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Abstract: In this paper, we introduced a Finsler space for which the h-curvature tensor Hi
jkh (curvature tensor of Berwald) satisfies

the condition

BmBn Hi
jkh = amn Hi

jkh + bmn(δijgkh − δikgjh)− 2 yrµnBr(δijCkhm − δikCjhm), Hi
jkh 6= 0

Cjhm is (h) hv-torsion tensor, where BmBn is Berwald’s covariant differential operator of the second order with respect
to xn and xm, successively, Br is Berwald’s covariant differential operator of the first order with respect to xr, amn and

bmn are non-zero covariant tensors field of second order and µn is non-zero covariant vector field. We called this space

a generalized H-birecurrent space. The aim of this paper is to develop some properties of a generalized H-birecurrent
space by obtaining Berwald’s covariant derivative of the second order for the (h)v-torsion tensor Hi

jk and the deviation

tensor Hi
j . The non-vanishing of Ricci tensor Hkh, the curvature vector Hk and the curvature scalar H are investigated.

Different results regarding the covariant tensors field amn and bmn have been established. Some conditions have been
pointed out which reduce a generalized H-birecurrent space Fn (n > 2) into Landsberg space. We obtained an identity

for a generalized H-birecurrent space. The conditions which reduce a generalized H-birecurrent space Fn (n > 2) in to a

space of curvature scalar are given.
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1. Introduction

A Finsler space of recurrent curvature was introduced and studied by P.N. Pandey [5, 6], P.N. Pandey and V.J. Dwivedi

[7], R. Verma [9], S. Dikshit [10], F.Y.A. Qasem [1], N.S.H. Hussien [4], N.L. Youssef and A. Soleiman [3] and others. P.N.

Pandey, S.S. Saxena and A. Goswami [6] introduced and studied a generalized H-recurrent Finsler space. Let Fn be an

n-dimensional Finsler spaces equipped with the metric function F satisfies the requisite conditions [2].

Let the components of the corresponding metric tensor and Berwald’s connection coefficients be denoted by gij and Gi
jk

1

respectively. These are positively homogeneous of degree zero in the directional arguments. Due to their homogeneity in

the directional arguments, we have 2

a) Cijky
i = Ckijy

i = Cjkiy
i = 0 and b) Gi

jkhy
j = Gi

hjky
j = Gi

khjy
j = 0, (1)

where Cijk = ∂̇kgij and Gi
jkh = ∂̇h G

i
jk are the components of tensors, they are symmetric in the their lower indices and

∂̇h = ∂
∂yh .

∗ E-mail: fahmi.yaseen@yahoo.com
1 The indices i, j, k,. . . assume positive integral values from 1 to n.
2 Unless stated otherwise. Henceforth all geometric object are assumed to be functions of line-element.
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The relations between the metric function F , the components of the metric tensor and the vector yi are given by

a) yi = gijy
j , b) gij = ∂̇iyj = ∂̇jyi, and c) yiy

i = F 2. (2)

The unit vector li in the direction of the directional argument is given by

a) li :=
yi

F
(3)

and the associate vector of li is defined by

b) li := gij l
j = ∂̇iF =

yi
F
.

Berwald covariant derivative of an arbitrary tensor field T i
j with respect to xh is given by

BhT
i
j := ∂hT

i
j −

(
∂̇rT

i
j

)
Gr

h + T r
j G

i
rh − T i

rG
r
jh. (4)

Berwald covariant derivative of the vectors yi and yi with respect to xk vanish identically i.e.

a) Bky
i = 0 and b) Bk yi = 0. (5)

Berwald’s covariant derivative of the metric tensor gij does not vanish in general (Bkgij 6= 0) and is given by

Bkgij = −2Cijk|ry
r = −2yhBhCijk, (6)

where |r is h-covariant derivative with respect to xr (Cartan’s second kind covariant differentiation). The processes of

