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1. Introduction

Harmonic maps on Riemannian manifolds have been studied for many years, starting with the paper of J. Eells and J.H.

Sampson [3]. Due to their analytic and geometric properties harmonic maps have become an important and attractive field

of research. The study of harmonic maps on Riemannian manifolds endowed with some structures has its origin in a paper

of Lichnerowicz’s [14], in which he proved that a holomorphic map between Kähler manifolds is not only a harmonic map

but also attains the minimum of the energy in its homotopy class. More general, Rawnsley [15] studied structure preserving

harmonic maps between f-manifolds by using twistorial methods. Harmonic maps on C-manifolds were studied by Gherghe

and Kenmotsu in [9]. On contact geometry, similar results as Lichnerowicz’s, were obtained by Ianuş, Gherghe, Pastore,

Chinea [2, 8].

The purpose of this paper is to obtain some results concerning harmonic maps and harmonic morphisms on S-manifolds.

After we recall some well known facts about harmonic maps, harmonic morphisms and S-manifolds (section 2), we prove

that any structure preserving map from S-manifold to a Kähler manifold is harmonic and that there are no non constant

harmonic holomorphic maps from a Kähler manifold to S-manifold (section 3). In the same section we give some conditions

for a map from S-manifold to a Kähler manifold to be a harmonic morphism. In the last section we obtain some results on

spectral theory of harmonic maps for which the target manifold is an S-space form.

2. Preliminaries

As a generalization of both almost complex (in even dimension) and almost contact (in odd dimension) structures, Yano

introduced in [19] the notion of f -structure on a smooth manifold of dimension 2n+ s, i.e. a tensor field of type (1,1) and

rank 2n satisfying f3 + f = 0. The existence of such a structure is equivalent to a reduction of the structural group of the
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tangent bundle to U(n)×O(s). Let N be a (2n+ s)-dimensional manifold with an f -structure of rank 2n. If there exist s

global vector fields ξ1, ξ2, . . . , ξs on N such that:

fξα = 0, ηα ◦ f = 0, f2 = −I +
∑

ξα ⊗ ηα, (1)

where ηα are the dual 1-forms of ξα, we say that the f -structure has complemented frames. For such a manifold there exists

a Riemannian metric g such that

g(X,Y ) = g(fX, fY ) +
∑

ηα(X)ηα(Y )

for any vector fields X and Y on N . See [1]. An f -structure f is normal, if it has complemented frames and

[f, f ] + 2
∑

ξα ⊗ dηα = 0,

where [f, f ] is Nijenhuis torsion of f . Let Ω be the fundamental 2-form defined by Ω(X,Y ) = g(X, fY ), X, Y ∈ T (N). A

normal f -structure for which the fundamental form Ω is closed, η1∧· · ·∧ηs∧(dηα)n 6= 0 for any α, and dη1 = · · · = dηs = Ω is

called to be an S-structure. A smooth manifold endowed with an S-structure will be called an S-manifold. These manifolds

were introduced by Blair in [1]. We have to remark that if we take s = 1, S-manifolds are natural generalizations of Sasakian

manifolds. In the case s ≥ 2 some interesting examples are given in [1, 11]. If N is an S-manifold, then the following formulas

are true (see [1]):

∇Xξα = −fX, X ∈ T (N), α = 1, . . . , s, (2)

(∇Xf)Y =
∑
{g(fX, fY )ξα + ηα(Y )f2X}, X, Y ∈ T (N), (3)

where ∇ is the Riemannian connection of g. Let L be the distribution determined by the projection tensor −f2 and let M

be the complementary distribution which is determined by f2 + I and spanned by ξ1, . . . , ξs. It is clear that if X ∈ L then

