

International Journal of Mathematics And its Applications

Degree of Approximation of Functions by their Fourier Series in the Besov Space by Matrix Mean

Research Article

Madhusmita Mohanty^{1*}, Gokulananda Das² and Sanghamitra Beuria³

1 Department of Mathematics, Utkal University, Vani-Vihar, Bhubaneswar, Odisha, India.

 $2\;$ 177, Dharma Vihar, Bhubaneswar, Odisha, India.

3 Department of Mathematics, College of Basic Science and Humanities, OUAT, Bhubaneswar, Odisha, India.

Abstract: The paper studies the degree of approximation of functions by their Fourier series in the Besov space by matrix mean and this generalizing many known results.

MSC: 41A25, 42A24.

Keywords: Besov space, Hölder space, Lipschitz space, matrix method, Fourier series, Modulus of smoothness. © JS Publication.

1. Introduction

Let f be a 2π periodic function and let $f \in L_p[0, 2\pi], p \ge 1$. The Fourier series of f at x is given by

$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$
(1)

Let $s_n(x)$ denote the nth partial sums of (1). We know ([6]) that

$$s_n(x) - f(x) = \frac{1}{\pi} \int_0^\pi \phi_x(u) D_n(u) du$$
(2)

where

$$\phi_x(u) = f(x+u) + f(x-u) - 2f(x)$$
(3)

$$D_n(u) = \frac{1}{2} + \sum_{k=0}^n \cos ku = \frac{\sin(k + \frac{1}{2})u}{2\sin\frac{u}{2}}$$
(4)

$$K_n(u) = \sum_{k=0}^{\infty} a_{n,k} D_k(u) \tag{5}$$

Let $A = (a_{n,k})$ be an infinite matrix. We assume that elements of the matrix $A = (a_{n,k})$ satisfy the following regularity conditions

$$||A|| = \sup_{n} \sum_{k=0}^{\infty} |a_{n,k}| < \infty$$
(6)

E-mail: pinku_madhu@yahoo.com

 $(a_{n,k}) \to 0 \text{ as } n \to \infty \text{ and } k \text{ is fixed}$ (7)

and

$$\sum_{k=0}^{\infty} a_{n,k} = 1 \text{ for each } n = 0, 1, 2 \cdots .$$
(8)

2. Definitions and Notations

Definition 2.1 (Modulus of Continuity). Let $A = R, R + [a, b] \subset R$ or T (which usually taken to be R with identification of points modulo 2π). The modulus of continuity w(f, t) = w(t) of a function f on A can be defined as

$$w(t) = w(f, t) = \sup_{\substack{|x - y| \le t, \\ x, y \in A}} |f(x) - f(y)|, t \ge 0.$$

Definition 2.2 (Modulus of Smoothness). The k^{th} order modulus of smoothness [2] of a function $f: A \to R$ is defined by

$$w_k(f,t) = \sup_{0 < h \le t} \{ \sup |\Delta_h^k(f,x)| : x, x + kh \in A \}, \ t \ge 0$$
(9)

where

$$\Delta_{h}^{k}(f,x) = \sum_{i=0}^{k} (-1)^{k-i} \binom{k}{i} f(x+ih), \ k \in N.$$
(10)

For $k = 1, w_1(f, t)$ is called the modulus of continuity of f. The function w is continuous at t = 0 if and only if f is uniformly continuous on A, that is $f \in \tilde{c}(A)$. The k^{th} order modulus of smoothness of $f \in L_p(A), 0 or of <math>f \in \tilde{c}(A), if p = \infty$ is defined by

$$w_k(f,t)_p = \sup_{0 < h \le t} ||\Delta_h^k(f,\cdot)||_p, t \ge 0$$
(11)

if $p \ge 1, k = 1$, then $w_1(f, t)_p = w(f, t)_p$ is a modulus of continuity (or integral modulus of continuity). If $p = \infty, k = 1$ and f is continuous then $w_k(f, t)_p$ reduces to modulus of continuity $w_1(f, t)$ or w(f, t).

Definition 2.3 (Lipschitz Space). If $f \in \tilde{c}(A)$ and

$$w(f,t) = O(t^{\alpha}), 0 < \alpha \le 1$$
(12)

then we write $f \in Lip\alpha$. If w(f,t) = O(t) as $t \to 0+$ (in particular (9) holds for $\alpha > 1$) then f reduces to a constant. If $f \in L_p(A), \ 0 and$

$$w(f,t)_p = O(t^{\alpha}), 0 < \alpha \le 1 \tag{13}$$

then we write $f \in Lip(\alpha, p), \ 0$

The case $\alpha > 1$ is of no interest as the function reduces to a constant, whenever

$$w(f,t)_p = O(t) \text{ as } t \to 0+$$
(14)

We note that if $p = \infty$ and $f \in c(A)$, then $Lip(\alpha, p)$ class reduces to $Lip \alpha$ class.

Definition 2.4 (Generalized Lipschitz Space). Let $\alpha > 0$ and suppose that $k = [\alpha] + 1$. For $f \in L_p(A)$, 0 , if

$$w_k(f,t) = O(t^{\alpha}), t > 0 \tag{15}$$

then we write

$$f \in Lip^*(\alpha, p), \ \alpha > 0, \ 0
(16)$$

and say that f belongs to generalized Lipschitz space. The seminorm is then

$$|f|_{Lip^*(\alpha, L_p)} = \sup_{t>0} (t^{-\alpha} w_k(f, t)_p)$$

It is known [2] that the space $Lip^*(\alpha, L_p)$ contains $Lip(\alpha, L_p)$. For $0 < \alpha < 1$ the spaces coincide, (for $p = \infty$, it is necessary to replace L_{∞} by \tilde{c} of uniformly continuous function on A). For $0 < \alpha < 1$ and p = 1 the space $Lip^*(\alpha, L_p)$ coincide with $Lip\alpha$.

For $\alpha = 1, p = \infty$, we have

$$Lip(1,\tilde{c}) = Lip \ 1 \tag{17}$$

but

$$Lip^*(1,\tilde{c}) = z \tag{18}$$

is the Zygmund space [5] which is characterized by (13) with k = 2.

Definition 2.5 (Hölder (H_{α}) Space). For $0 < \alpha \leq 1$, let

$$H_{\alpha} = \{ f \in C_{2\pi} : w(f, t) = O(t^{\alpha}) \}.$$
(19)

It is known [3] that H_{α} is a Banach Space with the norm $|| \cdot ||_{\alpha}$ defined by

$$||f||_{\alpha} = ||f||_{c} + \sup_{t>0} t^{-\alpha} w(t), \ 0 < \alpha \le 1$$

$$||f||_{0} = ||f||_{c}$$
(20)

and

$$H_{\alpha} \subseteq H_{\beta} \subseteq C_{2\pi}, \ 0 < \beta \le \alpha \le 1 \tag{21}$$

Definition 2.6 (H_(α,p) Space). For $0 < \alpha \leq 1$, let

$$H_{(\alpha,p)} = \{ f \in L_p[0, 2\pi] : 0
(22)$$

and introduce the norm $|| \cdot ||_{(\alpha,p)}$ as follows

$$||f||_{(\alpha,p)} = ||f||_p + \sup_{t>0} t^{-\alpha} w(f,t)_p, \ 0 < \alpha \le 1.$$
(23)

