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Abstract: Many graphs which are encountered in the study of graph theory are characterized by a type of configuration or subgraphs
they possess. However, there are occasions when such graphs are more easily defined or described by the kind of subgraphs

they are not permitted to contain. Such subgraphs are called forbidden subgraphs. In this paper, we present charac-

terizations of graphs whose blict and blitact graphs are planar, outerplanar, minimally nonouterplanar and 2-minimally
nonouterplanar in terms of forbidden subgraphs.
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1. Introduction

Normally a characterization of graphs having a given property by means of “forbidding” a certain family of subgraphs

has a great interest due to its practical applications. Greenwell and Hemminger [1] characterized graphs with planar line

graphs in terms of forbidden subgraphs. In this paper, we shall consider a graph as a nontrivial connected graph. We use

the terminology of [5].

In [6], the idea of a minimally nonouterplanar graph is introduced. The inner point number i(G) of a planar graph G is the

minimum possible number of points not belonging to the boundary of the exterior region in any boundary of G in the plane.

Obviously G is planar if and only if i(G)=0. A graph G is minimally nonouterplanar if i(G)=1, and G is k -minimally

nonouterplanar (k≥2) if i(G)=k. A line of a plane graph G is called a boundary line if it is on the boundary of the exterior

region, otherwise it is called a nonboundary line. If B={u1, u2, ..., ur; r ≥ 2} is a block of a graph G, then we say that point

u1 and block B are incident with each other, as are u2 and B and so on. If two distinct blocks B1 and B2 are incident with

a common cutpoint, then they are adjacent blocks. The blocks, cutpoints and lines of a graph are called its members.

The blict graph Bn(G) of a graph G as the graph whose set of points is the union of the set of blocks, cutpoints and

lines of G and in which two points are adjacent if and only if the corresponding blocks and lines of G are adjacent or the

corresponding members are incident.

The blitact graph Bm(G) of a graph G as the graph whose point set is the union of the set of blocks, cutpoints and lines of G

and in which two points are adjacent if and only if the corresponding members are adjacent or incident. These concepts were
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introduced by Kulli and Biradar [2]. Many other graph valued functions in graph theory were studied, for example, in [6–22].

The following will be useful in the proof of our results.

Remark 1.1 ([2]). If G = K1,p, p ≥ 2 then Bn(G) (or Bm(G)) = Kp+1.Kp+1.

Theorem 1.2 ([4]). A graph is planar if and only if it has no subgraph homeomorphic to K5 or K3,3.

Theorem 1.3 ([2]). The blict graph Bn(G) of a graph G is planar if and only if G satisfies the following conditions;

(1). G is planar.

(2). The degree of each point of G is at most three.

(3). A cutpoint is not adjacent to other three cutpoints.

(4). A cutpoint incident with a nonline block B is not adjacent to other two.

(5). Cutpoints either of one is not incident with B.

(6). If a block B has two non-adjacent cutpoints then either of one should not be adjacent to other cutpoint which is not

incident with B.

Theorem 1.4 ([2]). The blict graph Bn(G) of a graph G is outerplanar if and only if G is a path of length at most three or

G is a cycle.

Theorem 1.5 ([2]). The blict graph Bn(G) of a graph G is minimally nonouterplanar if and only if G satisfies the following

conditions;

(1). deg ν ≤ 3 for every point ν of G and

(2). G is a block with exactly two points of degree 3 and these are adjacent or

(3). G is a cycle together with an endline adjoined to some point or

(4). G is a path of length 4.

Theorem 1.6 ([2]). Let G be a connected graph. Then Bn(G) = Bm(G) if and only if G has at most one cutpoint or no

two cutpoints of G are adjacent.

Theorem 1.7 ([3]). The blict graph Bn(G) of a graph G is 2-minimally nonouterplanar if and only if G satisfies the

following conditions:

(1). deg ν ≤ 3 for every point ν of G and

(2). G is a m-minimally nonouterplanar (p, q) block with q − p+m = 2 or

(3). G has exactly two noncutpoints of degree 3 and these are adjacent and a unique cutpoint ν of degree 3, ν lies on two

blocks of G in which one block has an endpoint of G or

(4). G is a triangle together with a path of length 2 adjoined to some point or

(5). G is a (p, q) tree, 4 ≤ P ≤ 6 except P4 and P5 and if ∆(G) = 3 then it has exactly one point of degree 3 and at most

one point of degree 2.
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2. Main Results

In the following theorem we characterize those graphs whose blict graphs are planar in terms of forbidden subgraphs by

using Theorem 1.3.

