
International Journal of Mathematics And its Applications

Volume 4, Issue 2–B (2016), 69–84.

ISSN: 2347-1557

Available Online: http://ijmaa.in/

A
p
p
lications•ISSN:234

7-
15

57
•
In

te
r
n
a
ti
o
n
a
l
Jo

ur
na

l of Mathematics
A
n
d

its

International Journal of Mathematics And its Applications

Degree of Approximation of Functions by their Fourier

Series in the Besov Space by Matrix Mean

Research Article

Madhusmita Mohanty1∗, Gokulananda Das2 and Sanghamitra Beuria3

1 Department of Mathematics, Utkal University, Vani-Vihar, Bhubaneswar, Odisha, India.

2 177, Dharma Vihar, Bhubaneswar, Odisha, India.

3 Department of Mathematics, College of Basic Science and Humanities, OUAT, Bhubaneswar, Odisha, India.

Abstract: The paper studies the degree of approximation of functions by their Fourier series in the Besov space by matrix mean and

this generalizing many known results.

MSC: 41A25, 42A24.
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1. Introduction

Let f be a 2π periodic function and let f ∈ Lp[0, 2π], p ≥ 1. The Fourier series of f at x is given by

1

2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx) (1)

Let sn(x) denote the nth partial sums of (1). We know ([6]) that

sn(x)− f(x) =
1

π

∫ π

0

φx(u)Dn(u)du (2)

where

φx(u) = f(x+ u) + f(x− u)− 2f(x) (3)

Dn(u) =
1

2
+

n∑
k=0

cos ku =
sin(k + 1

2
)u

2 sin u
2

(4)

Kn(u) =

∞∑
k=0

an,kDk(u) (5)

Let A = (an,k) be an infinite matrix. We assume that elements of the matrix A = (an,k) satisfy the following regularity

conditions

||A|| = sup
n

∞∑
k=0

|an,k| <∞ (6)
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(an,k)→ 0 as n→∞ and k is fixed (7)

and

∞∑
k=0

an,k = 1 for each n = 0, 1, 2 · · · . (8)

2. Definitions and Notations

Definition 2.1 (Modulus of Continuity). Let A = R,R + [a, b] ⊂ R or T (which usually taken to be R with identification

of points modulo 2π). The modulus of continuity w(f, t) = w(t) of a function f on A can be defined as

w(t) = w(f, t) = sup

|x− y| ≤ t,

x, y ∈ A

|f(x)− f(y)|, t ≥ 0.

Definition 2.2 (Modulus of Smoothness). The kth order modulus of smoothness [2] of a function f : A→ R is defined by

wk(f, t) = sup
0<h≤t

{sup |∆k
h(f, x)| : x, x+ kh ∈ A}, t ≥ 0 (9)

where

∆k
h(f, x) =

k∑
i=0

(−1)k−i

 k

i

 f(x+ ih), k ∈ N. (10)

For k = 1, w1(f, t) is called the modulus of continuity of f . The function w is continuous at t = 0 if and only if f is uniformly

continuous on A, that is f ∈ c̃(A). The kth order modulus of smoothness of f ∈ Lp(A), 0 < p <∞ or of f ∈ c̃(A), ifp =∞

is defined by

wk(f, t)p = sup
0<h≤t

||∆k
h(f, ·)||p, t ≥ 0 (11)

if p ≥ 1, k = 1, then w1(f, t)p = w(f, t)p is a modulus of continuity (or integral modulus of continuity). If p =∞, k = 1 and

f is continuous then wk(f, t)p reduces to modulus of continuity w1(f, t) or w(f, t).

Definition 2.3 (Lipschitz Space). If f ∈ c̃(A) and

w(f, t) = O(tα), 0 < α ≤ 1 (12)

then we write f ∈ Lipα. If w(f, t) = O(t) as t → 0+ (in particular (9) holds for α > 1) then f reduces to a constant. If

f ∈ Lp(A), 0 < p <∞ and

w(f, t)p = O(tα), 0 < α ≤ 1 (13)

then we write f ∈ Lip(α, p), 0 < p <∞, 0 < α ≤ 1.

The case α > 1 is of no interest as the function reduces to a constant, whenever

w(f, t)p = O(t) as t→ 0+ (14)

We note that if p =∞ and f ∈ c(A), then Lip(α, p) class reduces to Lip α class.
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Definition 2.4 (Generalized Lipschitz Space). Let α > 0 and suppose that k = [α] + 1. For f ∈ Lp(A), 0 < p <∞, if

wk(f, t) = O(tα), t > 0 (15)

then we write

f ∈ Lip∗(α, p), α > 0, 0 < p ≤ ∞ (16)

and say that f belongs to generalized Lipschitz space. The seminorm is then

|f |Lip∗(α,Lp) = sup
t>0

(t−αwk(f, t)p).