ηα(X) = 0 for any α, and if X ∈M , then fX = 0. A plane section π on N is called an invariant f -section if it is determined

by a vector X ∈ L(x), x ∈ N, such that {X, fX} is an orthonormal pair spanning the section. The sectional curvature of π

is called the f -sectional curvature. If N is an S-manifold of constant f -sectional curvature k, then its curvature tensor has

the form

R(X,Y, Z,W ) =
∑
α,β

{g(fX, fW )ηα(Y )ηβ(Z)− g(fX, fZ)ηα(Y )ηβ(W ) + g(fY, fZ)ηα(X)ηβ(W )− g(fY, fW )ηα(X)ηβ(Z)}

+
1

4
(k + 3s){g(fX, fW )g(fY, fZ)− g(fX, fZ)g(fY, fW )}

+
1

4
(k − s){F (X,W )F (Y,Z)− F (X,Z)F (Y,W )− 2F (X,Y )F (Z,W )}, (4)

X, Y, Z, W ∈ T (N). Such a manifold N(k) will be called an S-space form. The Euclidean space E2n+s and the hyperbolic

space H2n+s are examples of S-space forms.

Now we recall some well known facts about harmonic maps on Riemannian manifolds. Let F : (M, g) −→ (N,h) be a

smooth map between two Riemannian manifolds of dimensions m and n respectively. The energy density of F is a smooth

function e(F ) : M −→ [0,∞) given by

e(F )p =
1

2
Trg(F

∗h)(p) =
1

2

m∑
i=1

h(F∗pui, F∗pui),
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for any p ∈M and any orthonormal basis {u1, . . . , um} of TpM . If M is a compact Riemannian manifold, the energy E(F )

of F is the integral of its energy density:

E(F ) =

∫
M

e(F )υg ,

where υg is the volume measure associated with the metric g on M. A map F ∈ C∞(M,N) is said to be harmonic if it

is a critical point of the energy functional E on the set of all maps between (M, g) and (N, h). Now, let (M, g) be a

compact Riemannian manifold. If we look at the Euler-Lagrange equation for the corresponding variational problem, a map

F : M −→ N is a harmonic if and only if τ(F ) ≡ 0, where τ(F ) is tension field which is defined by

τ(F ) = Trg∇̃dF,

where ∇̃ is the connection induced by the Levi-Civita connection on M and the F -pull back connection of the Levi Civita

connection on N. We take now a smooth variation Fs,t with two parameters s, t ∈ (−ε, ε) such that F0,0 = F . The

corresponding variation vector fields are denoted by V and W. The second variation formula of E is:

HF (V,W ) =
∂2

∂s∂t
(E(Fs,t))

∣∣
(s,t)=(0,0)

=

∫
M

h(JF (V ),W )υg,

where JF is a second order self-adjoint elliptic operator acting on the space of variation vector fields along F (which can be

identified with Γ(F−1(TN))) and is defined by

JF (V ) = −
m∑
i=1

(∇̃ui∇̃ui − ∇̃∇uiui)V −
m∑
i=1

RN (V, dF (ui))dF (ui), (5)

for any V ∈ Γ(F−1(TN)) and any local orthonormal frame {u1, . . . , um} on M. Here RN is the curvature tensor of (N, h)

and 5̃ is the pull-back connection by φ of the Levi-Civita connection of N (see [6] and [16] for more details on harmonic

maps).

3. Harmonic Maps and Harmonic Morphisms on S- manifolds

A smooth map F : M → N from an S-manifold M(f, ξα, ηα, g) to a Kähler manifold N(J, h) is called to be a (f, J)-

holomorphic if its differential interwines the structures, that is dF ◦ f = J ◦ dF . In the following theorem we prove the

harmonicity of such maps.

Theorem 3.1. Any (f, J)-holomorphic map from an S-manifold M(f, ξα, ηα, g) to a Kähler manifold N(J, h) is a harmonic

map.

Proof. The tension field of any (f, J)-holomorphic can be computed by using the following formula see [8].

