International Journal of Mathematics And its Applications

On Generalized H-Birecurrent Finsler Space

Research Article

Fahmi Yaseen Abdo Qasem ${ }^{1 *}$
1 Department of Mathematics, Faculty of Education-Aden, University of Aden, Khormaksar, Aden, Yemen.

Abstract: In this paper, we introduced a Finsler space for which the h-curvature tensor $H_{j k h}^{i}$ (curvature tensor of Berwald) satisfies the condition

$$
\mathcal{B}_{m} \mathcal{B}_{n} H_{j k h}^{i}=a_{m n} H_{j k h}^{i}+b_{m n}\left(\delta_{j}^{i} g_{k h}-\delta_{k}^{i} g_{j h}\right)-2 y^{r} \mu_{n} \mathcal{B}_{r}\left(\delta_{j}^{i} C_{k h m}-\delta_{k}^{i} C_{j h m}\right), H_{j k h}^{i} \neq 0
$$

$C_{j h m}$ is (h) hv-torsion tensor, where $\mathcal{B}_{m} \mathcal{B}_{n}$ is Berwald's covariant differential operator of the second order with respect to x^{n} and x^{m}, successively, \mathcal{B}_{r} is Berwald's covariant differential operator of the first order with respect to $x^{r}, a_{m n}$ and $b_{m n}$ are non-zero covariant tensors field of second order and μ_{n} is non-zero covariant vector field. We called this space a generalized H-birecurrent space. The aim of this paper is to develop some properties of a generalized H-birecurrent space by obtaining Berwald's covariant derivative of the second order for the (h)v-torsion tensor $H_{j k}^{i}$ and the deviation tensor H_{j}^{i}. The non-vanishing of Ricci tensor $H_{k h}$, the curvature vector H_{k} and the curvature scalar H are investigated. Different results regarding the covariant tensors field $a_{m n}$ and $b_{m n}$ have been established. Some conditions have been pointed out which reduce a generalized H-birecurrent space $F_{n}(n>2)$ into Landsberg space. We obtained an identity for a generalized H-birecurrent space. The conditions which reduce a generalized H-birecurrent space $F_{n}(n>2)$ in to a space of curvature scalar are given.

Keywords: Finsler space, Generalized H-birecurrent Finsler space, Ricci tensor, Landsberg space, Finsler space of scalar curvature. (C) JS Publication.

1. Introduction

A Finsler space of recurrent curvature was introduced and studied by P.N. Pandey [5, 6], P.N. Pandey and V.J. Dwivedi [7], R. Verma [9], S. Dikshit [10], F.Y.A. Qasem [1], N.S.H. Hussien [4], N.L. Youssef and A. Soleiman [3] and others. P.N. Pandey, S.S. Saxena and A. Goswami [6] introduced and studied a generalized H-recurrent Finsler space. Let F_{n} be an n-dimensional Finsler spaces equipped with the metric function F satisfies the requisite conditions [2].

Let the components of the corresponding metric tensor and Berwald's connection coefficients be denoted by $g_{i j}$ and $G_{j k}^{i}{ }^{1}$ respectively. These are positively homogeneous of degree zero in the directional arguments. Due to their homogeneity in the directional arguments, we have ${ }^{2}$

$$
\begin{equation*}
\text { a) } C_{i j k} y^{i}=C_{k i j} y^{i}=C_{j k i} y^{i}=0 \text { and b) } G_{j k h}^{i} y^{j}=G_{h j k}^{i} y^{j}=G_{k h j}^{i} y^{j}=0, \tag{1}
\end{equation*}
$$

where $C_{i j k}=\dot{\partial}_{k} g_{i j}$ and $G_{j k h}^{i}=\dot{\partial}_{h} G_{j k}^{i}$ are the components of tensors, they are symmetric in the their lower indices and $\dot{\partial}_{h}=\frac{\partial}{\partial y^{h}}$.

[^0]The relations between the metric function F, the components of the metric tensor and the vector y_{i} are given by

$$
\begin{equation*}
\text { a) } \left.y_{i}=g_{i j} y^{j}, \text { b) } g_{i j}=\dot{\partial}_{i} y_{j}=\dot{\partial}_{j} y_{i}, \text { and } c\right) y_{i} y^{i}=F^{2} \tag{2}
\end{equation*}
$$

The unit vector l^{i} in the direction of the directional argument is given by

$$
\begin{equation*}
\text { a) } l^{i}:=\frac{y^{i}}{F} \tag{3}
\end{equation*}
$$

and the associate vector of l_{i} is defined by

$$
\text { b) } l_{i}:=g_{i j} l^{j}=\dot{\partial}_{i} F=\frac{y_{i}}{F}
$$

Berwald covariant derivative of an arbitrary tensor field T_{j}^{i} with respect to x^{h} is given by

$$
\begin{equation*}
\mathcal{B}_{h} T_{j}^{i}:=\partial_{h} T_{j}^{i}-\left(\dot{\partial}_{r} T_{j}^{i}\right) G_{h}^{r}+T_{j}^{r} G_{r h}^{i}-T_{r}^{i} G_{j h}^{r} \tag{4}
\end{equation*}
$$