It is known [2] that the space Lip∗(α,Lp) contains Lip(α,Lp). For 0 < α < 1 the spaces coincide, (for p =∞, it is necessary

to replace L∞ by c̃ of uniformly continuous function on A). For 0 < α < 1 and p = 1 the space Lip∗(α,Lp) coincide with

Lipα.

For α = 1, p =∞, we have

Lip(1, c̃) = Lip 1 (17)

but

Lip∗(1, c̃) = z (18)

is the Zygmund space [5] which is characterized by (13) with k = 2.

Definition 2.5 (Hölder (Hα) Space). For 0 < α ≤ 1, let

Hα = {f ∈ C2π : w(f, t) = O(tα)}. (19)

It is known [3] that Hα is a Banach Space with the norm || · ||α defined by

||f ||α = ||f ||c + sup
t>0

t−αw(t), 0 < α ≤ 1 (20)

||f ||0 = ||f ||c

and

Hα ⊆ Hβ ⊆ C2π, 0 < β ≤ α ≤ 1 (21)

Definition 2.6 (H(α,p) Space). For 0 < α ≤ 1, let

H(α,p) = {f ∈ Lp[0, 2π] : 0 < p ≤ ∞, w(f, t)p = O(tα)} (22)

and introduce the norm || · ||(α,p) as follows

||f ||(α,p) = ||f ||p + sup
t>0

t−αw(f, t)p, 0 < α ≤ 1. (23)

||f ||(0,p) = ||f ||p.

It is known [1] that H(α,p) is a Banach space for p ≥ 1 and a complete p-normed space for 0 < p < 1. Also

H(α,p) ⊆ H(β,p) ⊆ Lp, 0 < β ≤ α ≤ 1. (24)
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Note that H(α,∞) is the space Hα defined above. For study of degree of approximation problems the natural way to proceed

to consider with some restrictions on some modulus of smoothness as prescribed in Hα and H(α,p) spaces. As we have seen

above only a constant function satisfies Lipschitz condition for α > 1. However for generalized Lipschitz class there is no

such restriction on α. We required a finer scale of smoothness than is provided by Lipschitz class. For each α > 0 Besov

developed a remarkable technique for restricting modulus of smoothness by introducing a third parameter q (in addition to

p on α) and applying α · q norms (rather than α, ∞ norms) to the modulus of smoothness wk(f, ·)p of f .

Definition 2.7 (Besov space). Let α > 0 be given and let k = [α] + 1. For 0 < p, q ≤ ∞, the Besov space ([2]) Bαq (Lp) is

defined as follows:

Bαq (Lp) = {f ∈ Lp : |f |Bαq (Lp) = ||wk(f, ·)||(α,q) is finite}

where

||wk(f, ·)||(α,q) =


(
∫∞
0

(t−αwk(f, t)p)
q dt
t

)
1
q , 0 < q <∞

sup
t>0

t−αwk(f, t)p, q =∞.
(25)

It is known ([2]) that ||wk(f, ·)||(α,q) is a seminorm if 1 ≤ p, q ≤ ∞ and a quasi-seminorm in other cases.

The Besov norm for Bαq (Lp) is

||f ||Bαq (Lp) = ||f ||p + ||wk(f, ·)||(α,q) (26)

It is known ([4]) that for 2π-periodic function f , the integral (
∫∞
0

(t−αwk(f, t)p)
q dt
t

)
1
q is replaced by (

∫ π
0

(t−αwk(f, t)p)
q dt
t

)
1
q .

We know ([2, 4]) the following inclusion relations. For fixed α and p

Bαq (Lp) ⊂ Bαq1(Lp), q < q1.

For fixed p and q

Bαq (Lp) ⊂ Bβq (Lp), β < α.

For fixed α and q

Bαq (Lp) ⊂ Bαq (Lp1), p1 < p.

Definition 2.8 (Special cases of Besov space). For q = ∞, Bα∞(Lp), α > 0, p ≥ 1 is same as Lip∗(α,Lp) the generalized

Lipschitz space and the corresponding norm || · ||Bα∞(Lp) is given by

||f ||Bα∞(Lp) = ||f ||p + sup
t>0

t−αwk(f, t)p (27)

for every α > 0 with k = [α] + 1.

