that the Rayleigh number for the stationary convection and for the case of

overstability decreases with the increase in micropolar coefficient κ for a fixed wave-number implying thereby the destabilizing

effect of dynamic microrotation viscosity.

Figures 8–10 correspond to three values of micropolar coefficient γ′ = 1.0, 1.2 and 1.4, respectively, accounting for coefficient

of angular viscosity. The graphs show that the Rayleigh number for the stationary convection and for the case of overstability

decreases with the increase in micropolar coefficient γ′ for a fixed wave-number implying thereby the destabilizing effect of

coefficient of angular viscosity.

Thus there is a competition between the large enough stabilizing effect of magnetic field intensity and the destabilizing

effect of the micropolar coefficients. The presence of coupling between thermal and micropolar effects, magnetic field and

suspended particles number density may bring overstability in the system. It is also noted from the figures 3–10 that the

Rayleigh number for overstability is always less than the Rayleigh number for stationary convection, for a fixed wave-number.

However, the reverse may also occur for large wave-numbers, as has been depicted in figures 1 and 2 for H=70, 100 Gauss,

respectively.

Figure 1. The variation of Rayleigh number (R) with wave number (k) for H=70 Gauss

Figure 2. The variation of Rayleigh number (R) with wave number (k) for H=100 Gauss
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Figure 3. The variation of Rayleigh number (R) with wave number (k) for H=120 Gauss

Figure 4. The variation of Rayleigh number (R) with wave number (k) for H=0 Gauss

Figure 5. The variation of Rayleigh number (R) with wave number (k) for κ = 0.5 Gauss

Figure 6. The variation of Rayleigh number (R) with wave number (k) for κ = 0.7 Gauss
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Figure 7. The variation of Rayleigh number (R) with wave number (k) for κ = 1.0 Gauss

Figure 8. The variation of Rayleigh number (R) with wave number (k) for γ′ = 1.0 Gauss

Figure 9. The variation of Rayleigh number (R) with wave number (k) for γ′ = 1.2 Gauss

Figure 10. The variation of Rayleigh number (R) with wave number (k) for γ′ = 1.4 Gauss
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