Theorem 2.1. A graph G has a planar blict graph if and only if it has no subgraph homeomorphic to K3,3 or K1,4 and also

to G1 or G2 of Fig. 1 with respect to the cutpoints.

Proof. Let G be a graph with a planar blict graph. We now show that all graphs homeomorphic to K3,3 or K1,4 and

also to G1 or G2 with respect to the cutpoints, have nonplanar blict graphs. It follows from Theorem 1.3, since graphs

homeomorphic to K3,3 are nonplanar, graphs homeomorphic to K1,4 have a point of degree 4, graphs homeomorphic to

G1 with respect to the cutpoints have a cutpoint which is adjacent to other 3 outpoints, graphs homeomorphic to G2 with

respect to the cutpoints have a cutpoint incident with a nonline block B and is adjacent to other 2 cutpoints either of one

is not incident with B.

Conversely, suppose that G contains no subgraph homeomorphic to K3,3 or K1,4 and also G1 or G2 with respect to the

cutpoints. It implies that G has no subgraph homeomorphic to K3,3 or K5. Then by Theorem 1.2, G is planar.

Figure 1.

Now assume ∆(G) = 4. Then G has a point of degree 4. Then it has a subgraph homeomorphic to K1,4, a contradiction.

Thus degree of each point is at most three. Let ν be the cutpoint of degree 3. We consider the following cases.

Case 1. Suppose ν lies on 3 blocks such that G is K1,3 together with the paths of length ≥ 1 adjoined to each endpoint.

Then G has a subgraph homeomorphic to G1 with respect to the cutpoints, a contradiction.

Case 2. Suppose ν lies on 2 blocks such that G is a cycle together with a path Pm (m ≥ 2) is adjoined at ν and suppose

a path Pn (n ≥ 1) is adjoined at a point u (u 6= ν) on the cycle. Then G has a subgraph homeomorphic to G2, again a

contradiction.

From the above cases, we conclude that (i) a cutpoint is not adjacent to other three cutpoints (ii) a cutpoint incident with

a nonline block B is not adjacent to other 2 cutpoints either of one is not incident with B and (iii) if a block B has non

adjacent cutpoints then either of one is not adjacent to the other cutpoint which is not incident with B. Thus Theorem 1.3

implies that G has a planar blict graph.

We now establish a characterization of graphs whose blict graphs are outerplanar in terms of forbidden subgraphs by using

Theorem 1.4.

Theorem 2.2. A graph G has an outerplanar blict graph if and only if it has no subgraph homeomorphic to K1,3 and also

to P5 with respect to the cutpoints.

Proof. Let G be a graph with an outerplanar blict graph. We now show that all graphs homeomorphic to K1,3 and also to

P5 with respect to the cutpoints, have nonouterplanar blict graphs. It follows from Theorem 1.4, since graphs homeomorphic
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to K1,3 have a point of degree 3 and therefore they are neither paths nor cycles, graphs homeomorphic to P5 with respect

to the cutpoints have a path of length at least 4.

Conversely, suppose that G contains no subgraph homeomorphic to K1,3 and also P5 with respect to the cutpoints. Now

assume ∆(G) = 3. Then G has a point of degree 3. Then it has a subgraph homeomorphic to K1,3, a contradiction. Thus

∆(G) ≤ 2. Then G is either a cycle or a path. Assume G is a path of length 4. Then it has a subgraph homeomorphic to P5,

again a contradiction. Therefore, G is a path of length at most three. Thus Theorem 1.4 implies that G has an outerplanar

blict graph.

We now characterize those graphs whose blict graphs are minimally nonouterplanar in terms of forbidden subgraphs by

using Theorem 1.5.

