International Journal of Mathematics And its Applications

Degree of Approximation of Functions by their Fourier Series in the Besov Space by Matrix Mean

Research Article

Madhusmita Mohanty ${ }^{1 *}$, Gokulananda Das ${ }^{2}$ and Sanghamitra Beuria ${ }^{3}$
1 Department of Mathematics, Utkal University, Vani-Vihar, Bhubaneswar, Odisha, India.
2 177, Dharma Vihar, Bhubaneswar, Odisha, India.
3 Department of Mathematics, College of Basic Science and Humanities, OUAT, Bhubaneswar, Odisha, India.

Abstract: The paper studies the degree of approximation of functions by their Fourier series in the Besov space by matrix mean and this generalizing many known results.
 MSC: 41A25, 42A24.

Keywords: Besov space, Hölder space, Lipschitz space, matrix method, Fourier series, Modulus of smoothness.
(C) JS Publication.

1. Introduction

Let f be a 2π periodic function and let $f \in L_{p}[0,2 \pi], p \geq 1$. The Fourier series of f at x is given by

$$
\begin{equation*}
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \tag{1}
\end{equation*}
$$

Let $s_{n}(x)$ denote the nth partial sums of (1). We know ([6]) that

$$
\begin{equation*}
s_{n}(x)-f(x)=\frac{1}{\pi} \int_{0}^{\pi} \phi_{x}(u) D_{n}(u) d u \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
& \phi_{x}(u)=f(x+u)+f(x-u)-2 f(x) \tag{3}\\
& D_{n}(u)=\frac{1}{2}+\sum_{k=0}^{n} \cos k u=\frac{\sin \left(k+\frac{1}{2}\right) u}{2 \sin \frac{u}{2}} \tag{4}\\
& K_{n}(u)=\sum_{k=0}^{\infty} a_{n, k} D_{k}(u) \tag{5}
\end{align*}
$$

Let $A=\left(a_{n, k}\right)$ be an infinite matrix. We assume that elements of the matrix $A=\left(a_{n, k}\right)$ satisfy the following regularity conditions

$$
\begin{equation*}
\|A\|=\sup _{n} \sum_{k=0}^{\infty}\left|a_{n, k}\right|<\infty \tag{6}
\end{equation*}
$$

[^0]\[

$$
\begin{equation*}
\left(a_{n, k}\right) \rightarrow 0 \text { as } n \rightarrow \infty \text { and } k \text { is fixed } \tag{7}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
\sum_{k=0}^{\infty} a_{n, k}=1 \text { for each } n=0,1,2 \cdots . \tag{8}
\end{equation*}
$$

2. Definitions and Notations

Definition 2.1 (Modulus of Continuity). Let $A=R, R+[a, b] \subset R$ or T (which usually taken to be R with identification of points modulo $2 \pi)$. The modulus of continuity $w(f, t)=w(t)$ of a function f on A can be defined as

$$
\begin{aligned}
w(t)=w(f, t)= & \sup |f(x)-f(y)|, t \geq 0 . \\
& |x-y| \leq t, \\
& x, y \in A
\end{aligned}
$$

Definition 2.2 (Modulus of Smoothness). The $k^{\text {th }}$ order modulus of smoothness [2] of a function $f: A \rightarrow R$ is defined by

$$
\begin{equation*}
w_{k}(f, t)=\sup _{0<h \leq t}\left\{\sup \left|\Delta_{h}^{k}(f, x)\right|: x, x+k h \in A\right\}, t \geq 0 \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta_{h}^{k}(f, x)=\sum_{i=0}^{k}(-1)^{k-i}\binom{k}{i} f(x+i h), k \in N . \tag{10}
\end{equation*}
$$

For $k=1, w_{1}(f, t)$ is called the modulus of continuity of f. The function w is continuous at $t=0$ if and only if f is uniformly continuous on A, that is $f \in \tilde{c}(A)$. The $k^{\text {th }}$ order modulus of smoothness of $f \in L_{p}(A), 0<p<\infty$ or of $f \in \tilde{c}(A)$, ifp $=\infty$ is defined by

$$
\begin{equation*}
w_{k}(f, t)_{p}=\sup _{0<h \leq t}\left\|\Delta_{h}^{k}(f, \cdot)\right\|_{p}, t \geq 0 \tag{11}
\end{equation*}
$$

if $p \geq 1, k=1$, then $w_{1}(f, t)_{p}=w(f, t)_{p}$ is a modulus of continuity (or integral modulus of continuity). If $p=\infty, k=1$ and f is continuous then $w_{k}(f, t)_{p}$ reduces to modulus of continuity $w_{1}(f, t)$ or $w(f, t)$.