 $||f||_{(0,p)} = ||f||_p.$

It is known [1] that $H_{(\alpha,p)}$ is a Banach space for $p \ge 1$ and a complete p-normed space for 0 . Also

$$H_{(\alpha,p)} \subseteq H_{(\beta,p)} \subseteq L_p, 0 < \beta \le \alpha \le 1.$$
(24)

Note that $H_{(\alpha,\infty)}$ is the space H_{α} defined above. For study of degree of approximation problems the natural way to proceed to consider with some restrictions on some modulus of smoothness as prescribed in H_{α} and $H_{(\alpha,p)}$ spaces. As we have seen above only a constant function satisfies Lipschitz condition for $\alpha > 1$. However for generalized Lipschitz class there is no such restriction on α . We required a finer scale of smoothness than is provided by Lipschitz class. For each $\alpha > 0$ Besov developed a remarkable technique for restricting modulus of smoothness by introducing a third parameter q (in addition to p on α) and applying $\alpha \cdot q$ norms (rather than α , ∞ norms) to the modulus of smoothness $w_k(f, \cdot)_p$ of f.

Definition 2.7 (Besov space). Let $\alpha > 0$ be given and let $k = [\alpha] + 1$. For $0 < p, q \le \infty$, the Besov space ([2]) $B_q^{\alpha}(L_p)$ is defined as follows:

$$B_{q}^{\alpha}(L_{p}) = \{ f \in L_{p} : |f|_{B_{q}^{\alpha}(L_{p})} = ||w_{k}(f, \cdot)||_{(\alpha,q)} \text{ is finite} \}$$

where

$$||w_{k}(f,\cdot)||_{(\alpha,q)} = \begin{cases} \left(\int_{0}^{\infty} (t^{-\alpha}w_{k}(f,t)_{p})^{q} \frac{dt}{t}\right)^{\frac{1}{q}}, & 0 < q < \infty \\ \sup_{t>0} t^{-\alpha}w_{k}(f,t)_{p}, & q = \infty. \end{cases}$$
(25)

It is known ([2]) that $||w_k(f, \cdot)||_{(\alpha,q)}$ is a seminorm if $1 \le p, q \le \infty$ and a quasi-seminorm in other cases. The Besov norm for $B_q^{\alpha}(L_p)$ is

$$||f||_{B^{\alpha}_{q}(L_{p})} = ||f||_{p} + ||w_{k}(f, \cdot)||_{(\alpha, q)}$$
(26)

It is known ([4]) that for 2π -periodic function f, the integral $\left(\int_0^\infty (t^{-\alpha}w_k(f,t)_p)^q \frac{dt}{t}\right)^{\frac{1}{q}}$ is replaced by $\left(\int_0^\pi (t^{-\alpha}w_k(f,t)_p)^q \frac{dt}{t}\right)^{\frac{1}{q}}$. We know ([2, 4]) the following inclusion relations. For fixed α and p

$$B_q^{\alpha}(L_p) \subset B_{q_1}^{\alpha}(L_p), q < q_1$$

For fixed p and q

$$B_a^{\alpha}(L_p) \subset B_a^{\beta}(L_p), \beta < \alpha.$$

For fixed α and q

$$B_q^{\alpha}(L_p) \subset B_q^{\alpha}(L_{p_1}), p_1 < p.$$

Definition 2.8 (Special cases of Besov space). For $q = \infty$, $B^{\alpha}_{\infty}(L_p)$, $\alpha > 0, p \ge 1$ is same as $Lip^*(\alpha, L_p)$ the generalized Lipschitz space and the corresponding norm $|| \cdot ||_{B^{\alpha}_{\infty}(L_p)}$ is given by

$$||f||_{B^{\alpha}_{\infty}(L_p)} = ||f||_p + \sup_{t>0} t^{-\alpha} w_k(f,t)_p$$
(27)

for every $\alpha > 0$ with $k = [\alpha] + 1$.

For the special case when $0 < \alpha < 1$, $B^{\alpha}_{\infty}(L_p)$ space reduces to $H_{(\alpha,p)}$ space due to Das et al. [1] and the corresponding norm is given by

$$||f||_{B^{\alpha}_{\infty}(L_p)} = ||f||_{(\alpha,p)} = ||f||_p + \sup_{t>0} t^{-\alpha} w(f,t)_p, 0 < \alpha < 1.$$
(28)

For $\alpha = 1$, the norm is given by

$$||f||_{B^1_{\infty}(L_p)} = ||f||_p + \sup_{t \ge 0} t^{-\alpha} w_2(f, t)_p.$$
(29)

Note that $||f||_{B^1_{\infty}(L_p)}$ is not same as $||f||_{(1,p)}$ and the space $B^1_{\infty}(L_p)$ includes the space H(1,p), $p \ge 1$. If we further specialize by taking $p = \infty$, B^{α}_{∞} , $0 < \alpha < 1$, coincides with H_{α} space due to Prossodorf [3] and the norm is given by

$$|f||_{B^{\alpha}_{\infty}(L_{\infty})} = ||f||_{\alpha} = ||f||_{c} + \sup_{t>0} t^{\alpha} w(f,t), \ 0 < \alpha < 1.$$
(30)

For $\alpha = 1, \ p = \infty$, the norm is given by

$$||f||_{B^{1}_{\infty}(L_{\infty})} = ||f||_{c} + \sup_{t>0} t^{-1} w_{2}(f, t), \ \alpha = 1$$
(31)

which is different from $||f||_1$ and $B^1_{\infty}(L_{\infty})$ includes the H_1 space.

3. Main Result

We prove the following theorem.

Theorem 3.1. Let the matrix $A = (a_{n,k})$ satisfy the following conditions

(i). $\sup_{n} \sum_{k=0}^{\infty} |a_{n,k}| < \infty$ (ii). $\sum_{k=0}^{\infty} a_{n,k} = 1 \text{ for all } n \text{ and}$ (iii). $\sum_{k=\mu_{n}}^{\infty} k |a_{n,k}| = O(\mu_{n}).$

where (μ_n) is a positive non-decreasing sequence $\mu_1 = 1$.

Let $\psi(n) = \sum_{k=0}^{\infty} |a_{n,k} - a_{n,k+1}|$ and $0 < \alpha < 2$ and $0 \le \beta < \alpha$. If $f \in B_q^{\alpha}(L_p)$, $p \ge 1$ and $1 < q \le \infty$ and let $t_n(x)$ be the A-transform of the Fourier series of f, that is,

$$t_n(f) = t_n(f;x) = \sum_{k=0}^{\infty} a_{n,k} s_k(x)$$

Then

Case 1 $(1 < q < \infty)$

$$||T_n(\cdot)||_{B_q^\beta(L_p)} = O\left(\frac{1}{\mu_n^{\alpha-\beta-\frac{1}{q}}}\right) + O(\psi(n)) \left\{ \sum_{k=1}^n \left(\frac{(\mu_{k+1}-\mu_k)^{1-\frac{1}{q}}}{\mu_k^{\alpha-\beta-\frac{2}{q}}}\right)^{\frac{q}{q-1}} \right\}^{1-\frac{1}{q}}$$