Theorem 2.3. Let G be a graph for which the blict graph Bn(G) is nonouterplanar. Then Bn(G) is minimally nonouter-

planar if and only if G 6= K1,3 and it has no subgraph homeomorphic to K1,4, K2,3, K4, G1 or G2 (see Fig. 2(a)) and also

to G3, G4 or G5 (see Fig. 2(b)) with respect to the cutpoints.

Proof. Let G be a graph for which the blict graph Bn(G) is nonouterplanar.

(a) (b)

Figure 2.

Now suppose Bn(G) is minimally nonouterplanar. We now show that all graphs homeomorphic to K1,4, K2,3, K4, G1 and

G2 and also to G3, G4 or G5 with respect to the cutpoints, have no minimally nonouterplanar blict graphs. It follows from

Theorem 1.5, since graphs homeomorphic to K1,4 have a point of degree 4, graphs homeomorphic to K2,3, K4, G1 or G2 is

a m-minimally nonouterplanar (p, q) block with q − p+m > 1, graphs homeomorphic to G4 with respect to the outpoints

have a cycle together with a path Pn (n ≥ 1) is adjoined at some point and a path Pm (m ≥ 1) is joined between the two

non adjacent points on the cycle, graphs homeomorphic to G3 have no cycle together with an endline adjoined to some

point, graphs homeomorphic to G5 have a path of length at least 5.

Conversely, suppose that G contains no subgraph homeomorphic to K1,4, K2,3, K4, G1 and G2 and also G3, G4 or G5

with respect to the cutpoints. If possible suppose G = K1,3. Then by Remark 1.1, Bn(G) = K4.K4, which is 2-minimally

nonouterplanar.

Now assume ∆(G) = 4. Then G has a point of degree 4. Then it has a subgraph homeomorphic to K1,4, a contradiction.

Thus degree of each point is at most 3. Suppose the degree of each point is at most two. Then by Theorem 1.4, the blict

graph Bn(G) is outerplanar. Thus Theorem 1.4 implies that G has at least one cutpoint or two noncutpoints of degree 3.

We consider the following cases.

Case 1. Suppose G is a nonseparable graph. We consider the following subcases.
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Subcase 1.1.Suppose G is a cycle with exactly two points of degree 3 and are joined by a path Pn (n ≥ 3). Then G has a

subgraph homeomorphic to K2,3, a contradiction.

Subcase 1.2. Suppose G is a cycle with exactly two pairs of nonadjacent points of degree 3 and the corresponding pairs

of points are joined by a path Pi (i ≥ 3) and Pj (j ≥ 3) respectively. Then G has a subgraph homeomorphic to G1, again a

contradiction.

Subcase 1.3. Suppose G is nonouterplanar. Then G has a nonouterplanar block B with more than 3 points. On

embedding B on the plane, the maximum number of points lie on the exterior cycle C of B. Since B is nonouterplanar, there

exists at least one point that lies in the interior of C. Let ν be the point interior to C and adjacent to two points of C, degree

of ν must be three. Otherwise B contains two noncutpoints of degree 3. Hence there is a path from ν to some point of C.

Thus a subgraph of B is homeomorphic to K4. From the above cases, we conclude that G is a m-minimally nonouterplanar

(p, q) block with q − p+m = 1.

Case 2. Suppose G is a separable graph. We consider the following subcases.

Subcase 2.1. Suppose there are two or more cutpoints of degree 3, each of which lies on either 2 or 3 blocks. Then G has

a subgraph homeomorphic to G3 with respect to the cutpoints, a contradiction.

Subcase 2.2. Suppose G has a unique cutpoint ν of degree 3 and ν lies on 2 blocks. Then we have the following subcases.

Subcase 2.2.1. Suppose one of the blocks contain a cycle C and the other is a line uv, where u lies on the cycle C and v

is incident with an end line. Then G has a subgraph homeomorphic to G3 with respect to the cutpoints, a contradiction.

Subcase 2.2.2. Suppose one of these blocks is a line and the other is a cyclic block having exactly two noncutpoints of

degree 3. Then G has a subgraph homeomorphic to G4 with respect to the cutpoints, again a contradiction. From the above

cases we conclude that G is a cycle together with an endline adjoined to some point. Thus Theorem 1.5 implies that G has

a minimally nonouterplanar blict graph.