Berwald’s covariant differentiation with respect to xh and the partial differentiation with respect to directional argument yk

commute according to (
∂̇kBh − Bh∂̇k

)
T i
j = T r

j G
i
khr − T i

rG
r
khr (7)

for an arbitrary tensor field T i
j . The second covariant derivative of an arbitrary tensor field T i

j with respect to xh and xk in

the sense of Berwald may written as

BkBhT
i
j = ∂kBhT

i
j −

(
∂sBhT

i
j

)
Gs

k +
(
BhT

r
j

)
Gi

rk − (BhT
i
r)Gr

ik − (BrT
i
j )Gr

hk. (8)

The commutation formula for Berwwald’s curvature differentiation as follows:

BhBkT
i
j − BkBhT

i
j = T r

j H
i
hkr − T i

rH
r
hkj − (∂̇rT

i
j )Hr

hk (9)

where Hi
jkh

3 defined by

Hi
jkh = 2

{
∂[j G

i
k]h +Gi

rh[jG
r
k] +Gi

r[j G
r
k]h

}
(10)

are components of Berwald curvature tensor and

a) Hi
jk = Hi

jkhy
h and b) Hi

jkh = ∂̇h H
i
jk. (11)

3 In Rund’s book, Hi
jkh defined here, is denoted by Hi

hkj. This difference must be noted. The square brackets denote the
skew-symmetric part of the tensor with respect to the indices enclosed therein.
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It is clear from the definition that Berwald curvature tensor Hi
jkh is skew-symmetric in its first two lower indices and

positively homogeneous of degree zero in the directional arguments yi. Berwald’s deviation tensor Hi
j is defined as

Hi
j = Hi

jky
k. (12)

The contraction of the indices i and j in Hi
jkh, Hi

jk and Hi
j gives

a) Hkh = Hi
ikh, b) Hk = Hi

ik, c) H = 1
n−1

Hi
i and d) Hky

k = (n− 1)H. (13)

The necessary and sufficient condition for a Finsler space Fn (n > 2) to be Finsler space of scalar curvature is given by

Hi
h = F 2R(δih − lilh). (14)

2. Generalized H-Birecurrent Finsler Space

A Finsler space whose Berwald curvature tensor Hi
jkh satisfies the condition

BnH
i
jkh = λnH

i
jkh + µn(δijgkh − δikgjh), Hi

jkh 6= 0, (A)

where Bn is Berwald’s covariant differential operator, λl and µn are non-zero covariant vector fields, this space introduced

by P.N. Pandey, S. Saxena and A. Goswami [8], they called it as a generalized H-recurrent Finsler space. Now, taking the

covariant derivative for the condition (A) with respect to xm in the sense of Berwald and in view of the condition (A) and

by using (5b), we get

BmBnH
i
jkh = (Bmλn

)Hi
jkh + λn

{
λmH

i
jkh + µm(δijgkh − δikgjh)

}
+ (Bmµn)(δijgkh − δikgjh) + µn

{
δij (−2yrBrCkhm)− δik (−2yrBrCjhm)}

= (Bmλn
+ λnλm) Hi

jkh + (λnµm + Bmµn)(δijgkh − δikgjh)− 2µny
rBr(δijCkhm − δik Cjhm)

which can be written as

BmBnH
i
jkh = amnH

i
jkh + bmn

(
δijgkh − δikgjh

)
− 2µny

rBr(δijCkhm − δikCjhm), Hi
jkh 6= 0, (15)

where amn = Bmλn + λnλm and bmn = λnµm + Bmµn are non-zero covariant tensors field of second order are non-null

covariant tensors field of second order.

Definition 2.1. A Finsler space Fn whose Berwald curvature tensor Hi
jkh satisfies the condition (15), where amn and bmn

are non-zero covariant tensors field of second order. We shall call such Finsler space as a generalized H-birecurrent Finsler

space and briefly denoted by GH −BRFn.