For the special case when 0 < α < 1, Bα∞(Lp) space reduces to H(α,p) space due to Das et al. [1] and the corresponding

norm is given by

||f ||Bα∞(Lp) = ||f ||(α,p) = ||f ||p + sup
t>0

t−αw(f, t)p, 0 < α < 1. (28)

For α = 1, the norm is given by

||f ||B1
∞(Lp) = ||f ||p + sup

t>0
t−αw2(f, t)p. (29)

Note that ||f ||B1
∞(Lp) is not same as ||f ||(1,p) and the space B1

∞(Lp) includes the space H(1, p), p ≥ 1. If we further specialize

by taking p =∞, Bα∞, 0 < α < 1, coincides with Hα space due to Prossodorf [3] and the norm is given by

||f ||Bα∞(L∞) = ||f ||α = ||f ||c + sup
t>0

tαw(f, t), 0 < α < 1. (30)
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For α = 1, p =∞, the norm is given by

||f ||B1
∞(L∞) = ||f ||c + sup

t>0
t−1w2(f, t), α = 1 (31)

which is different from ||f ||1 and B1
∞(L∞) includes the H1 space.

3. Main Result

We prove the following theorem.

Theorem 3.1. Let the matrix A = (an,k) satisfy the following conditions

(i). sup
n

∑∞
k=0 |an,k| <∞

(ii).
∞∑
k=0

an,k = 1 for all n and

(iii).
∞∑

k=µn

k|an,k| = O(µn).

where (µn) is a positive non-decreasing sequence µ1 = 1.

Let ψ(n) =

∞∑
k=0

|an,k − an,k+1| and 0 < α < 2 and 0 ≤ β < α. If f ∈ Bαq (Lp), p ≥ 1 and 1 < q ≤ ∞ and let tn(x) be the

A-transform of the Fourier series of f, that is,

tn(f) = tn(f ;x) =

∞∑
k=0

an,ksk(x)

Then

Case 1 (1 < q <∞)

||Tn(·)||
B
β
q (Lp)

= O

 1

µ
α−β− 1

q
n

+O(ψ(n))


n∑
k=1

 (µk+1 − µk)
1− 1

q

µ
α−β− 2

q

k


q
q−1


1− 1

q

Case 2 (q =∞)

||Tn(·)||
B
β
q (Lp)

= O

(
1

µα−βn

)
+O(ψ(n))

n∑
k=1

(
(µk+1 − µk)

µα−βk

)

4. Additional Notations and Lemmas

We need the following additional notations

φ(x, t, u) =

 φx+t(u)− φx(u), 0 < α < 1

φx+t(u) + φx−t(u)− 2φx(u), 1 ≤ α < 2

For k = [α] + 1, we have for p ≥ 1

wk(f, t)p =

 w1(f, t)p, 0 < α < 1

w2(f, t)p, 1 ≤ α < 2
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Let

Tn(x, t) =

 Tn(x+ t)− Tn(x), 0 < α < 1

Tn(x+ t) + Tn(x− t)− 2Tn(x), 1 ≤ α < 2

Using above equation and definition of wk(f, t)p, we have

wk(Tn, t)p = ||Tn(·, t)||p

We require the following lemmas for the proof of the theorem.

Lemma 4.1. Let 1 ≤ p ≤ ∞ and 0 < α < 2. If f ∈ Lp[0, 2π], then for 0 < t, u ≤ π

(i). ||φ(·, t, u)||p ≤ 4wk(f, t)p

(ii). ||φ(·, t, u)||p ≤ 4wk(f, u)p

(iii). ||φ·(u)||p ≤ 2wk(f, u)p,

where k = [α] + 1.

Proof. Case 0 < α < 1.

Clearly k = [α] + 1 = 1. By virtue of (3), φ(x, t, u) = φx+t(u)− φx(u), can be written as

φ(x, t, u) =

 {f(x+ t+ u)− f(x+ u)}+ {f(x+ t− u)− f(x− u)} − 2{f(x+ t)− f(x)}

{f(x+ t+ u)− f(x+ t)}+ {f(x− u+ t)− f(x+ t)} − {f(x+ u)− f(x)} − {f(x− u)− f(x)}
(32)

Applying Minkowski’s inequality to (32), we get for p ≥ 1

||φ(·, t, u)||p ≤ ||f(·+ t+ u)− f(·+ u)||p + ||f(·+ t− u)− f(· − u)||p + 2||f(·+ t)− f(·)||p

≤ 4w1(f, t)p, 0 < α < 1

Similarly applying Minkowski’s inequality to (32), we get for p ≥ 1

||φ(·, t, u)||p ≤ 4w1(f, u)p.

Case 1 ≤ α < 2.