Berwald covariant derivative of the vectors y^{i} and y_{i} with respect to x^{k} vanish identically i.e.

$$
\begin{equation*}
\text { a) } \mathcal{B}_{k} y^{i}=0 \text { and b) } \mathcal{B}_{k} y_{i}=0 \tag{5}
\end{equation*}
$$

Berwald's covariant derivative of the metric tensor $g_{i j}$ does not vanish in general $\left(\mathcal{B}_{k} g_{i j} \neq 0\right)$ and is given by

$$
\begin{equation*}
\mathcal{B}_{k} g_{i j}=-2 C_{i j k \mid r} y^{r}=-2 y^{h} \mathcal{B}_{h} C_{i j k} \tag{6}
\end{equation*}
$$

where $\mid r$ is h-covariant derivative with respect to x^{r} (Cartan's second kind covariant differentiation). The processes of Berwald's covariant differentiation with respect to x^{h} and the partial differentiation with respect to directional argument y^{k} commute according to

$$
\begin{equation*}
\left(\dot{\partial}_{k} \mathcal{B}_{h}-\mathcal{B}_{h} \dot{\partial}_{k}\right) T_{j}^{i}=T_{j}^{r} G_{k h r}^{i}-T_{r}^{i} G_{k h r}^{r} \tag{7}
\end{equation*}
$$

for an arbitrary tensor field T_{j}^{i}. The second covariant derivative of an arbitrary tensor field T_{j}^{i} with respect to x^{h} and x^{k} in the sense of Berwald may written as

$$
\begin{equation*}
\mathcal{B}_{k} \mathcal{B}_{h} T_{j}^{i}=\partial_{k} \mathcal{B}_{h} T_{j}^{i}-\left(\partial_{s} \mathcal{B}_{h} T_{j}^{i}\right) G_{k}^{s}+\left(\mathcal{B}_{h} T_{j}^{r}\right) G_{r k}^{i}-\left(\mathcal{B}_{h} T_{r}^{i}\right) G_{i k}^{r}-\left(\mathcal{B}_{r} T_{j}^{i}\right) G_{h k}^{r} \tag{8}
\end{equation*}
$$

The commutation formula for Berwwald's curvature differentiation as follows:

$$
\begin{equation*}
\mathcal{B}_{h} \mathcal{B}_{k} T_{j}^{i}-\mathcal{B}_{k} \mathcal{B}_{h} T_{j}^{i}=T_{j}^{r} H_{h k r}^{i}-T_{r}^{i} H_{h k j}^{r}-\left(\dot{\partial}_{r} T_{j}^{i}\right) H_{h k}^{r} \tag{9}
\end{equation*}
$$

where $H_{j k h}^{i}{ }^{3}$ defined by

$$
\begin{equation*}
H_{j k h}^{i}=2\left\{\partial_{[j} G_{k] h}^{i}+G_{r h[j}^{i} G_{k]}^{r}+G_{r[j}^{i} G_{k] h}^{r}\right\} \tag{10}
\end{equation*}
$$

are components of Berwald curvature tensor and

$$
\begin{equation*}
\text { a) } H_{j k}^{i}=H_{j k h}^{i} y^{h} \text { and b) } H_{j k h}^{i}=\dot{\partial}_{h} H_{j k}^{i} \tag{11}
\end{equation*}
$$

[^1]It is clear from the definition that Berwald curvature tensor $H_{j k h}^{i}$ is skew-symmetric in its first two lower indices and positively homogeneous of degree zero in the directional arguments y^{i}. Berwald's deviation tensor H_{j}^{i} is defined as

$$
\begin{equation*}
H_{j}^{i}=H_{j k}^{i} y^{k} . \tag{12}
\end{equation*}
$$

The contraction of the indices i and j in $H_{j k h}^{i}, H_{j k}^{i}$ and H_{j}^{i} gives

$$
\begin{equation*}
\text { a) } H_{k h}=H_{i k h}^{i}, \text { b) } H_{k}=H_{i k}^{i}, \text { c) } H=\frac{1}{n-1} H_{i}^{i} \text { and d) } H_{k} y^{k}=(n-1) H \tag{13}
\end{equation*}
$$

The necessary and sufficient condition for a Finsler space $F_{n}(n>2)$ to be Finsler space of scalar curvature is given by

$$
\begin{equation*}
H_{h}^{i}=F^{2} R\left(\delta_{h}^{i}-l^{i} l_{h}\right) . \tag{14}
\end{equation*}
$$