In the following theorem we characterize those graphs whose blict graphs are 2-minimally nonouterplanar in terms of

forbidden subgraphs by using Theorem 1.7.

Theorem 2.4. Let G be a graph for which Bn(G) is not m (m ≤ 1)-minimally nonouterplanar. Then Bn(G) is 2-minimally

nonouterplanar if and only if it has no subgraph homeomorphic to K1,4, K4, G1, G2, G3, G4 or G5 (see Fig. 3(a)) and also

to any one of the graphs of Fig. 3(b) with respect to the cutpoints.

Proof. Let G be a graph for which Bn(G) is not m (m ≤ 1)-minimally nonouterplanar.

(a) (b)

Figure 3.
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Suppose Bn(G) is 2-minimally nonouterplanar. We now show that all graphs homeomorphic to K1,4, K4, G1, G2, G3, G4

or G5 and also to any one of the graphs of Fig. 3(b) with respect to the cutpoints have no 2-minimally nonouterplanar

blict graphs. It follows from Theorem 1.7, since graphs homeomorphic to K1,4 have ∆(G) > 3, graphs homeomorphic to

K4, G1, G2, G3, G4 or G5 is a block with q − p+m > 2, graphs homeomorphic to G6, G7, G8, G9 or G10 with respect to

the cutpoints have no two adjacent noncutpoints of degree 3 with a unique cutpoint ν of degree 3 which lies on two blocks

of G in which one block has an endpoint of G, graphs homeomorphic to G12 with respect to the cutpoints, have no triangle

together with a path of length 2 adjoined to some point, graphs homeomorphic to G13 have a path of length at least 6 with

respect to the cutpoints, graphs homeomorphic to G11 or G12 are trees with ∆(G) = 3 having one point of degree 3 and at

least two points of degree 2.

Conversely, suppose that G contains no subgraph homeomorphic to K1,4, K4, G1, G2, G3, G4 or G5 (see Fig. 3(a)) and also

to any one of the graphs of Fig. 3(b) with respect to the cutpoints. Now assume ∆(G) = 4. Then G has a point of degree

4. Then it has a subgraph homeomorphic to K1,4, a contradiction. Thus degree of each point is at most 3. Suppose the

degree of each point is at most 2. Then by Theorem 1.4, the blict graph Bn(G) is outerplanar. Thus Theorem 1.4 implies

that G has at least one cutpoint or two noncutpoints of degree 3. We consider the following cases.

Case 1. Suppose G is a nonseparable graph. Then no two points of degree 3 are adjacent. Otherwise Bn(G) is minimally

nonouterplanar. We consider the following subcases.

Subcase 1.1. Suppose G is a cycle with exactly two points of degree 3 and are joined by a path Pn (n ≥ 4). Then G has

a subgraph homeomorphic to G1, a contradiction.

Subcase 1.2. Suppose G is a cycle with exactly two pairs of non adjacent points of degree 3 and the corresponding pairs

of points are joined by a path Pi (i ≥ 4) and Pj (j ≥ 3) respectively. Then G has a subgraph homeomorphic to G2, a

contradiction.

Subcase 1.3. Suppose G is a cycle with exactly three pairs of nonadjacent points of degree 3 and the corresponding pairs

of points are joined by a path Pi (i ≥ 3), Pj (j ≥ 3) and Pk (k ≥ 3) respectively. Then G has a subgraph homeomorphic to

G3, again a contradiction.

Subcase 1.4. Suppose G is nonouterplanar. Then G has a nonouterplanar block B with more than 3 points. On embedding

B on the plane, the maximum number of points lie on the exterior cycle C of B. Since B is nonouterplanar, there exists at

least one point which lies in the interior of C. Let ν be the point interior to C and adjacent to two points of C, degree of ν

must be three. Otherwise B contains two noncutpoints of degree 3. Hence there is a path from ν to some point of C. Thus

a subgraph of B is homeomorphic to K4. From the above cases, we conclude that G is a m-minimally nonouterplanar (p, q)

block with q − p+m = 2.