Clearly k = [α] + 1 = 2. By virtue of (3), φ(x, t, u) = φx+t(u) + φx−t(u)− 2φx(u), can be written as

φ(x, t, u) =



{f(x+ t+ u) + f(x+ t− u)− 2f(x+ t)}+ {f(x− t+ u) + f(x− t− u)

−2f(x− t)} − 2{f(x+ u) + f(x− u)− 2f(x)}

{f(x+ t+ u) + f(x− t+ u)− 2f(x+ u)}+ {f(x+ t− u) + f(x− t− u)

−2f(x− u)} − 2{f(x+ t) + f(x− t)− 2f(x)}

(33)

Applying Minkowski’s inequality to (33), we obtain for p ≥ 1

||φ(·, t, u)||p ≤ ||f(·+ t+ u) + f(·+ t− u)− 2f(·+ t)||p

+ ||f(· − t+ u) + f(· − t− u)− 2f(· − t)||p

+ 2||f(·+ u) + f(· − u)− 2f(·)||p

≤ 4w2(f, u)p
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Using (33) and proceeding as above, we get

||φ(·, t, u)||p ≤ 4w2(f, t)p

this completes the proof of part (i) and (ii). We omit the proof of (iii) as it is trivial.

Lemma 4.2. Let 0 < α < 2. Suppose that 0 ≤ β < α. If f ∈ Bαq (Lp), p ≥ 1, 1 < q <∞, then

(i).
∫ π
0
|Kn(u)|

(∫ u
0

||φ(·,t,u)||qp
tβq

dt
t

) 1
q
du = O(1)

{∫ π
0

(
uα−β |Kn(u)|

) q
q−1 du

}1− 1
q

(ii).
∫ π
0
|Kn(u)|

(∫ π
u

||φ(·,t,u)||qp
tβq

dt
t

) 1
q
du = O(1)

{∫ π
0

(
u
α−β+ 1

q |Kn(u)|
) q
q−1

du

}1− 1
q

where Kn(u) is defined as in (5).

Proof. Applying Lemma 4.1(i), we have

∫ π

0

|Kn(u)|
(∫ u

0

||φ(·, t, u)||qp
tβq+1

dt

) 1
q

du = O(1)

∫ π

0

|Kn(u)|
(∫ u

0

(
wk(f, t)p

tα

)q
t(α−β)q

dt

t

) 1
q

du

= O(1)

∫ π

0

|Kn(u)|u(α−β)du

(∫ u

0

wk(f, t)p
tα

dt

t

) 1
q

= O(1)

∫ π

0

|Kn(u)|u(α−β)du

by Second Mean value theorem and by the definition of Besov space. Applying Holders inequality

= O(1)

{∫ π

0

(
|Kn(u)|u(α−β)

) q
q−1

du

}1− 1
q
(∫ π

0

1qdu

) 1
q

= O(1)

{∫ π

0

(
|Kn(u)|u(α−β)

) q
q−1

du

}1− 1
q

For the second part, applying Lemma 4.1(ii), we get

∫ π

0

|Kn(u)|du
(∫ π

u

||φ(·, t, u)||qp
tβq+1

dt

) 1
q

= O(1)

∫ π

0

|Kn(u)|wk(f, u)pdu

(∫ π

u

dt

tβq+1

) 1
q

= O(1)

∫ π

0

|Kn(u)|wk(f, u)pu
−βdu

= O(1)

∫ π

0

(
wk(f, u)p

u
α+ 1

q

)
u
α−β+ 1

q |Kn(u)|du

Applying Hölder’s inequality

= O(1)

{∫ π

0

(
wk(f, u)p

uα

)q
du

u

} 1
q
{∫ u

0

(
u
α−β+ 1

q |Kn(u)|
) q
q−1

du

}1− 1
q

= O(1)

{∫ π

0

(
u
α−β+ 1

q |Kn(u)|
) q
q−1

du

}1− 1
q

by definition of Besov space.

Lemma 4.3. Let 0 < α < 2. Suppose that 0 ≤ β < α. If f ∈ Bαq (Lp), p ≥ 1 and q =∞, then

sup
0<t,u≤π

t−β ||φ(·, t, u)||p = O(uα−β)
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Proof. For 0 < t ≤ u ≤ π, applying Lemma 4.1(i), we have

sup
t,

0<t≤u≤π

t−β ||φ(·, t, u)||p = sup
t,

0<t≤u≤π

tα−β(t−α||φ(·, t, u)||p)

≤ 4uα−β sup
t

(t−αwk(f, t)p)

= O(uα−β), by the hypothesis.