2. Generalized H-Birecurrent Finsler Space

A Finsler space whose Berwald curvature tensor $H_{j k h}^{i}$ satisfies the condition

$$
\begin{equation*}
\mathcal{B}_{n} H_{j k h}^{i}=\lambda_{n} H_{j k h}^{i}+\mu_{n}\left(\delta_{j}^{i} g_{k h}-\delta_{k}^{i} g_{j h}\right), H_{j k h}^{i} \neq 0, \tag{A}
\end{equation*}
$$

where \mathcal{B}_{n} is Berwald's covariant differential operator, λ_{l} and μ_{n} are non-zero covariant vector fields, this space introduced by P.N. Pandey, S. Saxena and A. Goswami [8], they called it as a generalized H-recurrent Finsler space. Now, taking the covariant derivative for the condition (A) with respect to x^{m} in the sense of Berwald and in view of the condition (A) and by using (5b), we get

$$
\begin{aligned}
\mathcal{B}_{m} \mathcal{B}_{n} H_{j k h}^{i} & =\left(\mathcal{B}_{m} \lambda_{n}\right) H_{j k h}^{i}+\lambda_{n}\left\{\lambda_{m} H_{j k h}^{i}+\mu_{m}\left(\delta_{j}^{i} g_{k h}-\delta_{k}^{i} g_{j h}\right)\right\} \\
& +\left(\mathcal{B}_{m} \mu_{n}\right)\left(\delta_{j}^{i} g_{k h}-\delta_{k}^{i} g_{j h}\right)+\mu_{n}\left\{\delta_{j}^{i}\left(-2 y^{r} \mathcal{B}_{r} C_{k h m}\right)-\delta_{k}^{i}\left(-2 y^{r} \mathcal{B}_{r} C_{j h m}\right)\right\} \\
& =\left(\mathcal{B}_{m} \lambda_{n}+\lambda_{n} \lambda_{m}\right) H_{j k h}^{i}+\left(\lambda_{n} \mu_{m}+\mathcal{B}_{m} \mu_{n}\right)\left(\delta_{j}^{i} g_{k h}-\delta_{k}^{i} g_{j h}\right)-2 \mu_{n} y^{r} \mathcal{B}_{r}\left(\delta_{j}^{i} C_{k h m}-\delta_{k}^{i} C_{j h m}\right)
\end{aligned}
$$

which can be written as

$$
\begin{equation*}
\mathcal{B}_{m} \mathcal{B}_{n} H_{j k h}^{i}=a_{m n} H_{j k h}^{i}+b_{m n}\left(\delta_{j}^{i} g_{k h}-\delta_{k}^{i} g_{j h}\right)-2 \mu_{n} y^{r} \mathcal{B}_{r}\left(\delta_{j}^{i} C_{k h m}-\delta_{k}^{i} C_{j h m}\right), H_{j k h}^{i} \neq 0 \tag{15}
\end{equation*}
$$

where $a_{m n}=\mathcal{B}_{m} \lambda_{n}+\lambda_{n} \lambda_{m}$ and $b_{m n}=\lambda_{n} \mu_{m}+\mathcal{B}_{m} \mu_{n}$ are non-zero covariant tensors field of second order are non-null covariant tensors field of second order.

Definition 2.1. A Finsler space F_{n} whose Berwald curvature tensor $H_{j k h}^{i}$ satisfies the condition (15), where $a_{m n}$ and $b_{m n}$ are non-zero covariant tensors field of second order. We shall call such Finsler space as a generalized H-birecurrent Finsler space and briefly denoted by $G H-B R F_{n}$.

Let us consider a $G H-B R F_{n}$ which is characterized by the condition (15). Transvecting the condition (15) by y^{h}, using (11a), (2a), (5a) and (1a), we get

$$
\begin{equation*}
\mathcal{B}_{m} \mathcal{B}_{n} H_{j k}^{i}=a_{m n} H_{j k}^{i}+b_{m n}\left(\delta_{j}^{i} y_{k}-\delta_{k}^{i} y_{j}\right) . \tag{16}
\end{equation*}
$$

Transvecting the condition (16) by y^{k}, using (12), (5a) and (2c), we get

$$
\begin{equation*}
\mathcal{B}_{m} \mathcal{B}_{n} H_{j}^{i}=a_{m n} H_{j}^{i}+b_{m n}\left(\delta_{j}^{i} F^{2}-y_{j} y^{i}\right) . \tag{17}
\end{equation*}
$$

Thus, we conclude

Theorem 2.2. In $G H-B R F_{n}$, Berwald covariant derivative of the second order for the $h(v)$-torsion tensor $H_{k h}^{i}$ and the deviation tensor H_{h}^{i} given by the conditions (16) and (17), respectively.