Case 2 $(q = \infty)$

$$||T_{n}(\cdot)||_{B_{q}^{\beta}(L_{p})} = O\left(\frac{1}{\mu_{n}^{\alpha-\beta}}\right) + O(\psi(n))\sum_{k=1}^{n} \left(\frac{(\mu_{k+1} - \mu_{k})}{\mu_{k}^{\alpha-\beta}}\right)$$

4. Additional Notations and Lemmas

We need the following additional notations

$$\phi(x,t,u) = \begin{cases} \phi_{x+t}(u) - \phi_x(u), & 0 < \alpha < 1\\ \phi_{x+t}(u) + \phi_{x-t}(u) - 2\phi_x(u), & 1 \le \alpha < 2 \end{cases}$$

For $k = [\alpha] + 1$, we have for $p \ge 1$

$$w_k(f,t)_p = \begin{cases} w_1(f,t)_p, & 0 < \alpha < 1\\ w_2(f,t)_p, & 1 \le \alpha < 2 \end{cases}$$

Let

$$T_n(x,t) = \begin{cases} T_n(x+t) - T_n(x), & 0 < \alpha < 1\\ T_n(x+t) + T_n(x-t) - 2T_n(x), & 1 \le \alpha < 2 \end{cases}$$

Using above equation and definition of $w_k(f,t)_p$, we have

$$w_k(T_n, t)_p = ||T_n(\cdot, t)||_p$$

We require the following lemmas for the proof of the theorem.

Lemma 4.1. Let $1 \le p \le \infty$ and $0 < \alpha < 2$. If $f \in L_p[0, 2\pi]$, then for $0 < t, u \le \pi$

- (*i*). $||\phi(\cdot, t, u)||_p \le 4w_k(f, t)_p$
- (*ii*). $||\phi(\cdot, t, u)||_p \le 4w_k(f, u)_p$
- (*iii*). $||\phi_{\cdot}(u)||_{p} \leq 2w_{k}(f, u)_{p}$,
- where $k = [\alpha] + 1$.
- *Proof.* Case $0 < \alpha < 1$.

Clearly $k = [\alpha] + 1 = 1$. By virtue of (3), $\phi(x, t, u) = \phi_{x+t}(u) - \phi_x(u)$, can be written as

$$\phi(x,t,u) = \begin{cases} \{f(x+t+u) - f(x+u)\} + \{f(x+t-u) - f(x-u)\} - 2\{f(x+t) - f(x)\} \\ \{f(x+t+u) - f(x+t)\} + \{f(x-u+t) - f(x+t)\} - \{f(x+u) - f(x)\} - \{f(x-u) - f(x)\} \end{cases}$$
(32)

Applying Minkowski's inequality to (32), we get for $p \ge 1$

$$\begin{aligned} ||\phi(\cdot,t,u)||_{p} &\leq ||f(\cdot+t+u) - f(\cdot+u)||_{p} + ||f(\cdot+t-u) - f(\cdot-u)||_{p} + 2||f(\cdot+t) - f(\cdot)||_{p} \\ &\leq 4w_{1}(f,t)_{p}, \quad 0 < \alpha < 1 \end{aligned}$$

Similarly applying Minkowski's inequality to (32), we get for $p \ge 1$

$$||\phi(\cdot, t, u)||_p \le 4w_1(f, u)_p.$$

Case $1 \leq \alpha < 2$.

Clearly $k = [\alpha] + 1 = 2$. By virtue of (3), $\phi(x, t, u) = \phi_{x+t}(u) + \phi_{x-t}(u) - 2\phi_x(u)$, can be written as

$$\phi(x,t,u) = \begin{cases} \{f(x+t+u) + f(x+t-u) - 2f(x+t)\} + \{f(x-t+u) + f(x-t-u) \\ -2f(x-t)\} - 2\{f(x+u) + f(x-u) - 2f(x)\} \\ \{f(x+t+u) + f(x-t+u) - 2f(x+u)\} + \{f(x+t-u) + f(x-t-u) \\ -2f(x-u)\} - 2\{f(x+t) + f(x-t) - 2f(x)\} \end{cases}$$
(33)

Applying Minkowski's inequality to (33), we obtain for $p \ge 1$

$$\begin{aligned} ||\phi(\cdot, t, u)||_{p} &\leq ||f(\cdot + t + u) + f(\cdot + t - u) - 2f(\cdot + t)||_{p} \\ &+ ||f(\cdot - t + u) + f(\cdot - t - u) - 2f(\cdot - t)||_{p} \\ &+ 2||f(\cdot + u) + f(\cdot - u) - 2f(\cdot)||_{p} \\ &\leq 4w_{2}(f, u)_{p} \end{aligned}$$

Using (33) and proceeding as above, we get

$$||\phi(\cdot, t, u)||_p \le 4w_2(f, t)_p$$

this completes the proof of part (i) and (ii). We omit the proof of (iii) as it is trivial.

Lemma 4.2. Let $0 < \alpha < 2$. Suppose that $0 \leq \beta < \alpha$. If $f \in B_q^{\alpha}(L_p), p \geq 1, 1 < q < \infty$, then

$$(i). \ \int_0^\pi |K_n(u)| \left(\int_0^u \frac{||\phi(\cdot,t,u)||_p^q}{t^{\beta q}} \frac{dt}{t} \right)^{\frac{1}{q}} du = O(1) \left\{ \int_0^\pi \left(u^{\alpha-\beta} |K_n(u)| \right)^{\frac{q}{q-1}} du \right\}^{1-\frac{1}{q}}$$
$$(ii). \ \int_0^\pi |K_n(u)| \left(\int_u^\pi \frac{||\phi(\cdot,t,u)||_p^q}{t^{\beta q}} \frac{dt}{t} \right)^{\frac{1}{q}} du = O(1) \left\{ \int_0^\pi \left(u^{\alpha-\beta+\frac{1}{q}} |K_n(u)| \right)^{\frac{q}{q-1}} du \right\}^{1-\frac{1}{q}}$$

where $K_n(u)$ is defined as in (5).

Proof. Applying Lemma 4.1(i), we have

$$\begin{split} \int_{0}^{\pi} |K_{n}(u)| \left(\int_{0}^{u} \frac{||\phi(\cdot, t, u)||_{p}^{q}}{t^{\beta q+1}} dt \right)^{\frac{1}{q}} du &= O(1) \int_{0}^{\pi} |K_{n}(u)| \left(\int_{0}^{u} \left(\frac{w_{k}(f, t)_{p}}{t^{\alpha}} \right)^{q} t^{(\alpha-\beta)q} \frac{dt}{t} \right)^{\frac{1}{q}} du \\ &= O(1) \int_{0}^{\pi} |K_{n}(u)| u^{(\alpha-\beta)} du \left(\int_{0}^{u} \frac{w_{k}(f, t)_{p}}{t^{\alpha}} \frac{dt}{t} \right)^{\frac{1}{q}} \\ &= O(1) \int_{0}^{\pi} |K_{n}(u)| u^{(\alpha-\beta)} du \end{split}$$

by Second Mean value theorem and by the definition of Besov space. Applying Holders inequality

$$= O(1) \left\{ \int_0^{\pi} \left(|K_n(u)| u^{(\alpha-\beta)} \right)^{\frac{q}{q-1}} du \right\}^{1-\frac{1}{q}} \left(\int_0^{\pi} 1^q du \right)^{\frac{1}{q}} \\ = O(1) \left\{ \int_0^{\pi} \left(|K_n(u)| u^{(\alpha-\beta)} \right)^{\frac{q}{q-1}} du \right\}^{1-\frac{1}{q}}$$