Case 2. Suppose G is separable. We consider the following subcases.

Subcase 2.1. Suppose G has a unique cutpoint ν of degree 3 and ν lies on 2 blocks. Then we have the following subcases.

Subcase 2.1.1. Suppose one of the blocks is a cyclic block B having two adjacent points of degree 3 and a path Pn (n ≥ 3)

is adjoined at the point ν. Then G has a subgraph homeomorphic to G6 with respect to the cutpoints, a contradiction.

Subcase 2.1.2. Suppose the cyclic block B has two nonadjacent points of degree 3 and are joined by a path Pm (m ≥ 3)

and a path Pn (n ≥ 2) is adjoined at the point ν. Then G has a subgraph homeomorphic to G7 with respect to the cutpoints,

a contradiction.

Subcase 2.1.3. Suppose the cyclic block B has two pairs of points of degree 3 and are joined by the paths Pm (m ≥ 2)

and Pn (n ≥ 2) respectively and a path Pk (k ≥ 2) is adjoined at the point ν. Then G has a subgraph homeomorphic to G8

or G9, a contradiction.

Subcase 2.1.4. Suppose B is a triangle having two cutpoints u and ν together with the path Pi (i ≥ 2) and Pj (j ≥ 2)
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adjoined at the points u and ν respectively. Then G has a subgraph homeomorphic to G10 with respect to the cutpoints, a

contradiction.

Subcase 2.1.5. Suppose B is a triangle together with a path Pn (n ≥ 4) is adjoined at the point ν. Then G has a subgraph

homeomorphic to G12 with respect to the cutpoints, a contradiction.

Case 3. Suppose G is a tree. Assume G is a path Pn (n ≥ 5) and an endline is adjoined at the point of degree 2. Then

G has a subgraph homeomorphic to either G11 or G12 with respect to the cutpoints, a contradiction. Assume G is a path

of length at least 6. Then it has a subgraph homeomorphic to G13, again a contradiction. Thus by Theorem 2.8, G has a

2-minimally nonouterplanar blict graph. This completes the proof of the theorem.

The characterizations of planar, outerplanar, minimally nonouterplanar and 2-minimally nonouterplanar blitact graphs in

terms of forbidden subgraphs are similar to the characterizations for blict graphs. Since the graphs satisfying the conditions

of Theorem 2.1, 2.2, 2.3 and 2.4 are having at most one cutpoint and by Theorem 1.6, we have Bn(G) = Bm(G) whenever

G has at most one cutpoint. Also the adjacency of the points corresponding to the remaining cutpoints of G do not affect

the 2-minimally nonouterplanarity of Bn(G) and Bm(G).

Theorem 2.5. A graph G has a planar blitact graph if and only if it has no subgraph homeomorphic to K3,3 or K1,4 and

also to G1 or G2 of Fig. 1 with respect to the cutpoints.

Proof. The proof is similar to the proof of Theorem 1.1 and hence we omit the proof.

Theorem 2.6. A graph G has an outerplanar blitact graph if and only if it has no subgraph homeomorphic to K1,3 and also

to P5 with respect to the cutpoints.

Proof. The proof is similar to the proof of Theorem 2.2 and hence we omit the proof.

Theorem 2.7. Let G be a graph for which the blitact graph Bm(G) is nonouterplanar. Then Bm(G) is minimally nonouter-

planar if and only if G 6= K1,3 and it has no subgraph homeomorphic to K1,4, K2,3, K4, G1 or G2 (see Fig. 2(a)) and also

to G3, G4 or G5 (see Fig. 2(b)) with respect to the cutpoints.

Proof. The proof is similar to the proof of Theorem 2.3 and hence we omit the proof.

Theorem 2.8. Let G be a graph for which Bm(G) is not m (m ≤ 1) minimally nonouterplanar. Then Bm(G) is 2-minimally

nonouterplanar if and only if it has no subgraph homeomorphic to K1,4, K4, G1, G2, G3, G4 or G5 (See Fig. 3(a)) and also

to any one of the graphs of Fig. 3 (b) with respect to the cutpoints.

Proof. The proof is similar to the proof of Theorem 2.4 and hence we omit the proof.
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