J(τ(F )) = F∗(divf)− trgβ, (6)

where β(X,Y ) = (∇̃XJ)F∗Y , ∇̃ being the connection induced in the pull-back bundle F ∗TN . Let

{e1, ..., em, fe1, ..., fem, ξ1, . . . , ξs} be a local orthonormal f -adapted basis on TM, then we have

divf =

2m+s∑
i=1

(∇eif)ei =

m∑
i=1

(∇eif)ei +

m∑
i=1

(∇feif)fei +

s∑
α=1

(∇ξαf)ξα

=

m∑
i=1

∑
α

{g(fei, fei)ξα + ηα(ei)f
2ei}+ {g(f2ei, f

2ei)ξα + ηα(fei)f
2fei}+ {g(fξα, fξα)ξα + ηα(ξα)f2ξα}

=

m∑
i=1

∑
α

2g(ei, ei)ξα =
∑
α

2mξα.
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But, as F is (f, J)-holomorphic, it is easy to see that F∗(ξα) = 0 for any α and we get F∗(divf) = 0. Finally, as N is a

Kähler manifold we have ∇J = 0, and thus the second term of the formula 6 vanishes. Therefore τ(F ) = 0 and thus F is

harmonic.

Example 3.2. It is well known that the canonical example of a Sasakian manifold, the odd dimensional sphere S2n+1, is a

circle bundle over the complex projective space PCn by the Hopf-fibration. Let π́ : S2n+1 −→ PCn denote the Hopf-fibration;

then using the diagonal map 4 we define a principal toroidal bundle over PCn by the following diagram:

H2n+s 4̂
−→

S2n+1 × · · · × S2n+1

↓ π ↓ π́ × · · · × π́

PCn 4
−→

PCn × · · · × PCn

that is, H2n+s = {(p1, . . . , ps) ∈ S2n+1 × · · · × S2n+1|π́(p1) = · · · = π́(ps)}. Using the Theorem 3.1 in [1] we can prove

that H2n+s is an S-manifold. Now, it is not very difficult to see that the map π is a (f, J)-holomorphic map between the

S-manifold H2n+s and the Kähler manifold CPn. Therefore by the Theorem 3.1 we obtain that π is harmonic. Also for

s = 1, we reobtain that the Hopf fibration π́ : S2n+1 → PCn is a harmonic map between a Sasakian and a Kähler manifold.

Now a natural question is to see if the same thing is true for maps defined from a Kähler manifold to an S-manifold. A

smooth map F : N →M from a Kähler manifold N(J, h) to an S-manifold M(f, ξα, ηα, g) is called to be a (J, f)-holomorphic

if dF ◦ J = f ◦ dF . For such a map we can prove the following theorem.

Theorem 3.3. Let N(J,h) be a Kähler manifold, M(f, ξα, ηα, g) be an S-manifold and F : N −→M be a (J, f)-holomorphic

map. Then F is a harmonic map if and only if F is a constant map.

Proof. For such a map we have a similar formula as (6),

f(τ(F )) = F∗(divJ)− trhβ,

where β(X,Y ) = (∇̃Xf)(F∗Y ). Suppose that M is a Kähler manifold of real dimension 2n. Then we have:

divJ =

2n∑
i=1

(∇eiJ)ei = 0,

where {ei}i=1...2n is an orthonormal local basis on TN. Now, using the formula (3) we obtain

Trhβ =

2n∑
i=1

(∇̃eif)(F∗ei) =

2n∑
i=1

∑
α

{
g(F∗ei, F∗ei)ξα + η2α(F∗ei))ξα − ηα(F∗ei)F∗ei

}
.