For the second part, applying Lemma 4.1(ii), we get

$$\int_{0}^{\pi} |K_{n}(u)| du \left(\int_{u}^{\pi} \frac{||\phi(\cdot, t, u)||_{p}^{q}}{t^{\beta q+1}} dt \right)^{\frac{1}{q}} = O(1) \int_{0}^{\pi} |K_{n}(u)| w_{k}(f, u)_{p} du \left(\int_{u}^{\pi} \frac{dt}{t^{\beta q+1}} \right)^{\frac{1}{q}}$$
$$= O(1) \int_{0}^{\pi} |K_{n}(u)| w_{k}(f, u)_{p} u^{-\beta} du$$
$$= O(1) \int_{0}^{\pi} \left(\frac{w_{k}(f, u)_{p}}{u^{\alpha + \frac{1}{q}}} \right) u^{\alpha - \beta + \frac{1}{q}} |K_{n}(u)| du$$

Applying Hölder's inequality

$$= O(1) \left\{ \int_0^{\pi} \left(\frac{w_k(f, u)_p}{u^{\alpha}} \right)^q \frac{du}{u} \right\}^{\frac{1}{q}} \left\{ \int_0^u \left(u^{\alpha - \beta + \frac{1}{q}} |K_n(u)| \right)^{\frac{q}{q-1}} du \right\}^{1 - \frac{1}{q}}$$
$$= O(1) \left\{ \int_0^{\pi} \left(u^{\alpha - \beta + \frac{1}{q}} |K_n(u)| \right)^{\frac{q}{q-1}} du \right\}^{1 - \frac{1}{q}}$$

by definition of Besov space.

Lemma 4.3. Let $0 < \alpha < 2$. Suppose that $0 \le \beta < \alpha$. If $f \in B_q^{\alpha}(L_p)$, $p \ge 1$ and $q = \infty$, then

$$\sup_{0 < t, u \le \pi} t^{-\beta} ||\phi(\cdot, t, u)||_p = O(u^{\alpha - \beta})$$

75

 $\label{eq:proof.} \mbox{ For } 0 < t \leq u \leq \pi, \mbox{ applying Lemma 4.1(i), we have }$

$$\sup_{\substack{t,\\0
$$\leq 4u^{\alpha-\beta} \sup_{t} (t^{-\alpha} w_{k}(f,t)_{p})$$
$$= O(u^{\alpha-\beta}), \quad \text{by the hypothesis.}$$$$

Next for $0 < u \le t \le \pi$, applying Lemma 4.1(ii), we get

$$\sup_{\substack{t,\\0
$$\leq 4u^{\alpha-\beta} \sup_{u} (u^{-\alpha}w_{k}(f,u)_{p})$$
$$= O(u^{\alpha-\beta}), \quad \text{by the hypothesis}$$$$

and this completes the proof.

Lemma 4.4.

(a) Let $K_n(u)$ be defined as in (6). Let there exist a positive non-decreasing sequence (μ_n) with $\mu_1 = 1$, then for $0 < u \le \pi$

$$K_n(u) = O\left(\mu_n\right).$$

(b) Let
$$\psi(n) = \sup \sum_{k=0}^{\infty} |a_{n,k} - a_{n,k+1}|$$
. Then for $0 < u \le \pi$,

$$K_n(u) = O(u^{-2}\psi(n)).$$

Proof.

(a) From (4), we have

$$|D_{k}(u)| = |\frac{1}{2} + \sum_{v=0}^{k} \cos vu|$$

$$\leq \frac{1}{2} + \sum_{v=0}^{k} |\cos vu|$$

$$\leq k+1$$
(34)

Then

$$|K_{n}(u)| \leq \sum_{k=0}^{\infty} |a_{n,k}D_{k}(u)|$$

$$\leq \sum_{k=0}^{\mu_{n}} |a_{n,k}|(k+1) + \sum_{k=\mu_{n}+1}^{\infty} |a_{n,k}|(k+1) \text{ (by using (34))}$$

$$\leq \mu_{n} \sum_{k=0}^{\mu_{n}} |a_{n,k}| + \sum_{k=\mu_{n}+1}^{\infty} |a_{n,k}|(k+1)$$

$$\leq \mu_{n} \sum_{k=0}^{\mu_{n}} |a_{n,k}| + O(\mu_{n})$$

$$= O(\mu_{n}) + O(\mu_{n})$$

$$= O(\mu_{n}), \text{ (by hypothesis (iii))}$$

(b) Applying Abel's transformation, we have

$$\sum_{k=0}^{\infty} a_{n,k} \sin(k + \frac{1}{2})u = O(u^{-1}) \sum_{k=0}^{\infty} |a_{n,k} - a_{n,k+1}|$$
$$= O(u^{-1}\psi(n))$$

from which it follows that

$$K_n(u) = O(u^{-2}\psi(n))$$

5. Proof of Theorem

Case 1 $(1 < q < \infty)$

Since $t_n(x)$ denote the transformations of the Fourier series f, we have

$$t_{n}(x) = \sum_{k=0}^{\infty} a_{n,k} s_{k}(x)$$
(35)
$$= \sum_{k=0}^{\infty} a_{n,k} \left[\frac{1}{\pi} \int_{0}^{\pi} \phi_{x}(u) D_{k}(u) du + f(x) \right] \text{ (by (2))}$$
$$= \frac{1}{\pi} \sum_{k=0}^{\infty} a_{n,k} \int_{0}^{\pi} \phi_{x}(u) D_{k}(u) du + \sum_{k=0}^{\infty} a_{n,k} f(x)$$
$$= \frac{1}{\pi} \int_{0}^{\pi} \left(\sum_{k=0}^{\infty} a_{n,k} D_{k}(u) \right) \phi_{x}(u) du + f(x) \sum_{k=0}^{\infty} a_{n,k}$$
Now, $T_{n}(x) = \frac{1}{\pi} \int_{0}^{\pi} \phi_{x}(u) K_{n}(u) du$ (36)

where we write
$$T_n(x) = t_n(x) - f(x)$$
. (37)

We first consider the case $1 < q < \infty$. We have for $p \ge 1$ and $0 \le \beta < \alpha < 2$, by use of Besov norm defined in (26) for $B_q^\beta(L_p)$ is

$$||f||_{B^{\alpha}_{q}(L_{p})} = ||f||_{p} + ||w_{k}(f, \cdot)||_{\alpha, q}$$
(38)

$$||T_n(\cdot)||_{B_q^{\beta}(L_p)} = ||T_n(\cdot)||_p + ||w_k(T_n, \cdot)||_{\beta, q}$$
(39)

Applying Lemma 4.1(iii) in equation (39), we have

$$\begin{aligned} ||T_{n}(\cdot)||_{p} &\leq \frac{1}{\pi} \int_{0}^{\pi} ||\phi_{\cdot}(u)||_{p} |K_{n}(u)| du \\ &\leq \frac{1}{\pi} \int_{0}^{\pi} 2w_{k}(f, u)_{p} |K_{n}(u)| du \\ &= \frac{2}{\pi} \int_{0}^{\pi} |K_{n}(u)| w_{k}(f, u)_{p} du \end{aligned}$$