Contracting the indices i and j in the conditions (15), (16) and (17), using (13a), (13b), (13c) and (2c), we get

$$
\begin{gather*}
\mathcal{B}_{m} \mathcal{B}_{n} H_{k h}=a_{m n} H_{k h}+(n-1) b_{m n} g_{k h}-2(n-1) \mu_{n} y^{r} \mathcal{B}_{r} C_{k h m}, \tag{18}\\
\mathcal{B}_{m} \mathcal{B}_{n} H_{k}=a_{m n} H_{k}+(n-1) b_{m n} y_{k} \tag{19}
\end{gather*}
$$

and

$$
\begin{equation*}
\mathcal{B}_{m} \mathcal{B}_{n} H=a_{m n} H+b_{m n} F^{2} \tag{20}
\end{equation*}
$$

The conditions (18), (19) and (20) show that Ricci tensor $H_{k h}$, the curvature vector H_{k} and the curvature scalar H can't vanish because the vanishing of any one of these would imply $a_{m n}=0, b_{m n}=0$ and $\mu_{n}=0$, that is a contradiction. Thus, we conclude

Theorem 2.3. In $G H-B R F_{n}$, Ricci tensor $H_{k h}$, the curvature vector H_{k} and the curvature scalar H are non-vanishing.
Let us consider a $G H-B R F_{n}$. Differentiating the condition (19) partially with respect to y^{h}, using ($\dot{\partial}_{h} H_{k}=H_{k h}$) and (2b), we get

$$
\begin{equation*}
\dot{\partial}_{h} \mathcal{B}_{m}\left(\mathcal{B}_{n} H_{k}\right)=\left(\dot{\partial}_{h} a_{m n}\right) H_{k}+a_{m n} H_{k h}+(n-1)\left(\dot{\partial}_{h} b_{m n}\right) y_{k}+(n-1) b_{m n} g_{k h} . \tag{21}
\end{equation*}
$$

Using the commutation formula (7) for $\left(\mathcal{B}_{n} H_{k}\right)$ in (21), we get

$$
\begin{equation*}
\mathcal{B}_{m} \dot{\partial}_{h}\left(\mathcal{B}_{n} H_{k}\right)-\left(\mathcal{B}_{r} H_{k}\right) G_{h m n}^{r}-\left(\mathcal{B}_{n} H_{r}\right) G_{h m k}^{r}=\left(\dot{\partial}_{h} a_{m n}\right) H_{k}+a_{m n} H_{k h}+(n-1)\left(\dot{\partial}_{h} b_{m n}\right) y_{k}+(n-1) b_{m n} g_{k h} . \tag{22}
\end{equation*}
$$

Again applying the commutation formula (7) for $\left(H_{k}\right)$ in (22) and ($\dot{\partial}_{h} H_{k}=H_{k h}$), we get
$\mathcal{B}_{m} \mathcal{B}_{n} H_{k h}-\mathcal{B}_{m}\left(H_{r} G_{h n k}^{r}\right)-\left(\mathcal{B}_{r} H_{k}\right) G_{h m n}^{r}-\left(\mathcal{B}_{n} H_{r}\right) G_{h m k}^{r}=\left(\dot{\partial}_{h} a_{m n}\right) H_{k}+a_{m n} H_{k h}+(n-1)\left(\dot{\partial}_{h} b_{m n}\right) y_{k}+(n-1) b_{m n} g_{k h}$.

Using the condition (18) in (23), we get

$$
\begin{equation*}
-2(n-1) \mu_{n} y^{r} \mathcal{B}_{r} C_{k h m}-\mathcal{B}_{m}\left(H_{r} G_{h n k}^{r}\right)-\left(\mathcal{B}_{r} H_{k}\right) G_{h m n}^{r}-\left(\mathcal{B}_{n} H_{r}\right) G_{h m k}^{r}=\left(\dot{\partial}_{h} a_{m n}\right) H_{k}+(n-1)\left(\dot{\partial}_{h} b_{m n}\right) y_{k} . \tag{24}
\end{equation*}
$$

Transvecting (24) by y^{k}, using (5a), (1a), (1b), (13d) and (2c), we get

$$
\begin{equation*}
-\left(\mathcal{B}_{r} H\right) G_{h m n}^{r}=\left(\dot{\partial}_{h} a_{m n}\right) H+\left(\dot{\partial}_{h} b_{m n}\right) F^{2} \tag{25}
\end{equation*}
$$

If $\left(\mathcal{B}_{r} H\right) G_{h m n}^{r}=0$, the equation (25) can be written as

$$
\begin{equation*}
\dot{\partial}_{h} b_{m n}=-\frac{\dot{\partial}_{h} a_{m n}}{F^{2}} H . \tag{26}
\end{equation*}
$$