As F is a (J, f)-holomorphic map, we have ηα(F∗ei) = −ηα(F∗J
2ei)=−ηα(fF∗Jei)=0 and thus

f(τ(F )) = −
2n∑
i=1

∑
α

g(F∗ei, F∗ei)ξα. (7)

If we apply again f in the last formula we get f2(τ(F )) = 0 and thus f3(τ(F )) = 0. But f satisfies the condition f3 + f = 0

and thus we get f(τ(F )) = 0. Finally from formula 7 we obtain that F is harmonic if and only if F is a constant map.
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Harmonic morphism are maps which pull back germs of real valued harmonic functions on the target manifold to germs of

harmonic functions on the domain, that is, a smooth map F : (M, g)→ (N,h) is a harmonic morphism if for any harmonic

function f1 : U → R, defined on an open subset U of N such that π−1(U) is non-empty, the composition f1 ◦F : π−1(U)→ R

is a harmonic function. The following characterization of harmonic morphisms is due to Fuglede and Ishihara: A smooth

map F is a harmonic morphism if and only if F is a horizontally conformal harmonic map (see [4] and [5]).

Definition 3.4. A smooth map F : (Mm, g)→ (Nn, h) is horizontally conformal if for each point x ∈M at which dFx 6= 0,

the restriction dFx |THM→ TF (x)N is conformal and surjective, where THM is orthogonal compliment of T vxM = ker(dFx).

Thus in this case there is a non negative function λ on M satisfying F ∗h = λ2g on THM . The function λ is called dilation

of F. λ2 is a smooth function and is equal to |dF |
2

n
, n = dimN .

Now we look for harmonic morphisms defined on S-manifolds.

Theorem 3.5. Let F : M −→ N be a horizontally conformal (f, J)-holomorphic map from an S-manifold M(f, ξ, η, g) into

an almost Hermitian manifold N(J, h). Then F is a harmonic morphism if and only if N is a semi-Kähler manifold.

Proof. It can be proved similarly as in ([8]) that for a horizontally conformal (f, J)-holomorphic map F from an S-manifold

M(f, ξα, ηα, g) to an almost Hermitian manifold N(J, h), any two of the following conditions imply the third: (i) divJ = 0

(ii) dF (divf) = 0 (iii) F is harmonic and so is harmonic morphism. Now let {e1, . . . , em, fe1, . . . , fem, ξ1, . . . , ξs} be a local

f -adapted frame on TM. We have seen that

divf =

2m+s∑
i=1

(∇eif)ei =
∑
α

2mξα.

As F is a (f, J)-holomorphic map we have dF (ξα) = 0. Because F is a horizontally conformal (f, J)-holomorphic map, it

follows that F is a harmonic morphism if and only if divJ = 0, i.e. N is semi-Kähler.

4. Spectral Geometry on S-manifolds

Let F : (M, g) −→ (N,h) be a harmonic map defined on a compact manifold M. The corresponding Jacobi operator is an

elliptic self-adjoint operator which has discrete spectrum of eigenvalues with finite multiplicities, denoted by

Spec(J) = {λ1 ≤ λ2 ≤ · · · ≤ λj ≤ . . . ↑ ∞}.

Then the trace Z(t) =
∑∞
j=1 exp(−tλj) of the heat kernel for the operator J has the asymptotic expansion

Z(t) ∼ (4πt)−m/2{a0(J) + a1(J)t+ a2(J)t2 + . . . } as t→∞. (8)

Using the results of Gilkey (see [10]) Urakawa obtained the expression for the first three coefficients (see [17]):

Theorem 4.1. For a harmonic map F : (Mm, g) −→ (Nn, h), the first three coefficient of the expansions are given by

a0(JF ) = nV ol(M, g), (9)

a1(JF ) =
n

6

∫
M

τgυg +

∫
M

Tr(RF )υg, (10)

a2(JF ) =
n

360

∫
M

(5τ2g − 2‖ρg‖2 + 2‖Rg‖2)dυg +
1

360

∫
M

[−30‖R∇̃‖2 + 60τgTr(RF ) + 180Tr(R2
F )]dυg, (11)

where R∇̃ is the curvature tensor of the connection ∇̃ on the induced bundle, which is defined by R∇̃ = F ∗Rh (Rh is the