Let us consider a GH − BRFn which is characterized by the condition (15). Transvecting the condition (15) by yh , using

(11a), (2a), (5a) and (1a), we get

BmBnH
i
jk = amnH

i
jk + bmn(δijyk − δikyj). (16)

Transvecting the condition (16) by yk, using (12), (5a) and (2c), we get

BmBnH
i
j = amnH

i
j + bmn(δijF

2 − yjyi). (17)

Thus, we conclude
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Theorem 2.2. In GH − BRFn, Berwald covariant derivative of the second order for the h(v)-torsion tensor Hi
kh and the

deviation tensor Hi
h given by the conditions (16) and (17), respectively.

Contracting the indices i and j in the conditions (15), (16) and (17), using (13a), (13b), (13c) and (2c), we get

BmBnHkh = amnHkh + (n− 1) bmngkh − 2 (n− 1)µny
rBrCkhm, (18)

BmBnHk = amnHk + (n− 1)bmnyk (19)

and

BmBnH = amnH + bmnF
2. (20)

The conditions (18), (19) and (20) show that Ricci tensor Hkh, the curvature vector Hk and the curvature scalar H can’t

vanish because the vanishing of any one of these would imply amn = 0, bmn = 0 and µn = 0, that is a contradiction. Thus,

we conclude

Theorem 2.3. In GH −BRFn, Ricci tensor Hkh, the curvature vector Hk and the curvature scalar H are non-vanishing.

Let us consider a GH − BRFn. Differentiating the condition (19) partially with respect to yh, using (∂̇hHk = Hkh) and

(2b), we get

∂̇hBm (BnHk) =
(
∂̇hamn

)
Hk + amnHkh + (n− 1)(∂̇hbmn)yk + (n− 1)bmngkh. (21)

Using the commutation formula (7) for (BnHk) in (21), we get

Bm∂̇h (BnHk)− (BrHk)Gr
hmn − (BnHr)Gr

hmk = (∂̇hamn)Hk + amnHkh + (n− 1)
(
∂̇hbmn

)
yk + (n− 1) bmngkh. (22)

Again applying the commutation formula (7) for (Hk) in (22) and (∂̇hHk = Hkh), we get

BmBnHkh−Bm(HrG
r
hnk)− (BrHk)Gr

hmn− (BnHr)Gr
hmk =

(
∂̇hamn

)
Hk +amnHkh + (n− 1)

(
∂̇hbmn

)
yk + (n− 1) bmngkh.

(23)

Using the condition (18) in (23), we get

− 2 (n− 1)µn y
rBrCkhm − Bm(HrG

r
hnk)− (BrHk)Gr

hmn − (BnHr)Gr
hmk = (∂̇hamn)Hk + (n− 1)

(
∂̇hbmn

)
yk. (24)

Transvecting (24) by yk, using (5a), (1a), (1b), (13d) and (2c), we get

− (BrH)Gr
hmn = (∂̇hamn)H + (∂̇hbmn)F 2. (25)

If (BrH)Gr
hmn = 0, the equation (25) can be written as

∂̇hbmn = − ∂̇hamn

F 2
H. (26)

If the covariant tensor field amn is independent of the directional argument, the equation (26) shows that the covariant tensor

field bmn is also independent of the directional argument. Conversely, if the covariant tensor field bmn is independent of the

directional argument, we get
(
∂̇hamn

)
H = 0. In view of Theorem 2.2, the condition

(
∂̇hamn

)
H = 0 implies ∂̇hamn = 0,

i.e. the covariant tensor field amn is also independent of the directional argument. Thus, we conclude
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Theorem 2.4. In GH −BRFn, the covariant tensor field bmn is independent of the directional argument if and only if the

covariant tensor field amn is independent of the directional argument provided (BrH)Gr
hmn = 0.

Transvecting (25) by ym and using (1b), we get

∂̇hbn − bhn = − (∂̇han − ahn)

F 2
H, (27)

where amny
m = an and bmny

m = bn. Since the covariant vector field an is not independent of the directional argument, the

equation (27) shows that the covariant vector field bn is also not independent of the directional argument. Conversely, if the

covariant vector field bn is not independent of the directional argument, we have
(
∂̇han − ahn

)
H = 0. In view of Theorem

2.2, the condition
(
∂̇han − ahn

)
H = 0 implies ∂̇han = ahn, i.e. the covariant vector field an also is not independent of the

directional argument. Thus, we conclude

Theorem 2.5. In GH − BRFn, the covariant vector field an is not independent of the directional argument if and only if

the covariant vector field bn is not independent of the directional argument.