Next for 0 < u ≤ t ≤ π, applying Lemma 4.1(ii), we get

sup
t,

0<u≤t≤π

t−β ||φ(·, t, u)||p ≤ 4wk(f, u)p sup
t,

0<u≤t≤π

t−β

≤ 4uα−β sup
u

(u−αwk(f, u)p)

= O(uα−β), by the hypothesis

and this completes the proof.

Lemma 4.4.

(a) Let Kn(u) be defined as in (6). Let there exist a positive non-decreasing sequence (µn) with µ1 = 1, then for 0 < u ≤ π

Kn(u) = O (µn) .

(b) Let ψ(n) = sup

∞∑
k=0

|an,k − an,k+1|. Then for 0 < u ≤ π,

Kn(u) = O(u−2ψ(n)).

Proof.

(a) From (4), we have

|Dk(u)| = |1
2

+

k∑
v=0

cos vu|

≤ 1

2
+

k∑
v=0

| cos vu|

≤ k + 1 (34)

Then

|Kn(u)| ≤
∞∑
k=0

|an,kDk(u)|

≤
µn∑
k=0

|an,k|(k + 1) +

∞∑
k=µn+1

|an,k|(k + 1) ( by using (34))

≤ µn

µn∑
k=0

|an,k|+
∞∑

k=µn+1

|an,k|(k + 1)

≤ µn

µn∑
k=0

|an,k|+O(µn)

= O (µn) +O (µn)

= O(µn), (by hypothesis (iii))

76



Madhusmita Mohanty, Gokulananda Das and Sanghamitra Beuria

(b) Applying Abel’s transformation, we have

∞∑
k=0

an,k sin(k +
1

2
)u = O(u−1)

∞∑
k=0

|an,k − an,k+1|

= O(u−1ψ(n))

from which it follows that

Kn(u) = O(u−2ψ(n))

5. Proof of Theorem

Case 1 (1 < q <∞)

Since tn(x) denote the transformations of the Fourier series f , we have

tn(x) =

∞∑
k=0

an,ksk(x) (35)

=

∞∑
k=0

an,k

[
1

π

∫ π

0

φx(u)Dk(u)du+ f(x)

]
(by (2))

=
1

π

∞∑
k=0

an,k

∫ π

0

φx(u)Dk(u)du+

∞∑
k=0

an,kf(x)

=
1

π

∫ π

0

(
∞∑
k=0

an,kDk(u)

)
φx(u)du+ f(x)

∞∑
k=0

an,k

Now, Tn(x) =
1

π

∫ π

0

φx(u)Kn(u)du (36)

where we write Tn(x) = tn(x)− f(x). (37)

We first consider the case 1 < q < ∞. We have for p ≥ 1 and 0 ≤ β < α < 2, by use of Besov norm defined in (26) for

Bβq (Lp) is

||f ||Bαq (Lp) = ||f ||p + ||wk(f, ·)||α,q (38)

||Tn(·)||
B
β
q (Lp)

= ||Tn(·)||p + ||wk(Tn, ·)||β,q (39)

Applying Lemma 4.1(iii) in equation (39), we have

||Tn(·)||p ≤
1

π

∫ π

0

||φ·(u)||p|Kn(u)|du

≤ 1

π

∫ π

0

2wk(f, u)p|Kn(u)|du

=
2

π

∫ π

0

|Kn(u)|wk(f, u)pdu

Applying Hölder’s inequality, we have

||Tn(·)||p ≤
2

π

{∫ π

0

(
|Kn(u)|uα+

1
q

) q
q−1

du

}1− 1
q
{∫ π

0

(
wk(f, u)p

u
α+ 1

q

)q
du

} 1
q
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By definition of Besov Space, we have

||Tn(·)||p ≤ O(1)

{∫ π

0

(
|Kn(u)|uα+

1
q

) q
q−1

du

}1− 1
q

= O(1)

[{∫ µn

0

(
|Kn(u)|uα+

1
q

) q
q−1

du

}1− 1
q

+

{∫ π

µn

(
|Kn(u)|uα+

1
q

) q
q−1

du

}1− 1
q

]
= O(1) [I + J ] , (say) (40)

By using Lemma 4.4(a) in I of (40), we have

I =

{∫ π
µn

0

(|Kn(u)|uα+
1
q )

q
q−1 du

}1− 1
q

= O(µn)

{∫ π
µn

0

u
(α+ 1

q
)· q
q−1 du

}1− 1
q

= O(µn)

{∫ π
µn

0

u
q
q−1

(α+1)−1
du

}1− 1
q

= O

(
1

µαn

)
(41)