Applying Hölder's inequality, we have

$$||T_n(\cdot)||_p \le \frac{2}{\pi} \left\{ \int_0^{\pi} \left(|K_n(u)| u^{\alpha + \frac{1}{q}} \right)^{\frac{q}{q-1}} du \right\}^{1 - \frac{1}{q}} \left\{ \int_0^{\pi} \left(\frac{w_k(f, u)_p}{u^{\alpha + \frac{1}{q}}} \right)^q du \right\}^{\frac{1}{q}}$$

By definition of Besov Space, we have

$$\begin{aligned} ||T_{n}(\cdot)||_{p} &\leq O(1) \left\{ \int_{0}^{\pi} \left(|K_{n}(u)|u^{\alpha+\frac{1}{q}} \right)^{\frac{q}{q-1}} du \right\}^{1-\frac{1}{q}} \\ &= O(1) \left[\left\{ \int_{0}^{\mu_{n}} \left(|K_{n}(u)|u^{\alpha+\frac{1}{q}} \right)^{\frac{q}{q-1}} du \right\}^{1-\frac{1}{q}} + \left\{ \int_{\mu_{n}}^{\pi} \left(|K_{n}(u)|u^{\alpha+\frac{1}{q}} \right)^{\frac{q}{q-1}} du \right\}^{1-\frac{1}{q}} \right] \\ &= O(1) \left[I + J \right], \quad (say) \end{aligned}$$
(40)

By using Lemma 4.4(a) in I of (40), we have

$$I = \left\{ \int_{0}^{\frac{\pi}{\mu_{n}}} (|K_{n}(u)|u^{\alpha+\frac{1}{q}})^{\frac{q}{q-1}} du \right\}^{1-\frac{1}{q}}$$

$$= O(\mu_{n}) \left\{ \int_{0}^{\frac{\pi}{\mu_{n}}} u^{(\alpha+\frac{1}{q})\cdot\frac{q}{q-1}} du \right\}^{1-\frac{1}{q}}$$

$$= O(\mu_{n}) \left\{ \int_{0}^{\frac{\pi}{\mu_{n}}} u^{\frac{q}{q-1}(\alpha+1)-1} du \right\}^{1-\frac{1}{q}}$$

$$= O\left(\frac{1}{\mu_{n}^{\alpha}}\right)$$
(41)

Applying Lemma 4.4(b) in J of (40), we have

$$J = \left\{ \int_{\frac{\pi}{\mu_n}}^{\pi} \left(|K_n(u)| u^{\alpha + \frac{1}{q}} \right)^{\frac{q}{q-1}} du \right\}^{1 - \frac{1}{q}}$$

$$= O\left(\psi(n)\right) \left\{ \int_{\frac{\pi}{\mu_n}}^{\pi} \left(u^{\alpha + \frac{1}{q} - 2} \right)^{\frac{q}{q-1}} du \right\}^{1 - \frac{1}{q}}$$

$$= O\left(\psi(n)\right) \left\{ \sum_{k=1}^{n-1} \int_{\frac{\pi}{\mu_{k+1}}}^{\frac{\pi}{\mu_{k+1}}} \left(u^{\alpha + \frac{1}{q} - 2} \right)^{\frac{q}{q-1}} du \right\}^{1 - \frac{1}{q}}$$

$$= O\left(\psi(n)\right) \left\{ \sum_{k=1}^{n} \int_{\frac{\pi}{\mu_{k+1}}}^{\frac{\pi}{\mu_{k+1}}} u^{(\alpha + \frac{1}{q} - 2) \cdot \frac{q}{q-1}} du \right\}^{1 - \frac{1}{q}}$$

$$= O\left(\psi(n)\right) \left\{ \sum_{k=1}^{n} \frac{\mu_{k+1} - \mu_{k}}{\mu_{k}^{2} \mu_{k}^{\frac{q}{q-1}(\alpha + \frac{1}{q} - 2)}} \right\}^{1 - \frac{1}{q}}$$

$$= O\left(\psi(n)\right) \left\{ \sum_{k=1}^{n} \left(\frac{(\mu_{k+1} - \mu_{k})^{1 - \frac{1}{q}}}{\mu_{k}^{(\alpha - \frac{1}{q})}} \right)^{\frac{q}{q-1}} \right\}^{1 - \frac{1}{q}}$$
(42)

Using (41) and (42) and we have from (40),

$$||T_{n}(\cdot)||_{p} = O\left(\frac{1}{\mu_{n}^{\alpha}}\right) + O\left(\psi(n)\right) \left\{ \sum_{k=1}^{n} \left(\frac{\left(\mu_{k+1} - \mu_{k}\right)^{1-\frac{1}{q}}}{\mu_{k}^{(\alpha-\frac{1}{q})}}\right)^{\frac{q}{q-1}} \right\}^{1-\frac{1}{q}}$$
(43)

By using Besov space, we have

$$||w_k(T_n, \cdot)||_{\beta, q} = \left\{ \int_0^\pi \left(t^{-\beta} w_k(T_n, t)_p \right)^q \frac{dt}{t} \right\}^{\frac{1}{q}}$$
$$= \int_0^\pi \left\{ \left(\frac{w_k(T_n, t)_p}{t^\beta} \right)^q \frac{dt}{t} \right\}^{\frac{1}{q}}$$

From definition of $w_k(T_n, t)_p$, we have

$$w_{k}(T_{n},t)_{p} = ||T_{n}(\cdot,t)||_{p}$$

$$\leq \left\{ \int_{0}^{\pi} \left(\frac{||T_{n}(\cdot,t)||_{p}}{t^{\beta}} \right)^{q} \frac{dt}{t} \right\}^{\frac{1}{q}}$$

$$= \left[\int_{0}^{\pi} \left\{ \int_{0}^{\pi} |T_{n}(x,t)|^{p} dx \right\}^{\frac{q}{p}} \frac{dt}{t^{\beta q+1}} \right]^{\frac{1}{q}}$$

$$= \left[\int_{0}^{\pi} \left\{ \int_{0}^{\pi} \left| \int_{0}^{\pi} \phi(x,t,u) K_{n}(u) du \right|^{p} dx \right\}^{\frac{q}{p}} \frac{dt}{t^{\beta q+1}} \right]^{\frac{1}{q}}$$