Riemann curvature tensor of (N,h)), Rg, ρg, τg are the curvature tensor, Ricci tensor, scalar curvature on M respectively,

and RF is the endomorphism of the induced bundle defined by RF (V ) = TrgF
∗R(V,−).
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The spectral geometry for the Jacobi operators of harmonic maps into a Sasakian or cosymplectic space form was studied

by Kang and Kim (see [13]). We now consider the spectral geometry for the case when the target manifold is an S-space

form. We recall that if N is an S-manifold whose invariant f -sectional curvature is a constant k, then its curvature tensor

has the form (4), (see [12]). Let N(k) be a (2n+s)-dimensional S-manifold with constant f -sectional curvature k. Let

ψ : (Mm, g) −→ N(k) be a harmonic map from a compact Riemannian manifold into an S-manifold. Considering the

following notations λ = k+3s
4

, µ = k−s
4

we get

Tr(Rψ) =

m∑
i=1

2n+s∑
a=1

h(R(va, ψ∗ei)ψ∗ei, va)

= 2[s+ λ(2n− 1) + 3µ]e(ψ) + [2n+ s− 2 + λ(2− s− 2n)− 3µ]‖ψ∗ηα‖2, (12)

Tr(R2
ψ) =

m∑
i,j=1

2n+s∑
a=1

h(R(va, ψ∗ei)ψ∗ei, R(va, ψ∗ej)ψ∗ej)

= [6λµ+ (2n− 2)λ2 + s]4e(ψ)2 + (λ2 + 9µ2)‖ψ∗h|2 − 6λµ‖ψ∗f‖2

+ [−18µ2 − 2λ2 + 2s]

m∑
i,j=1

s∑
α=1

h(ψ∗ei, ψ∗ej)ηα(ψ∗ei)ηα(ψ∗ej)

+ [6λµ+ 9µ2 + (2n− 1)λ2 + (2n− s)− 6µ− 2(2n− 1)λ]‖ψ∗ηα‖4

+ [−4s+ 12µ+ 4(2n− 1)λ− 24λµ− 4(2n− 2)λ2]e(ψ)‖ψ∗ηα‖2 (13)

‖R∇̃‖2 =

m∑
i,j=1

2n+1∑
a=1

h(R(ψ∗ei, ψ∗ej)va, R(ψ∗ei, ψ∗ej)va)

= 8(λ2 + µ2)e(ψ)2 + [8(s− 2)λ2 − 8µ2 + 8s]e(ψ)‖ψ∗ηα‖2 − (2λ2 + 2µ2)‖ψ∗h‖2 + [−4(s− 2)λ2 + 4µ2 − 4s].

.

m∑
i,j=1

s∑
α=1

h(ψ∗ei, ψ∗ej)ηα(ψ∗ei)ηα(ψ∗ej) + [8(n+ 1)µ2 + 12λµ]‖ψ∗f‖, (14)

where ‖ψ∗ηα‖2=
m∑
i=1

∑
α

ηα(ψ∗ei)ηα(ψ∗ei), ‖ψ∗f‖2 =
m∑
i=1

h(ψ∗ei, fψ∗ej), ‖ψ∗h‖2 =
m∑
i=1

h(ψ∗ei, ψ∗ej), and {ei : i = 1 . . .m}

and {va : a = 1 . . . 2n+s} are local orthonormal basis on M and N respectively. Thus substituting (10) ∼ (12) into (7) ∼ (9),

we get

Theorem 4.2. Let ψ : (M, g) −→ N(k) be a harmonic map from a m-dimensional compact Riemanniann manifold (M, g)

to a (2n+ s)-dimensional S-space form N(k). Then the coefficients a0(Jψ), a1(Jψ) and a2(Jψ) of the asymptotic expansion

for the Jacobi operator Jψ are respectively given by

a0(Jψ) = (2n+ s)V ol(M, g),

a1(Jψ) =
2n+ s

6

∫
M

τgυg + 2(s+ λ(2n− 1) + 3µ)E(ψ) + (2n+ s− 2 + λ(2− s− 2n)− 3µ)