Applying Lemma 4.4(b) in J of (40), we have

J =

{∫ π

π
µn

(
|Kn(u)|uα+

1
q

) q
q−1

du

}1− 1
q

= O (ψ(n))

{∫ π

π
µn

(
u
α+ 1

q
−2
) q
q−1

du

}1− 1
q

= O (ψ(n))


n−1∑
k=1

∫ π
µk

π
µk+1

(
u
α+ 1

q
−2
) q
q−1

du


1− 1

q

= O (ψ(n))


n∑
k=1

∫ π
µk

π
µk+1

u
(α+ 1

q
−2)· q

q−1 du


1− 1

q

= O (ψ(n))


n∑
k=1

µk+1 − µk

µ2
kµ

q
q−1

(α+ 1
q
−2)

k


1− 1

q

= O (ψ(n))


n∑
k=1

 (µk+1 − µk)
1− 1

q

µ
(α− 1

q
)

k


q
q−1


1− 1

q

(42)

Using (41) and (42) and we have from (40),

||Tn(·)||p = O

(
1

µαn

)
+O (ψ(n))


n∑
k=1

 (µk+1 − µk)
1− 1

q

µ
(α− 1

q
)

k


q
q−1


1− 1

q

(43)

By using Besov space, we have

||wk(Tn, ·)||β,q =

{∫ π

0

(
t−βwk(Tn, t)p

)q dt
t

} 1
q

=

∫ π

0

{(
wk(Tn, t)p

tβ

)q
dt

t

} 1
q
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From definition of wk(Tn, t)p, we have

wk(Tn, t)p = ||Tn(·, t)||p

≤
{∫ π

0

(
||Tn(·, t)||p

tβ

)q
dt

t

} 1
q

=

[∫ π

0

{∫ π

0

|Tn(x, t)|pdx
} q
p dt

tβq+1

] 1
q

=

[∫ π

0

{∫ π

0

∣∣∣∣∫ π

0

φ(x, t, u)Kn(u)du

∣∣∣∣p dx} q
p dt

tβq+1

] 1
q

By repeated application of generalized Minkowski’s inequality, we have

||wk(Tn, ·)||β,p ≤
1

π

[∫ π

0

{∫ π

0

(∫ π

0

|φ(x, t, u)|p|Kn(u)|pdx
) 1
p

du

}q
dt

tβq+1

] 1
q

=
1

π

[∫ π

0

{∫ π

0

|Kn(u)|||φ(·, t, u)||pdu
}q

dt

tβq+1

] 1
q

≤ 1

π

∫ π

0

|Kn(u)|du
(∫ π

0

||φ(·, t, u)||qp
tβq

dt

t

) 1
q

=
1

π

∫ π

0

|Kn(u)|du
{(∫ u

0

+

∫ π

u

)
||φ(·, t, u)||qp

tβq
dt

t

} 1
q

≤ 1

π

∫ π

0

|Kn(u)|du
{∫ u

0

||φ(·, t, u)||qp
tβq

dt

t

} 1
q

+
1

π

∫ π

0

|Kn(u)|du
{∫ π

u

||φ(·, t, u)||qp
tβq

dt

t

} 1
q

= O(1)

[{∫ π

0

(
|Kn(u)|uα−β

) q
q−1

du

}1− 1
q
{∫ π

0

(
|Kn(u)|uα−β+

1
q

) q
q−1

du

}1− 1
q

]
(using Lemma 4.2)

= O(1)[I ′ + J ′], (say) (44)

I ′ =

{∫ π

0

(
|Kn(u)|uα−β

) q
q−1

du

}1− 1
q

=

{(∫ µn

0

+

∫ π

µn

)(
|Kn(u)|uα−β

) q
q−1

du

}1− 1
q

≤
{∫ µn

0

(
|Kn(u)|uα−β

) q
q−1

du

}1− 1
q

+

{∫ π

µn

(
|Kn(u)|uα−β

) q
q−1

du

}1− 1
q

= I ′1 + I ′2, (say) (45)

Applying Lemma 4.4(a) in I ′1, we have

I ′1 =

{∫ π
µn

0

(
|Kn(u)|uα−β

) q
q−1

du

}1− 1
q

= O(µn)

{∫ π
µn

0

u
α−β( q

q−1
)
du

}1− 1
q

= O(µn)

{∫ π
µn

0

u
q
q−1

(α−β+1− 1
q
)−1

du

}1− 1
q

= O

 1

µ
α−β− 1

q
n

 (46)
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Applying Lemma 4.4(b) in I ′2, we have