By repeated application of generalized Minkowski's inequality, we have

$$\begin{aligned} ||w_{k}(T_{n},\cdot)||_{\beta,p} &\leq \frac{1}{\pi} \left[\int_{0}^{\pi} \left\{ \int_{0}^{\pi} \left(\int_{0}^{\pi} |\phi(x,t,u)|^{p} |K_{n}(u)|^{p} dx \right)^{\frac{1}{p}} du \right\}^{q} \frac{dt}{t^{\beta q+1}} \right]^{\frac{1}{q}} \\ &= \frac{1}{\pi} \left[\int_{0}^{\pi} \left\{ \int_{0}^{\pi} |K_{n}(u)| ||\phi(\cdot,t,u)||_{p} du \right\}^{q} \frac{dt}{t^{\beta q+1}} \right]^{\frac{1}{q}} \\ &\leq \frac{1}{\pi} \int_{0}^{\pi} |K_{n}(u)| du \left(\int_{0}^{\pi} \frac{||\phi(\cdot,t,u)||_{p}}{t^{\beta q}} \frac{dt}{t} \right)^{\frac{1}{q}} \\ &= \frac{1}{\pi} \int_{0}^{\pi} |K_{n}(u)| du \left\{ \left(\int_{0}^{u} + \int_{u}^{\pi} \right) \frac{||\phi(\cdot,t,u)||_{p}}{t^{\beta q}} \frac{dt}{t} \right\}^{\frac{1}{q}} \\ &\leq \frac{1}{\pi} \int_{0}^{\pi} |K_{n}(u)| du \left\{ \int_{0}^{u} \frac{||\phi(\cdot,t,u)||_{p}}{t^{\beta q}} \frac{dt}{t} \right\}^{\frac{1}{q}} \\ &\quad + \frac{1}{\pi} \int_{0}^{\pi} |K_{n}(u)| du \left\{ \int_{u}^{u} \frac{||\phi(\cdot,t,u)||_{p}}{t^{\beta q}} \frac{dt}{t} \right\}^{\frac{1}{q}} \\ &= O(1) \left[\left\{ \int_{0}^{\pi} \left(|K_{n}(u)| u^{\alpha-\beta} \right)^{\frac{q}{q-1}} du \right\}^{1-\frac{1}{q}} \left\{ \int_{0}^{\pi} \left(|K_{n}(u)| u^{\alpha-\beta+\frac{1}{q}} \right)^{\frac{q}{q-1}} du \right\}^{1-\frac{1}{q}} \right] (\text{using Lemma 4.2}) \\ &= O(1) [I' + J'], \quad (say) \end{aligned}$$

$$I' = \left\{ \int_{0}^{\pi} \left(|K_{n}(u)| u^{\alpha-\beta} \right)^{\frac{q}{q-1}} du \right\}^{1-\frac{1}{q}}$$

$$= \left\{ \left(\int_{0}^{\mu_{n}} + \int_{\mu_{n}}^{\pi} \right) \left(|K_{n}(u)| u^{\alpha-\beta} \right)^{\frac{q}{q-1}} du \right\}^{1-\frac{1}{q}}$$

$$\leq \left\{ \int_{0}^{\mu_{n}} \left(|K_{n}(u)| u^{\alpha-\beta} \right)^{\frac{q}{q-1}} du \right\}^{1-\frac{1}{q}} + \left\{ \int_{\mu_{n}}^{\pi} \left(|K_{n}(u)| u^{\alpha-\beta} \right)^{\frac{q}{q-1}} du \right\}^{1-\frac{1}{q}}$$

$$= I_{1}' + I_{2}', \quad (say)$$
(45)

Applying Lemma 4.4(a) in I'_1 , we have

$$I_{1}' = \left\{ \int_{0}^{\frac{\pi}{\mu_{n}}} \left(|K_{n}(u)| u^{\alpha-\beta} \right)^{\frac{q}{q-1}} du \right\}^{1-\frac{1}{q}}$$

$$= O(\mu_{n}) \left\{ \int_{0}^{\frac{\pi}{\mu_{n}}} u^{\alpha-\beta(\frac{q}{q-1})} du \right\}^{1-\frac{1}{q}}$$

$$= O(\mu_{n}) \left\{ \int_{0}^{\frac{\pi}{\mu_{n}}} u^{\frac{q}{q-1}(\alpha-\beta+1-\frac{1}{q})-1} du \right\}^{1-\frac{1}{q}}$$

$$= O\left(\frac{1}{\mu_{n}}\right)$$
(46)

Applying Lemma 4.4(b) in I'_2 , we have

$$I_{2}' = \left\{ \int_{\frac{\pi}{\mu_{n}}}^{\pi} \left(|K_{n}(u)| u^{\alpha-\beta} \right)^{\frac{q}{q-1}} du \right\}^{1-\frac{1}{q}}$$
$$= O(\psi(n)) \left\{ \int_{\frac{\pi}{\mu_{n}}}^{\pi} \left(u^{\alpha-\beta-2} \right)^{\frac{q}{q-1}} du \right\}^{1-\frac{1}{q}}$$
$$= O(\psi(n)) \left\{ \sum_{k=1}^{n-1} \int_{\frac{\pi}{\mu_{k+1}}}^{\frac{\pi}{\mu_{k}}} u^{(\alpha-\beta-2)\frac{q}{q-1}} du \right\}^{1-\frac{1}{q}}$$
$$= O(\psi(n)) \left\{ \sum_{k=1}^{n} \int_{\frac{\pi}{\mu_{k+1}}}^{\frac{\pi}{\mu_{k+1}}} u^{(\alpha-\beta-2)\frac{q}{q-1}} du \right\}^{1-\frac{1}{q}}$$

Let $h(u) = (u^{\alpha-\beta})^{\frac{q}{q-1}}$ and H(u) be a primitive of h(u), then

$$\int_{\frac{\pi}{\mu_{k+1}}}^{\frac{\pi}{\mu_{k+1}}} \left(u^{\alpha-\beta-2} \right)^{\frac{q}{q-1}} du = \int_{\frac{\pi}{\mu_{k+1}}}^{\frac{\pi}{\mu_{k+1}}} h(u) du \\
= H\left(\frac{\pi}{\mu_{k}}\right) - H\left(\frac{\pi}{\mu_{k+1}}\right) \\
= \left(\frac{\pi}{\mu_{k}} - \frac{\pi}{\mu_{k+1}}\right) h(c), \text{ for some } \frac{\pi}{\mu_{k+1}} < c < \frac{\pi}{\mu_{k}} \\
= O(1) \frac{(\mu_{k+1} - \mu_{k})}{\mu_{k}^{2}} \left(\frac{1}{\mu_{k}^{\alpha-\beta-2}}\right)^{\frac{q}{q-1}} \\
= O(1) \left(\frac{(\mu_{k+1} - \mu_{k})^{1-\frac{1}{q}}}{\mu_{k}^{\alpha-\beta-\frac{2}{q}}}\right)^{\frac{q}{q-1}} \\
I'_{2} = O\left(\psi(n)\right) \left\{ \sum_{k=1}^{n} \left(\frac{(\mu_{k+1} - \mu_{k})^{1-\frac{1}{q}}}{\mu_{k}^{(\alpha-\beta-\frac{2}{q})}}\right)^{\frac{q}{q-1}} \right\}^{1-\frac{1}{q}}$$
(47)

From (46), (47) and (45), we have

$$I' = O\left(\frac{1}{\mu_n^{\alpha-\beta-\frac{1}{q}}}\right) + O\left(\psi(n)\right) \left\{ \sum_{k=1}^n \left(\frac{(\mu_{k+1} - \mu_k)^{1-\frac{1}{q}}}{\mu_k^{(\alpha-\beta-\frac{2}{q})}}\right)^{\frac{q}{q-1}} \right\}^{1-\frac{1}{q}}$$
(48)

$$J' = \left\{ \int_{0}^{\pi} \left(|K_{n}(u)| u^{\alpha-\beta+\frac{1}{q}} \right)^{\frac{q}{q-1}} du \right\}^{1-\frac{1}{q}} \\ = \left\{ \left(\int_{0}^{\frac{\pi}{\mu_{n}}} + \int_{\frac{\pi}{\mu_{n}}}^{\pi} \right) \left(|K_{n}(u)| u^{\alpha-\beta+\frac{1}{q}} \right)^{\frac{q}{q-1}} du \right\}^{1-\frac{1}{q}} \\ \le \left\{ \int_{0}^{\frac{\pi}{\mu_{n}}} \left(|K_{n}(u)| u^{\alpha-\beta+\frac{1}{q}} \right)^{\frac{q}{q-1}} du \right\}^{1-\frac{1}{q}} \\ + \left\{ \int_{\frac{\pi}{\mu_{n}}}^{\pi} \left(|K_{n}(u)| u^{\alpha-\beta+\frac{1}{q}} \right)^{\frac{q}{q-1}} du \right\}^{1-\frac{1}{q}} \\ = \left(J_{1}^{1} + J_{2}^{1} \right), \quad (say)$$
(49)