If the covariant tensor field $a_{m n}$ is independent of the directional argument, the equation (26) shows that the covariant tensor field $b_{m n}$ is also independent of the directional argument. Conversely, if the covariant tensor field $b_{m n}$ is independent of the directional argument, we get $\left(\dot{\partial}_{h} a_{m n}\right) H=0$. In view of Theorem 2.2, the condition $\left(\dot{\partial}_{h} a_{m n}\right) H=0$ implies $\dot{\partial}_{h} a_{m n}=0$, i.e. the covariant tensor field $a_{m n}$ is also independent of the directional argument. Thus, we conclude

Theorem 2.4. In $G H-B R F_{n}$, the covariant tensor field $b_{m n}$ is independent of the directional argument if and only if the covariant tensor field $a_{m n}$ is independent of the directional argument provided $\left(\mathcal{B}_{r} H\right) G_{h m n}^{r}=0$.

Transvecting (25) by y^{m} and using (1b), we get

$$
\begin{equation*}
\dot{\partial}_{h} b_{n}-b_{h n}=-\frac{\left(\dot{\partial}_{h} a_{n}-a_{h n}\right)}{F^{2}} H, \tag{27}
\end{equation*}
$$

where $a_{m n} y^{m}=a_{n}$ and $b_{m n} y^{m}=b_{n}$. Since the covariant vector field a_{n} is not independent of the directional argument, the equation (27) shows that the covariant vector field b_{n} is also not independent of the directional argument. Conversely, if the covariant vector field b_{n} is not independent of the directional argument, we have $\left(\dot{\partial}_{h} a_{n}-a_{h n}\right) H=0$. In view of Theorem 2.2, the condition $\left(\dot{\partial}_{h} a_{n}-a_{h n}\right) H=0$ implies $\dot{\partial}_{h} a_{n}=a_{h n}$, i.e. the covariant vector field a_{n} also is not independent of the directional argument. Thus, we conclude

Theorem 2.5. In $G H-B R F_{n}$, the covariant vector field a_{n} is not independent of the directional argument if and only if the covariant vector field b_{n} is not independent of the directional argument.

Suppose that the covariant tensor field $a_{m n}$ is not independent of the directional argument, then by using (26) in (24), we have

$$
\begin{equation*}
-2(n-1) \mu_{n} y^{r} \mathcal{B}_{r} C_{k h m}-\mathcal{B}_{m}\left(H_{r} G_{h n k}^{r}\right)-\left(\mathcal{B}_{r} H_{k}\right) G_{h m n}^{r}-\left(\mathcal{B}_{n} H_{r}\right) G_{h m k}^{r}=\left(\dot{\partial}_{h} a_{m n}\right)\left\{H_{k}-\frac{(n-1) H}{F^{2}} y_{k}\right\} . \tag{28}
\end{equation*}
$$

Transvecting (28) by y^{k}, using (5a), (1a), (1b), (13d) and (2c), we get

$$
\left(\mathcal{B}_{r} H\right) G_{h m n}^{r}=0
$$

Thus, we have
Theorem 2.6. In $G H-B R F_{n}$, we have the identity $\left(\mathcal{B}_{r} H\right) G_{h m n}^{r}=0$.

Transvecting (28) by y^{m} and using (1a) and (1b), we get

$$
\begin{equation*}
-\mathcal{B}_{m}\left(H_{r} G_{h n k}^{r}\right) y^{m}=\left(\dot{\partial}_{h} a_{n}-a_{h n}\right)\left\{H_{k}-\frac{(n-1) H}{F^{2}} y_{k}\right\}, \tag{29}
\end{equation*}
$$

where $a_{m n} y^{m}=a_{n}$. If $\mathcal{B}_{m}\left(H_{r} G_{h n k}^{r}\right) y^{m}=0$, the equation (29) implies at least one of the following conditions

$$
\begin{equation*}
\text { a) } a_{h n}=\dot{\partial}_{h} a_{n} \text { or b) } H_{k}=\frac{(n-1) H}{F^{2}} y_{k} \text {. } \tag{30}
\end{equation*}
$$

Thus, we conclude

Theorem 2.7. In $G H-B R F_{n}$, for which the covariant tensor field $a_{h n}$ is not independent of the directional argument at least one of the conditions (30a) or (30b) holds provided $\mathcal{B}_{m}\left(H_{r} G_{h n k}^{r}\right) y^{m}=0$.