I ′2 =

{∫ π

π
µn

(
|Kn(u)|uα−β

) q
q−1

du

}1− 1
q

= O(ψ(n))

{∫ π

π
µn

(
uα−β−2

) q
q−1

du

}1− 1
q

= O(ψ(n))


n−1∑
k=1

∫ π
µk

π
µk+1

u
(α−β−2) q

q−1 du


1− 1

q

= O(ψ(n))


n∑
k=1

∫ π
µk

π
µk+1

u
(α−β−2) q

q−1 du


1− 1

q

Let h(u) = (uα−β)
q
q−1 and H(u) be a primitive of h(u), then

∫ π
µk

π
µk+1

(
uα−β−2

) q
q−1

du =

∫ π
µk

π
µk+1

h(u)du

= H

(
π

µk

)
−H

(
π

µk+1

)
=

(
π

µk
− π

µk+1

)
h(c), for some

π

µk+1
< c <

π

µk

= O(1)
(µk+1 − µk)

µ2
k

(
1

µα−β−2
k

) q
q−1

= O(1)

 (µk+1 − µk)
1− 1

q

µ
α−β− 2

q

k


q
q−1

I ′2 = O (ψ(n))


n∑
k=1

 (µk+1 − µk)
1− 1

q

µ
(α−β− 2

q
)

k


q
q−1


1− 1

q

(47)

From (46), (47) and (45), we have

I ′ = O

 1

µ
α−β− 1

q
n

+O (ψ(n))


n∑
k=1

 (µk+1 − µk)
1− 1

q

µ
(α−β− 2

q
)

k


q
q−1


1− 1

q

(48)

J ′ =

{∫ π

0

(
|Kn(u)|uα−β+

1
q

) q
q−1

du

}1− 1
q

=

{(∫ π
µn

0

+

∫ π

π
µn

)(
|Kn(u)|uα−β+

1
q

) q
q−1

du

}1− 1
q

≤

{∫ π
µn

0

(
|Kn(u)|uα−β+

1
q

) q
q−1

du

}1− 1
q

+

{∫ π

π
µn

(
|Kn(u)|uα−β+

1
q

) q
q−1

du

}1− 1
q

=
(
J1
1 + J1

2

)
, (say) (49)
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Applying Lemma 4.4(a) in J1
1 , we have

J1
1 =

{∫ π
µn

0

(
|Kn(u)|uα−β+

1
q

) q
q−1

du

}1− 1
q

= O

(
1

µn

){∫ π
µn

0

u
q
q−1

(α−β+ 1
q
)
du

}1− 1
q

= O

(
1

µn

){∫ π
µn

0

u
q
q−1

(α−β+1)−1
du

}1− 1
q

= O

(
1

µα−βn

)
(50)

Applying Lemma 4.4(b) in J1
2 , we have

J1
2 =

{∫ π

π
µn

(
|Kn(u)|uα−β+

1
q

) q
q−1

du

}1− 1
q

= O (ψ(n))

{∫ π

π
µn

(
u
α−β−2+ 1

q

) q
q−1

du

}1− 1
q

= O (ψ(n))


n−1∑
k=1

∫ π
µk

π
µk+1

(
u
α−β−2+ 1

q

) q
q−1

du


1− 1

q

= O (ψ(n))


n∑
k=1

∫ π
µk

π
µk+1

(
u
α−β−2+ 1

q

) q
q−1

du


1− 1

q

Proceeding as in I12 , we have

J1
2 = O (ψ(n))


n∑
k=1

 (µk+1 − µk)
1− 1

q

µ
α−β− 1

q

k


q
q−1


1− 1

q

(51)

From (51), (50), (49), we have

J1 = O

(
1

µα−βn

)
+O (ψ(n))


n∑
k=1

 (µk+1 − µk)
1− 1

q

µ
α−β− 1

q

k


q
q−1


1− 1

q

(52)

From (44), (48) and (52), we have

||wk(Tn,·)||β,q = O(1)
(
I ′ + J ′

)
= O

 1

µ
α−β− 1

q
n

+O (ψ(n))


n∑
k=1

 (µk+1 − µk)
1− 1

q

µ
(α−β− 2

q
)

k


q
q−1


1− 1

q

+O

(
1

µα−βn

)
+O (ψ(n))


n∑
k=1

 (µk+1 − µk)
1− 1

q

µ
α−β− 1

q

k


q
q−1


1− 1

q

= O

 1

µ
α−β− 1

q
n

+O (ψ(n))


n∑
k=1

 (µk+1 − µk)
1− 1

q

µ
(α−β− 2

q
)

k


q
q−1


1− 1

q

(53)

From (53), (43) and (39), we have

||Tn(·)||
B
β
q (Lp)

= O

 1

µ
α−β− 1

q
n

+O (ψ(n))


n∑
k=1

 (µk+1 − µk)
1− 1

q

µ
(α−β− 2

q
)

k


q
q−1


1− 1

q

(54)
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This complete the proof of Case 1.