Suppose that the covariant tensor field amn is not independent of the directional argument, then by using (26) in (24), we

have

− 2 (n− 1)µn y
rBrCkhm − Bm (HrG

r
hnk)− (BrHk)Gr

hmn − (BnHr)Gr
hmk = (∂̇hamn)

{
Hk −

(n− 1)H

F 2
yk

}
. (28)

Transvecting (28) by yk, using (5a), (1a), (1b), (13d) and (2c), we get

(BrH)Gr
hmn = 0.

Thus, we have

Theorem 2.6. In GH −BRFn, we have the identity (BrH)Gr
hmn = 0.

Transvecting (28) by ym and using (1a) and (1b), we get

− Bm (HrG
r
hnk) ym = (∂̇han − ahn)

{
Hk −

(n− 1)H

F 2
yk

}
, (29)

where amny
m = an. If Bm (HrG

r
hnk) ym = 0 , the equation (29) implies at least one of the following conditions

a) ahn = ∂̇han or b) Hk = (n−1)H

F2 yk. (30)

Thus, we conclude

Theorem 2.7. In GH −BRFn, for which the covariant tensor field ahn is not independent of the directional argument at

least one of the conditions (30a) or (30b) holds provided Bm (HrG
r
hnk) ym = 0.

Suppose that (30b) holds. Then (28) implies

− 2µny
rBrCkhm − Bm(

H

F 2
yrG

r
hnk)− (Br

H

F 2
yk)Gr

hmn − (Bn
H

F 2
yr)Gr

hmk = 0. (31)

Transvecting (31) by ym, using (5a), (1a) and (1b), we get

Bm(
H

F 2
yrG

r
hnk)ym = 0
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which can be written as

F−2 {(BmH)yrG
r
hnk +HBm (yrG

r
hnk)

}
ym = 0.

If HBm (yrG
r
hnk) ym = 0, the above equation implies (BmH)ymyrG

r
hnk = 0. Since (BmH) ym 6= 0, so yrG

r
hnk = 0,therefore

the space is a Landsberg space. Thus, we conclude

Theorem 2.8. The GH − BRFn is a Landsberg space if the condition (30b) holds provided Bm (HrG
r
hnk) ym = 0 and

(BmH)ymyrG
r
hnk = 0.

If the covariant tensor field ahn 6= ∂̇han, in view of Theorem 2.4 (30b) holds good. In view of this fact, we may rewrite

Theorem 2.7 in the following form

Theorem 2.9. The GH − BRFn is necessarily a Landsberg space provided ahn 6= ∂̇han, Bm (HrG
r
hnk) ym = 0 and

(BmH)ymyrG
r
hnk = 0.

Differentiating the condition (16) partially with respect to yh, using (11b) and (2b), we get

∂̇hBm

(
BnH

i
jk

)
=
(
∂̇hamn

)
Hi

jk + amnH
i
jkh + (∂̇hbmn)(δijyk − δikyj) + bmn(δijgkh − δik gjh). (32)

Using the commutation formula (7) for
(
BnH

i
jk

)
in (32), we get

Bm(∂̇hBnH
i
jk)−

(
Br H

i
jk

)
Gr

hmn +
(
Bn H

r
jk

)
Gi

hmr −
(
BnH

i
rk

)
Gr

hmj −
(
BnH

i
jr

)
Gr

hmk

=
(
∂̇hamn

)
Hi

jk + amnH
i
jkh +

(
∂̇hbmn

)
(δij yk − δik yj ) + bmn (δij gkh − δik gjh). (33)

Again using the commutation formula (7) for (Hi
jk) in (33) and using (11b), we get

BmBn H
i
jkh + (BmH

r
jk)Gi

hnr +Hr
jk (BmG

i
hnr)− (Bm Hi

rk)Gr
hnj −Hi

rk(Bm Gr
hnj)− (BmH

i
jr)Gr

hnk −Hi
jr(BmG

r
hnk)

− (BrH
i
jk)Gr

hmn + (BnH
r
jk)Gi

hmr −
(
BnH

i
jr

)
Gr

hmk =
(
∂̇hamn

)
Hi

jk + amnH
i
jkh − (BnH

i
rk)Gr

hmj

+
(
∂̇hbmn

)(
δij yk − δikyj

)
+ bmn(δij gkh − δik gjh).