Suppose that (30b) holds. Then (28) implies

$$
\begin{equation*}
-2 \mu_{n} y^{r} \mathcal{B}_{r} C_{k h m}-\mathcal{B}_{m}\left(\frac{H}{F^{2}} y_{r} G_{h n k}^{r}\right)-\left(\mathcal{B}_{r} \frac{H}{F^{2}} y_{k}\right) G_{h m n}^{r}-\left(\mathcal{B}_{n} \frac{H}{F^{2}} y_{r}\right) G_{h m k}^{r}=0 \tag{31}
\end{equation*}
$$

Transvecting (31) by y^{m}, using (5a), (1a) and (1b), we get

$$
\mathcal{B}_{m}\left(\frac{H}{F^{2}} y_{r} G_{h n k}^{r}\right) y^{m}=0
$$

which can be written as

$$
F^{-2}\left\{\left(\mathcal{B}_{m} H\right) y_{r} G_{h n k}^{r}+H \mathcal{B}_{m}\left(y_{r} G_{h n k}^{r}\right)\right\} y^{m}=0 .
$$

If $H \mathcal{B}_{m}\left(y_{r} G_{h n k}^{r}\right) y^{m}=0$, the above equation implies $\left(\mathcal{B}_{m} H\right) y^{m} y_{r} G_{h n k}^{r}=0$. Since $\left(\mathcal{B}_{m} H\right) y^{m} \neq 0$, so $y_{r} G_{h n k}^{r}=0$, therefore the space is a Landsberg space. Thus, we conclude

Theorem 2.8. The $G H-B R F_{n}$ is a Landsberg space if the condition (30b) holds provided $\mathcal{B}_{m}\left(H_{r} G_{h n k}^{r}\right) y^{m}=0$ and $\left(\mathcal{B}_{m} H\right) y^{m} y_{r} G_{h n k}^{r}=0$.

If the covariant tensor field $a_{h n} \neq \dot{\partial}_{h} a_{n}$, in view of Theorem 2.4 (30b) holds good. In view of this fact, we may rewrite Theorem 2.7 in the following form

Theorem 2.9. The $G H-B R F_{n}$ is necessarily a Landsberg space provided $a_{h n} \neq \dot{\partial}_{h} a_{n}, \mathcal{B}_{m}\left(H_{r} G_{h n k}^{r}\right) y^{m}=0$ and $\left(\mathcal{B}_{m} H\right) y^{m} y_{r} G_{h n k}^{r}=0$.

Differentiating the condition (16) partially with respect to y^{h}, using (11b) and (2b), we get

$$
\begin{equation*}
\dot{\partial}_{h} \mathcal{B}_{m}\left(\mathcal{B}_{n} H_{j k}^{i}\right)=\left(\dot{\partial}_{h} a_{m n}\right) H_{j k}^{i}+a_{m n} H_{j k h}^{i}+\left(\dot{\partial}_{h} b_{m n}\right)\left(\delta_{j}^{i} y_{k}-\delta_{k}^{i} y_{j}\right)+b_{m n}\left(\delta_{j}^{i} g_{k h}-\delta_{k}^{i} g_{j h}\right) \tag{32}
\end{equation*}
$$

Using the commutation formula (7) for $\left(\mathcal{B}_{n} H_{j k}^{i}\right)$ in (32), we get

$$
\begin{align*}
\mathcal{B}_{m}\left(\dot{\partial}_{h} \mathcal{B}_{n} H_{j k}^{i}\right) & -\left(\mathcal{B}_{r} H_{j k}^{i}\right) G_{h m n}^{r}+\left(\mathcal{B}_{n} H_{j k}^{r}\right) G_{h m r}^{i}-\left(\mathcal{B}_{n} H_{r k}^{i}\right) G_{h m j}^{r}-\left(\mathcal{B}_{n} H_{j r}^{i}\right) G_{h m k}^{r} \\
& =\left(\dot{\partial}_{h} a_{m n}\right) H_{j k}^{i}+a_{m n} H_{j k h}^{i}+\left(\dot{\partial}_{h} b_{m n}\right)\left(\delta_{j}^{i} y_{k}-\delta_{k}^{i} y_{j}\right)+b_{m n}\left(\delta_{j}^{i} g_{k h}-\delta_{k}^{i} g_{j h}\right) \tag{33}
\end{align*}
$$

Again using the commutation formula (7) for $\left(H_{j k}^{i}\right)$ in (33) and using (11b), we get

$$
\begin{aligned}
\mathcal{B}_{m} \mathcal{B}_{n} H_{j k h}^{i} & +\left(\mathcal{B}_{m} H_{j k}^{r}\right) G_{h n r}^{i}+H_{j k}^{r}\left(\mathcal{B}_{m} G_{h n r}^{i}\right)-\left(\mathcal{B}_{m} H_{r k}^{i}\right) G_{h n j}^{r}-H_{r k}^{i}\left(\mathcal{B}_{m} G_{h n j}^{r}\right)-\left(\mathcal{B}_{m} H_{j r}^{i}\right) G_{h n k}^{r}-H_{j r}^{i}\left(\mathcal{B}_{m} G_{h n k}^{r}\right) \\
& -\left(\mathcal{B}_{r} H_{j k}^{i}\right) G_{h m n}^{r}+\left(\mathcal{B}_{n} H_{j k}^{r}\right) G_{h m r}^{i}-\left(\mathcal{B}_{n} H_{j r}^{i}\right) G_{h m k}^{r}=\left(\dot{\partial}_{h} a_{m n}\right) H_{j k}^{i}+a_{m n} H_{j k h}^{i}-\left(\mathcal{B}_{n} H_{r k}^{i}\right) G_{h m j}^{r} \\
& +\left(\dot{\partial}_{h} b_{m n}\right)\left(\delta_{j}^{i} y_{k}-\delta_{k}^{i} y_{j}\right)+b_{m n}\left(\delta_{j}^{i} g_{k h}-\delta_{k}^{i} g_{j h}\right) .
\end{aligned}
$$