Case 2 (q =∞)

Now, we consider the case q =∞

||Tn(·)||
B
β
∞(Lp)

= ||Tn(·)||p + ||wk(Tn, ·)||β,∞ (55)

We know Tn(x) = 1
π

∫ π
0
φx(u)Kn(u)du.

Applying Lemma 4.1(iii), we have

||Tn(·)||p ≤
1

π

∫ π

0

||φ.(u)||pKn(u)du

≤ 2

π

∫ π

0

|Kn(u)|wk(f, u)pdu

= O(1)

∫ π

0

|Kn(u)|uαdu (by the hypothesis)

= O(1)

[∫ π
µn

0

|Kn(u)|uαdu+

∫ π

π
µn

|Kn(u)|uαdu

]
= O(1)[III + JII ], (say) (56)

Applying Lemma 4.4(a) in III , we have

III =

∫ π
µn

0

|Kn(u)|uαdu

= O(µn)

∫ π
µn

0

uαdu

= O

(
1

µαn

)
(57)

Applying Lemma 4.4(b) in JII , we have

JII =

∫ π

π
µn

|Kn(u)|uαdu

= O (ψ(n))

∫ π

π
µn

uα−2du

= O (ψ(n))

n−1∑
k=1

∫ π
µk

π
µk+1

uα−2du

= O (ψ(n))

n∑
k=1

∫ π
µk

π
µk+1

uα−2du

Proceeding as in I ′2, we have

= O (ψ(n))

n∑
k=1

(
µk+1 − µk

µαk

)
(58)

From (56), (57) and (58), we have

||Tn(·)||p = O

(
1

µαn

)
+O (ψ(n))

n∑
k=1

(
µk+1 − µk

µαk

)
(59)

Again,

||wk(Tn, ·)||β,q = sup
t>0

||Tn(·, t)||p
tβ

= sup
t>0

t−β

π

[∫ π

0

∣∣∣∣∫ π

0

φ(x, t, u)Kn(u)du

∣∣∣∣p dx] 1
p

(60)
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Applying generalised Minkowski’s inequality, we have

||wk(Tn, ·)||β,q = sup
t>0

t−β

π

∫ π

0

du

{∫ π

0

|φ(x, t, u)|p|Kn(u)|pdx
} 1
p

= sup
t>0

t−β

π

∫ π

0

|Kn(u)|||φ(·, t, u)||pdu

≤ 1

π

∫ π

0

|Kn(u)|du sup
t>0

t−β ||φ(·, t, u)||p (61)

Using Lemma 4.3, we have

||wk(Tn, ·)||β,∞ ≤ O(1)

∫ π

0

uα−β |Kn(u)|du

= O(1)

(∫ π
µn

0

+

∫ π

π
µn

)
uα−β |Kn(u)|du

= O(1)

[∫ π
µn

0

uα−β |Kn(u)|du+

∫ π

π
µn

uα−β |Kn(u)|du

]
= O(1)[IIII + JIII ], (say) (62)

Using Lemma 4.4(a) in IIII , we have

IIII =

∫ π
µn

0

|Kn(u)|uα−βdu

= O (µn)

∫ π
µn

0

uα−βdu

= O

(
1

µα−βn

)
(63)

Using Lemma 4.4(b) in JIII , we have

JIII =

∫ π

π
µn

uα−β |Kn(u)|du

= O (ψ(n))

∫ π

π
µn

uα−β−2du

= O (ψ(n))

n−1∑
k=1

∫ π
µk

π
µk+1

uα−β−2du

= O (ψ(n))

n∑
k=1

∫ π
µk

π
µk+1

uα−β−2du

= O (ψ(n))

n∑
k=1

(
µk+1 − µk
µα−βk

)
(64)

From (62), (63) and (64), we have

||wk(Tn, ·)||β,∞ = O

(
1

µα−βn

)
+O (ψ(n))

n∑
k=1

(
µk+1 − µk
µα−βk

)
(65)

From (55),(59) and (65), we have

||Tn(·)||
B
β
∞(Lp)

= O

(
1

µα−βn

)
+O (ψ(n))

n∑
k=1

(
µk+1 − µk
µα−βk

)
(66)

This completes the Case 2.

Combining the Case 1 and Case 2, we obtain the proof of the theorem.
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