Applying Lemma 4.4(a) in J_1^1 , we have

$$J_{1}^{1} = \left\{ \int_{0}^{\frac{\pi}{\mu_{n}}} \left(|K_{n}(u)| u^{\alpha-\beta+\frac{1}{q}} \right)^{\frac{q}{q-1}} du \right\}^{1-\frac{1}{q}}$$

$$= O\left(\frac{1}{\mu_{n}}\right) \left\{ \int_{0}^{\frac{\pi}{\mu_{n}}} u^{\frac{q}{q-1}(\alpha-\beta+\frac{1}{q})} du \right\}^{1-\frac{1}{q}}$$

$$= O\left(\frac{1}{\mu_{n}}\right) \left\{ \int_{0}^{\frac{\pi}{\mu_{n}}} u^{\frac{q}{q-1}(\alpha-\beta+1)-1} du \right\}^{1-\frac{1}{q}}$$

$$= O\left(\frac{1}{\mu_{n}^{\alpha-\beta}}\right)$$
(50)

Applying Lemma 4.4(b) in J_2^1 , we have

$$J_{2}^{1} = \left\{ \int_{\frac{\pi}{\mu_{n}}}^{\pi} \left(|K_{n}(u)| u^{\alpha-\beta+\frac{1}{q}} \right)^{\frac{q}{q-1}} du \right\}^{1-\frac{1}{q}}$$

$$= O\left(\psi(n)\right) \left\{ \int_{\frac{\pi}{\mu_{n}}}^{\pi} \left(u^{\alpha-\beta-2+\frac{1}{q}} \right)^{\frac{q}{q-1}} du \right\}^{1-\frac{1}{q}}$$

$$= O\left(\psi(n)\right) \left\{ \sum_{k=1}^{n-1} \int_{\frac{\pi}{\mu_{k+1}}}^{\frac{\pi}{\mu_{k}}} \left(u^{\alpha-\beta-2+\frac{1}{q}} \right)^{\frac{q}{q-1}} du \right\}^{1-\frac{1}{q}}$$

$$= O\left(\psi(n)\right) \left\{ \sum_{k=1}^{n} \int_{\frac{\pi}{\mu_{k+1}}}^{\frac{\pi}{\mu_{k+1}}} \left(u^{\alpha-\beta-2+\frac{1}{q}} \right)^{\frac{q}{q-1}} du \right\}^{1-\frac{1}{q}}$$

Proceeding as in I_2^1 , we have

$$J_{2}^{1} = O\left(\psi(n)\right) \left\{ \sum_{k=1}^{n} \left(\frac{(\mu_{k+1} - \mu_{k})^{1-\frac{1}{q}}}{\mu_{k}} \right)^{\frac{q}{q-1}} \right\}^{1-\frac{1}{q}}$$
(51)

From (51), (50), (49), we have

$$J^{1} = O\left(\frac{1}{\mu_{n}^{\alpha-\beta}}\right) + O\left(\psi(n)\right) \left\{ \sum_{k=1}^{n} \left(\frac{(\mu_{k+1} - \mu_{k})^{1-\frac{1}{q}}}{\mu_{k}^{\alpha-\beta-\frac{1}{q}}}\right)^{\frac{q}{q-1}} \right\}^{1-\frac{1}{q}}$$
(52)

From (44), (48) and (52), we have

$$\begin{aligned} ||w_{k}(T_{n},\cdot)||_{\beta,q} &= O(1)\left(I'+J'\right) \\ &= O\left(\frac{1}{\mu_{n}^{\alpha-\beta-\frac{1}{q}}}\right) + O\left(\psi(n)\right) \left\{ \sum_{k=1}^{n} \left(\frac{(\mu_{k+1}-\mu_{k})^{1-\frac{1}{q}}}{\mu_{k}^{\alpha-\beta-\frac{2}{q}}}\right)^{\frac{q}{q-1}} \right\}^{1-\frac{1}{q}} \\ &+ O\left(\frac{1}{\mu_{n}^{\alpha-\beta}}\right) + O\left(\psi(n)\right) \left\{ \sum_{k=1}^{n} \left(\frac{(\mu_{k+1}-\mu_{k})^{1-\frac{1}{q}}}{\mu_{k}^{\alpha-\beta-\frac{1}{q}}}\right)^{\frac{q}{q-1}} \right\}^{1-\frac{1}{q}} \\ &= O\left(\frac{1}{\mu_{n}^{\alpha-\beta-\frac{1}{q}}}\right) + O\left(\psi(n)\right) \left\{ \sum_{k=1}^{n} \left(\frac{(\mu_{k+1}-\mu_{k})^{1-\frac{1}{q}}}{\mu_{k}^{\alpha-\beta-\frac{2}{q}}}\right)^{\frac{q}{q-1}} \right\}^{1-\frac{1}{q}} \end{aligned}$$
(53)

From (53), (43) and (39), we have

$$||T_{n}(\cdot)||_{B_{q}^{\beta}(L_{p})} = O\left(\frac{1}{\mu_{n}^{\alpha-\beta-\frac{1}{q}}}\right) + O\left(\psi(n)\right) \left\{\sum_{k=1}^{n} \left(\frac{(\mu_{k+1}-\mu_{k})^{1-\frac{1}{q}}}{\mu_{k}^{(\alpha-\beta-\frac{2}{q})}}\right)^{\frac{q}{q-1}}\right\}^{1-\frac{1}{q}}$$
(F)

(54) ⁸¹ This complete the proof of Case 1.