By using the condition (15), the above equation can be written as

$$
\begin{align*}
\left(\mathcal{B}_{m} H_{j k}^{r}\right) G_{h n r}^{i} & +H_{j k}^{r}\left(\mathcal{B}_{m} G_{h n r}^{i}\right)-\left(\mathcal{B}_{m} H_{r k}^{i}\right) G_{h n j}^{r}-H_{r k}^{i}\left(\mathcal{B}_{m} G_{h n j}^{r}\right)-\left(\mathcal{B}_{m} H_{j r}^{i}\right) G_{h n k}^{r}-H_{j r}^{i}\left(\mathcal{B}_{m} G_{h n k}^{r}\right)-\left(\mathcal{B}_{r} H_{j k}^{i}\right) G_{h m n}^{r} \\
& +\left(\mathcal{B}_{n} H_{j k}^{r}\right) G_{h m r}^{i}-\left(\mathcal{B}_{n} H_{r k}^{i}\right) G_{h m j}^{r}-\left(\mathcal{B}_{n} H_{j r}^{i}\right) G_{h m k}^{r} \\
& =\left(\dot{\partial}_{h} a_{m n}\right) H_{j k}^{i}+\left(\dot{\partial}_{h} b_{m n}\right)\left(\delta_{j}^{i} y_{k}-\delta_{k}^{i} y_{j}\right)+2 \mu_{n} y^{r} \mathcal{B}_{r}\left(\delta_{j}^{i} C_{k h m}-\delta_{k}^{i} C_{j h m}\right) . \tag{34}
\end{align*}
$$

Transvecting (34) by y_{i}, using the identity $\left(y_{i} H_{j k}^{i}=0\right)$ which established by [7] and (5b), we get

$$
\begin{equation*}
\left(\mathcal{B}_{m} H_{j k}^{r}\right) y_{i} G_{h n r}^{i}+H_{j k}^{r}\left\{\mathcal{B}_{m}\left(y_{i} G_{h n r}^{i}\right)\right\}+\left(\mathcal{B}_{n} H_{j k}^{r}\right) y_{i} G_{h m r}^{i}=2 \mu_{n} y^{r} \mathcal{B}_{r}\left(y_{j} C_{k h m}-y_{k} C_{j h m}\right) . \tag{35}
\end{equation*}
$$

Transvecting (35) by y^{m}, using (1b), (5a) and (1a), we get

$$
\left[\left(\mathcal{B}_{m} H_{j k}^{r}\right) y_{i} G_{h n r}^{i}+H_{j k}^{r}\left\{\mathcal{B}_{m}\left(y_{i} G_{h n r}^{i}\right)\right\}\right] y^{m}=0
$$

which can be written as

$$
\left[\mathcal{B}_{m}\left(H_{j k}^{r} y_{i} G_{h n r}^{i}\right)\right] y^{m}=0 .
$$

Thus, we conclude

Theorem 2.10. In $G H-B R F_{n}$, we have the identity $\left[\mathcal{B}_{m}\left(H_{j k}^{r} y_{i} G_{h n r}^{i}\right)\right] y^{m}=0$.
Transvecting (34) by y^{k}, using (12), (1b), (5a), (2c) and (1a), we get

$$
\begin{align*}
\left(\mathcal{B}_{m} H_{j}^{r}\right) G_{h n r}^{i} & +H_{j}^{r}\left(\mathcal{B}_{m} G_{h n r}^{i}\right)-\left(\mathcal{B}_{m} H_{r}^{i}\right) G_{h n j}^{r}-H_{r}^{i}\left(\mathcal{B}_{m} G_{h n j}^{r}\right)-\left(\mathcal{B}_{r} H_{j}^{i}\right) G_{h m n}^{r}+\left(\mathcal{B}_{n} H_{j}^{r}\right) G_{h m r}^{i}-\left(\mathcal{B}_{n} H_{r}^{i}\right) G_{h m j}^{r} \\
& =\left(\dot{\partial}_{h} a_{m n}\right) H_{j}^{i}+\left(\dot{\partial}_{h} b_{m n}\right)\left(\delta_{j}^{i} F^{2}-y^{i} y_{j}\right)+2 \mu_{n} y^{r} \mathcal{B}_{r}\left(y^{i} C_{j h m}\right) . \tag{36}
\end{align*}
$$