∫
M

‖ψ∗ηα‖2υg,

a2(Jψ) =
2n+ s

360

∫
M

(5τ2g − 2‖ρg‖2 + ‖Rg‖2)dυg +
2

3

∫
M

(λ2 + 7µ2)‖ψ∗h‖2υg

− 1

12

∫
M

((−4s+ 20)λ2 − 112µ2 + 16s)

m∑
i,j=1

h(ψ∗ei, ψ∗ej)ηα(ψ∗ei)ηα(ψ∗ej)υg

+
2

3

∫
M

[(6n− 7)λ2 − µ2 + 18λµ+ 3s]e(ψ)2υg −
2

3

∫
M

[(n+ 1)µ2 + 6λµ]‖ψ∗F‖2υg

+
1

360

∫
M

[6λµ+ 9µ2 + (2n− 1)λ2 + (2n− s)− 6µ− 2(2n− 1)λ]‖ψ∗ηα‖4υg

+
1

3

∫
M

(s+ λ(2n− 1) + 3µ)τge(ψ)υg +
1

6

∫
M

[2n+ s− 2 + λ(2− s− 2n)− 3µ]‖ψ∗ηα‖2τgυg

− 2

3

∫
M

[(s− 2 + 6(n− 1))λ2 − µ2 + 4s− 9µ− 3(2n− 1)λ+ 18λµ]‖ψ∗ηα‖2e(ψ)υg.
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A first application of the above theorem is the following.

Corollary 4.3. Let ψ, ψ̃ be two harmonic maps from a compact Riemannian manifold M into a S-space form N(k). If

Spec(Jψ) = Spec(Jψ̃) and the structure vector fields ξα : α = 1, . . . , s are normal to ψ(M) and ψ̃(M), then E(ψ) = E(ψ̃).

Proof. Since the vector field ξα for each α is normal to ψ(M) and ψ̃(M), then

‖ψ∗ηα‖2 =

m∑
i=1

∑
α

ηα(ψ∗ei)ηα(ψ∗ei) =

m∑
i=1

∑
α

g(ψ∗ei, ξα)g(ψ∗ei, ξα) = 0

and similar for ‖ψ̃∗η‖. On the other hand, as Spec(Jψ) = Spec(Jψ̃) we have a1(ψ) = a1(ψ̃) and using the expression of the

first coefficient in Theorem 4.2, we get E(ψ) = E(ψ̃).

Let M be an m-dimensional submanifold immersed in an S-space form N . M is said to be an invariant submanifold if

ξα ∈ T (M) for any α and fX ∈ T (M) for any X ∈ T (M). It is known that an invariant immersion ψ : (M, g) → (N,h)

of a Riemannian manifold (M, g) into an S-manifold is minimal (see [12]). On the other hand any isometric immersion is

harmonic if and only if is minimal. Thus any invariant immersion of a compact Riemannian manifold into an S-space form

is an example of a harmonic map for which the target manifold is an S-space form. Another application of the Theorem 4.2

is the following.

Proposition 4.4. Let ψ, ψ̃ be invariant immersions of compact Riemannian manifolds (M, g) and (M̃ , g̃) into an S-space

form N . Assume that Spec(Jψ) = Spec(Jψ̃). If ψ is a totally geodesic immersion, then so is ψ̃.

Proof. As Spec(Jψ) = Spec(Jψ̃), using the formulas for the coefficients we have: n
6

∫
M
τgdυg +

∫
M
Tr(Rψ)dυg =

n
6

∫
M̃
τg̃dυg̃ +

∫
M̃
Tr(Rψ̃)dυg̃. Now, using the Corollary 4.3 we have

∫
M
τgdυg =

∫
M̃
τg̃dυg̃, and we get

∫
M

Tr(Rψ)dυg =

∫
M̃

Tr(Rψ̃)dυg̃, (15)

where

Tr(Rψ) =

m∑
i=1

2n+s∑
a=1

h(Rh(va, ψ∗ei)ψ∗ei, va); Tr(Rψ̃) =

m̃∑
i=1

2n+s∑
a=1

h(Rh(va, ψ̃∗ẽi)ψ̃∗ẽi, va).