Case 2 $(q = \infty)$

Now, we consider the case $q=\infty$

$$||T_n(\cdot)||_{B^{\beta}_{\infty}(L_p)} = ||T_n(\cdot)||_p + ||w_k(T_n, \cdot)||_{\beta,\infty}$$
(55)

We know $T_n(x) = \frac{1}{\pi} \int_0^{\pi} \phi_x(u) K_n(u) du$. Applying Lemma 4.1(iii), we have

$$||T_{n}(\cdot)||_{p} \leq \frac{1}{\pi} \int_{0}^{\pi} ||\phi(\cdot)||_{p} K_{n}(u) du$$

$$\leq \frac{2}{\pi} \int_{0}^{\pi} |K_{n}(u)| w_{k}(f, u)_{p} du$$

$$= O(1) \int_{0}^{\pi} |K_{n}(u)| u^{\alpha} du \quad (by \ the \ hypothesis)$$

$$= O(1) \left[\int_{0}^{\frac{\pi}{\mu_{n}}} |K_{n}(u)| u^{\alpha} du + \int_{\frac{\pi}{\mu_{n}}}^{\pi} |K_{n}(u)| u^{\alpha} du \right]$$

$$= O(1) [I^{II} + J^{II}], \quad (say)$$
(56)

Applying Lemma 4.4(a) in I^{II} , we have

$$I^{II} = \int_{0}^{\frac{\pi}{\mu_{n}}} |K_{n}(u)| u^{\alpha} du$$

$$= O(\mu_{n}) \int_{0}^{\frac{\pi}{\mu_{n}}} u^{\alpha} du$$

$$= O\left(\frac{1}{\mu_{n}^{\alpha}}\right)$$
(57)

Applying Lemma 4.4(b) in J^{II} , we have

$$J^{II} = \int_{\frac{\pi}{\mu_n}}^{\pi} |K_n(u)| u^{\alpha} du$$

= $O(\psi(n)) \int_{\frac{\pi}{\mu_n}}^{\pi} u^{\alpha-2} du$
= $O(\psi(n)) \sum_{k=1}^{n-1} \int_{\frac{\pi}{\mu_k+1}}^{\frac{\pi}{\mu_k}} u^{\alpha-2} du$
= $O(\psi(n)) \sum_{k=1}^n \int_{\frac{\pi}{\mu_{k+1}}}^{\frac{\pi}{\mu_k}} u^{\alpha-2} du$

Proceeding as in I'_2 , we have

$$= O\left(\psi(n)\right) \sum_{k=1}^{n} \left(\frac{\mu_{k+1} - \mu_k}{\mu_k^{\alpha}}\right)$$
(58)

(60)

From (56), (57) and (58), we have

$$||T_n(\cdot)||_p = O\left(\frac{1}{\mu_n^{\alpha}}\right) + O\left(\psi(n)\right) \sum_{k=1}^n \left(\frac{\mu_{k+1} - \mu_k}{\mu_k^{\alpha}}\right)$$
(59)

Again,

$$\begin{aligned} ||w_{k}(T_{n}, \cdot)||_{\beta,q} &= \sup_{t>0} \frac{||T_{n}(\cdot, t)||_{p}}{t^{\beta}} \\ &= \sup_{t>0} \frac{t^{-\beta}}{\pi} \left[\int_{0}^{\pi} \left| \int_{0}^{\pi} \phi(x, t, u) K_{n}(u) du \right|^{p} dx \right]^{\frac{1}{p}} \end{aligned}$$

Applying generalised Minkowski's inequality, we have

$$||w_{k}(T_{n},\cdot)||_{\beta,q} = \sup_{t>0} \frac{t^{-\beta}}{\pi} \int_{0}^{\pi} du \left\{ \int_{0}^{\pi} |\phi(x,t,u)|^{p} |K_{n}(u)|^{p} dx \right\}^{\frac{1}{p}}$$

$$= \sup_{t>0} \frac{t^{-\beta}}{\pi} \int_{0}^{\pi} |K_{n}(u)| ||\phi(\cdot,t,u)||_{p} du$$

$$\leq \frac{1}{\pi} \int_{0}^{\pi} |K_{n}(u)| du \sup_{t>0} t^{-\beta} ||\phi(\cdot,t,u)||_{p}$$
(61)

Using Lemma 4.3, we have

$$\begin{aligned} ||w_{k}(T_{n}, \cdot)||_{\beta,\infty} &\leq O(1) \int_{0}^{\pi} u^{\alpha-\beta} |K_{n}(u)| du \\ &= O(1) \left(\int_{0}^{\frac{\pi}{\mu_{n}}} + \int_{\frac{\pi}{\mu_{n}}}^{\pi} \right) u^{\alpha-\beta} |K_{n}(u)| du \\ &= O(1) \left[\int_{0}^{\frac{\pi}{\mu_{n}}} u^{\alpha-\beta} |K_{n}(u)| du + \int_{\frac{\pi}{\mu_{n}}}^{\pi} u^{\alpha-\beta} |K_{n}(u)| du \right] \\ &= O(1) [I^{III} + J^{III}], \quad (say) \end{aligned}$$
(62)

Using Lemma 4.4(a) in I^{III} , we have

$$I^{III} = \int_{0}^{\frac{\pi}{\mu_{n}}} |K_{n}(u)| u^{\alpha-\beta} du$$

= $O(\mu_{n}) \int_{0}^{\frac{\pi}{\mu_{n}}} u^{\alpha-\beta} du$
= $O\left(\frac{1}{\mu_{n}^{\alpha-\beta}}\right)$ (63)

Using Lemma 4.4(b) in J^{III} , we have

$$J^{III} = \int_{\frac{\pi}{\mu_n}}^{\pi} u^{\alpha-\beta} |K_n(u)| du$$

= $O(\psi(n)) \int_{\frac{\pi}{\mu_n}}^{\pi} u^{\alpha-\beta-2} du$
= $O(\psi(n)) \sum_{k=1}^{n-1} \int_{\frac{\pi}{\mu_{k+1}}}^{\frac{\pi}{\mu_k}} u^{\alpha-\beta-2} du$
= $O(\psi(n)) \sum_{k=1}^{n} \int_{\frac{\pi}{\mu_{k+1}}}^{\frac{\pi}{\mu_k}} u^{\alpha-\beta-2} du$
= $O(\psi(n)) \sum_{k=1}^{n} \left(\frac{\mu_{k+1}-\mu_k}{\mu_k^{\alpha-\beta}}\right)$ (64)

From (62), (63) and (64), we have

$$||w_k(T_n, \cdot)||_{\beta,\infty} = O\left(\frac{1}{\mu_n^{\alpha-\beta}}\right) + O\left(\psi(n)\right) \sum_{k=1}^n \left(\frac{\mu_{k+1} - \mu_k}{\mu_k^{\alpha-\beta}}\right)$$
(65)

From (55),(59) and (65), we have

$$\left|\left|T_{n}(\cdot)\right|\right|_{B_{\infty}^{\beta}(L_{p})} = O\left(\frac{1}{\mu_{n}^{\alpha-\beta}}\right) + O\left(\psi(n)\right)\sum_{k=1}^{n}\left(\frac{\mu_{k+1}-\mu_{k}}{\mu_{k}^{\alpha-\beta}}\right)$$

$$(66)$$

This completes the Case 2.

Combining the Case 1 and Case 2, we obtain the proof of the theorem.

Acknowledgement

We thank Dr.B.K.Ray for his valuable suggestions.

References

- G.Das, T.Ghosh and B,K.Ray, Degree of Approximation of function by their Fourier series in the generalized Holder metric, Proc. Indian Acad. Sci. (Math.Sci), 106(1996), 139-153.
- [2] A.Devore Ronald and G.Lorentz, Constructive approximation, Springler- Verlay, Berlin Heidelberg New York, (1993).
- [3] S.Prossdorf, Zur Konvergenz der Fourier richen Holder stetiger Funktionen, Math. Nachar, 69(1975), 7-14.
- [4] P.Wojtaszczyk, A Mathematical Introduction to Wevlets, London Mathematical Society students texts 37, Cambridge University Press, New York, (1997).
- [5] A.Zygmund, Smooth fuctions, Duke Math. Journal, 12(1945), 47-56.
- [6] A.Zygmund, Trigonometric series, vols I & II combined, Cambridge Univ. Press, New York, (1993).