Substituting the value of ($\dot{\partial}_{h} b_{m n}$) from (26) in (36), using (3a) and (3b), we get

$$
\begin{gather*}
\mathcal{B}_{m}\left(H_{j}^{r} G_{h n r}^{i}\right)-\mathcal{B}_{m}\left(H_{r}^{i} G_{h n j}^{r}\right)-\left(\mathcal{B}_{r} H_{j}^{i}\right) G_{h m n}^{r}+\left(\mathcal{B}_{n} H_{j}^{r}\right) G_{h m r}^{i}-\left(\mathcal{B}_{n} H_{r}^{i}\right) G_{h m j}^{r} \\
=\left(\dot{\partial}_{h} a_{m n}\right)\left\{H_{j}^{i}-H\left(\delta_{j}^{i}-l^{i} l_{j}\right)\right\}+2 \mu_{n} y^{r} \mathcal{B}_{r}\left(y^{i} C_{j h m}\right) . \\
\text { If } \mathcal{B}_{m}\left(H_{j}^{r} G_{h n r}^{i}\right)-\mathcal{B}_{m}\left(H_{r}^{i} G_{h n j}^{r}\right) \mathcal{B}_{m}-\left(\mathcal{B}_{r} H_{j}^{i}\right) G_{h m n}^{r}+\left(\mathcal{B}_{n} H_{j}^{r}\right) G_{h m r}^{i}-\left(\mathcal{B}_{n} H_{r}^{i}\right) G_{h m i}^{r}-2 \mu_{n} y^{r} \mathcal{B}_{r}\left(y^{i} C_{j h m}\right)=0 . \tag{37}
\end{gather*}
$$

Then, we have at least one of the following conditions

$$
\begin{equation*}
\text { a) } \left.\dot{\partial}_{h} a_{h n}=0 \text { or } b\right) H_{j}^{i}=H\left(\delta_{j}^{i}-l^{i} l_{j}\right) . \tag{38}
\end{equation*}
$$

Putting $H=F^{2} R,(2.24 \mathrm{~b})$ may be written as

$$
H_{j}^{i}=F^{2} R\left(\delta_{j}^{i}-l^{i} l_{j}\right)
$$

Therefore, the space is a Finsler space of scalar curvature. Thus, we conclude

Theorem 2.11. In $G H-B R F_{n}$, for $n>2$ admitting the condition (37) is a Finsler space of scalar curvature provided $R \neq 0$ and the covariant tensor field $a_{m n}$ is not independent of the directional argument.

References

[1] F.Y.A.Qasem, On transformations in Finsler spaces, D. Phil., Thesis, University of Allahabad, India, (2000).
[2] H.Rund, The differential geometry of Finsler spaces, Springer-Verlag, Göttingen-Heidelberg, Berlin, (1959); $2^{\text {nd }}$ Edit. (in Russian), Nauka, (Moscow), (1981).
[3] M.L.Youssef and A.Soleiman, On concircularly recurrent Finsler manifolds, Balkan Journal of geometry and its Applications, 18(1)(2013), 101-113.
[4] N.S.H.Hussien, On K^{h} recurrent Finsler spaces, M.Sc. Thesis, University of Aden, Aden, Yemen, (2009).
[5] P.N.Pandey, A notes on recurrence vector, Proc. Nat. Acad. Sci., 51A(I)(1981), 6-8.
[6] P.N.Pandey, On some Finsler spaces of scalar curvature, Proc. of Maths., I8(1)(1984), 41-48.
[7] P.N. Pandey and V.J.Dwivedi, On T-recurrent Finsler space, Prog. Math. (Varanasi), 21(2)(1987), 101-112.
[8] P.N. Pandey, S.Saxena and A.Goswami, On a generalized H-recurrent Finsler space, Journal of International Academy of Physical Sciences, 15(Special Issue 1)(2011), 201-211.
[9] R.Verma, Some transformations in Finsler spaces, D. Phil., Thesis, University of Allahabad, Allahabad, India, (1991).
[10] S.Dikshit, Certain types of recurrences in Finsler spaces, D.Phil., Thesis, University of Allahabad, Allahabad, India, (1992).

[^0]: * E-mail: fahmi.yaseen@yahoo.com
 ${ }^{1}$ The indices i, j, k, \ldots assume positive integral values from 1 to n.
 ${ }^{2}$ Unless stated otherwise. Henceforth all geometric object are assumed to be functions of line-element.

[^1]: ${ }^{3}$ In Rund's book, $H_{j k h}^{i}$ defined here, is denoted by $H_{h k j}^{i}$. This difference must be noted. The square brackets denote the skew-symmetric part of the tensor with respect to the indices enclosed therein.