By using the condition (15), the above equation can be written as

(BmH
r
jk)Gi

hnr +Hr
jk (BmG

i
hnr)− (BmH

i
rk)Gr

hnj −Hi
rk(BmG

r
hnj)− (BmHi

jr)Gr
hnk −Hi

jr (BmG
r
hnk)−

(
BrH

i
jk

)
Gr

hmn

+
(
BnH

r
jk

)
Gi

hmr −
(
BnH

i
rk

)
Gr

hmj −
(
BnH

i
jr

)
Gr

hmk

= (∂̇h amn)Hi
jk +

(
∂̇hbmn

)(
δij yk − δik yj

)
+ 2 µn y

rBr(δij Ckhm − δik Cjhm). (34)

Transvecting (34) by yi, using the identity (yiH
i
jk = 0) which established by [7] and (5b), we get

(
BmH

r
jk

)
yiG

i
hnr +Hr

jk{Bm

(
yiG

i
hnr

)
}+

(
BnH

r
jk

)
yiG

i
hmr = 2µny

rBr(yjCkhm − ykCjhm). (35)

Transvecting (35) by ym, using (1b), (5a) and (1a), we get

[(
BmH

r
jk

)
yiG

i
hnr +Hr

jk

{
Bm

(
yi G

i
hnr

)}]
ym = 0

which can be written as [
Bm

(
Hr

jkyiG
i
hnr

)]
ym = 0.

Thus, we conclude
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Theorem 2.10. In GH −BRFn, we have the identity
[
Bm

(
Hr

jkyiG
i
hnr

)]
ym = 0.

Transvecting (34) by yk, using (12), (1b), (5a), (2c) and (1a), we get

(
BmH

r
j

)
Gi

hnr +Hr
j

(
BmG

i
hnr

)
−
(
Bm Hi

r

)
Gr

hnj −Hi
r(BmG

r
hnj)−

(
Br H

i
j

)
Gr

hmn +
(
BnH

r
j

)
Gi

hmr − (BnH
i
r) Gr

hmj

=
(
∂̇hamn

)
Hi

j +
(
∂̇hbmn

)(
δij F

2 − yi yj
)

+ 2 µn y
rBr

(
yiCjhm

)
. (36)

Substituting the value of (∂̇hbmn) from (26) in (36), using (3a) and (3b), we get

Bm( Hr
jG

i
hnr)− Bm ( Hi

r G
r
hnj) − ( Br H

i
j)G

r
hmn + (BnH

r
j )Gi

hmr − (BnH
i
r)Gr

hmj

=
(
∂̇h amn

)
{Hi

j −H
(
δij − lilj

)
}+ 2 µn y

rBr

(
yiCjhm

)
.

If Bm(Hr
jG

i
hnr)− Bm

(
Hi

rG
r
hnj

)
Bm − (BrH

i
j)G

r
hmn +

(
BnH

r
j

)
Gi

hmr −
(
BnH

i
r

)
Gr

hmi − 2µny
rBr

(
yiCjhm

)
= 0. (37)

Then, we have at least one of the following conditions

a) ∂̇hahn = 0 or b) Hi
j = H( δij − lilj). (38)

Putting H = F 2R, (2.24b) may be written as

Hi
j = F 2 R ( δij − lilj).

Therefore, the space is a Finsler space of scalar curvature. Thus, we conclude

Theorem 2.11. In GH − BRFn, for n > 2 admitting the condition (37) is a Finsler space of scalar curvature provided

R 6= 0 and the covariant tensor field amn is not independent of the directional argument.
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