Now, the proposition follows by using the Gauss equation.

Remark 4.5.

1. For the case s=1, we get the results when the target manifold is Sasakian, obtained by Tae Ho Kang and Hyun Suk

Kim (see [13]).

2. We know that an f-invariant submanifold M imbedded in an S-manifold N such that the vectors ξα(α = l, . . . , s) are

never tangent to i(M) is a Kähler minimal submanifold in N (see [12]). For the case when s = 0, the manifold N is

Kähler and we reobtain the results of Urakawa (see [17]) when the target manifold is a complex space form.

References

[1] D.E.Blair, Geometry of manifolds with structural group U(n)×O(s), J. Differential Geom., 4(1970), 155-167.

[2] D.Chinea, Harmonicity on maps between almost contact metric manifolds, Acta Math. Hungar., 126(4)(2010), 352-362.

33



Harmonic Maps on S-Manifolds

[3] J.Eells, J.H.Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86(1964), 109-160.

[4] B.Fuglede, Harmonic morphisms between Riemannian Manifolds, Annales de l’ institute Fourier, 28(2)(1978), 107-144.

[5] T.Ishihara, A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ., 19(1979),

215229.

[6] J.Eells and L.Lemaire, Report on harmonic maps, Bull. London Math. Soc., 20(1988), 385-524.

[7] C.Gherghe, Harmonicity on cosymplectic manifolds, Rocky Mountain J.Math., 40(6)(2010), 247-254.

[8] C.Gherghe, S.Ianus and A.M.Pastore, CR-manifolds, harmonic maps and and stability, J. Geom., 71(2001), 42-53.

[9] C.Gherghe and K.Kenmotsu, Energy minimizer maps on C-manifolds, Diff. Geom. Appl., 21(2004), 55-63.

[10] P.Gilkey, The spectral geometry of real and complex manifolds, Proc. Sympos. Pure Math., 27(1975), 265-280.

[11] I.Hasegawa, Y.Oknyama and T.Abe, On the p-th Sasakian manifolds, J. Hokkaido Univ. Ed. Sect., II A, 37(1)(1986),

1-16.

[12] M.Kobayashi and S.Tsuchiya, Invariant submanifolds of an f-manifold with complemented frames, Kodai Math. Sem.

Rep., 24(1972), 430-450.

[13] Tae Ho Kang and Hyun Suk Kim, On the Spectral Geometry for the Jacobi Operators of Harmonic maps into a Sasakian

or Cosymplectic Space form, Comm. Korean Math. Soc., 12(2)(1997), 373-382.

[14] A.Lichnerowicz, Applications harmoniques et varietes khleriennes, Sympos. Math., 3(1970), 341402.

[15] J.Rawnsley, f -structures, f -twistor spaces and harmonic maps, Lecture Notes in Math., Springer-Verlag, 1164(1984),

85159.

[16] H.Urakawa, Stability of harmonic maps and eigenvalues of Laplacian, Lecture Notes in Math., Springer-Verlag, Berlin

and New York, 1201(1986), 285-307.

[17] H.Urakawa, Spectral Geometry of the second variation operator of harmonic maps, Illinois J. Math., 3(2)(1989).

[18] K.Yano and M.Kon, Structures on manifolds, vol. 3, Series in pure Math., World Scientific, Singapore, (1984).

[19] K.Yano, On a structure defined by a tensor field of type (1, 1) satisfying f3 + f = 0 Tensor, 14(1963), 99-109.

34


	Introduction
	Preliminaries
	Harmonic Maps and Harmonic Morphisms on S- manifolds
	Spectral Geometry on S-manifolds
	References