Definition 2.3 (Lipschitz Space). If $f \in \tilde{c}(A)$ and

$$
\begin{equation*}
w(f, t)=O\left(t^{\alpha}\right), 0<\alpha \leq 1 \tag{12}
\end{equation*}
$$

then we write $f \in$ Lipa. If $w(f, t)=O(t)$ as $t \rightarrow 0+$ (in particular (9) holds for $\alpha>1$) then f reduces to a constant. If $f \in L_{p}(A), 0<p<\infty$ and

$$
\begin{equation*}
w(f, t)_{p}=O\left(t^{\alpha}\right), 0<\alpha \leq 1 \tag{13}
\end{equation*}
$$

then we write $f \in \operatorname{Lip}(\alpha, p), 0<p<\infty, 0<\alpha \leq 1$.
The case $\alpha>1$ is of no interest as the function reduces to a constant, whenever

$$
\begin{equation*}
w(f, t)_{p}=O(t) \text { as } \mathrm{t} \rightarrow 0+ \tag{14}
\end{equation*}
$$

We note that if $p=\infty$ and $f \in c(A)$, then $\operatorname{Lip}(\alpha, p)$ class reduces to $\operatorname{Lip} \alpha$ class.

Definition 2.4 (Generalized Lipschitz Space). Let $\alpha>0$ and suppose that $k=[\alpha]+1$. For $f \in L_{p}(A), 0<p<\infty$, if

$$
\begin{equation*}
w_{k}(f, t)=O\left(t^{\alpha}\right), t>0 \tag{15}
\end{equation*}
$$

then we write

$$
\begin{equation*}
f \in \operatorname{Lip}^{*}(\alpha, p), \alpha>0,0<p \leq \infty \tag{16}
\end{equation*}
$$

and say that f belongs to generalized Lipschitz space. The seminorm is then

$$
|f|_{L i p^{*}\left(\alpha, L_{p}\right)}=\sup _{t>0}\left(t^{-\alpha} w_{k}(f, t)_{p}\right)
$$

It is known [2] that the space Lip ${ }^{*}\left(\alpha, L_{p}\right)$ contains $\operatorname{Lip}\left(\alpha, L_{p}\right)$. For $0<\alpha<1$ the spaces coincide, (for $p=\infty$, it is necessary to replace L_{∞} by \tilde{c} of uniformly continuous function on A). For $0<\alpha<1$ and $p=1$ the space Lip* $\left(\alpha, L_{p}\right)$ coincide with Lip α.

For $\alpha=1, p=\infty$, we have

$$
\begin{equation*}
\operatorname{Lip}(1, \tilde{c})=\operatorname{Lip} 1 \tag{17}
\end{equation*}
$$

but

$$
\begin{equation*}
\operatorname{Lip}^{*}(1, \tilde{c})=z \tag{18}
\end{equation*}
$$

is the Zygmund space [5] which is characterized by (13) with $k=2$.

Definition 2.5 (Hölder $\left(\mathrm{H}_{\alpha}\right)$ Space). For $0<\alpha \leq 1$, let

$$
\begin{equation*}
H_{\alpha}=\left\{f \in C_{2 \pi}: w(f, t)=O\left(t^{\alpha}\right)\right\} \tag{19}
\end{equation*}
$$

It is known [3] that H_{α} is a Banach Space with the norm $\|\cdot\|_{\alpha}$ defined by

$$
\begin{gather*}
\|f\|_{\alpha}=\|f\|_{c}+\sup _{t>0} t^{-\alpha} w(t), 0<\alpha \leq 1 \tag{20}\\
\|f\|_{0}=\|f\|_{c}
\end{gather*}
$$

and

$$
\begin{equation*}
H_{\alpha} \subseteq H_{\beta} \subseteq C_{2 \pi}, \quad 0<\beta \leq \alpha \leq 1 \tag{21}
\end{equation*}
$$

Definition $2.6\left(\mathrm{H}_{(\alpha, p)}\right.$ Space). For $0<\alpha \leq 1$, let

$$
\begin{equation*}
H_{(\alpha, p)}=\left\{f \in L_{p}[0,2 \pi]: 0<p \leq \infty, w(f, t)_{p}=O\left(t^{\alpha}\right)\right\} \tag{22}
\end{equation*}
$$

and introduce the norm $\|\cdot\|_{(\alpha, p)}$ as follows

$$
\begin{gather*}
\|f\|_{(\alpha, p)}=\|f\|_{p}+\sup _{t>0} t^{-\alpha} w(f, t)_{p}, 0<\alpha \leq 1 . \tag{23}\\
\|f\|_{(0, p)}=\|f\|_{p} .
\end{gather*}
$$

It is known [1] that $H_{(\alpha, p)}$ is a Banach space for $p \geq 1$ and a complete p-normed space for $0<p<1$. Also

$$
\begin{equation*}
H_{(\alpha, p)} \subseteq H_{(\beta, p)} \subseteq L_{p}, 0<\beta \leq \alpha \leq 1 \tag{24}
\end{equation*}
$$

Note that $H_{(\alpha, \infty)}$ is the space H_{α} defined above. For study of degree of approximation problems the natural way to proceed to consider with some restrictions on some modulus of smoothness as prescribed in H_{α} and $H_{(\alpha, p)}$ spaces. As we have seen above only a constant function satisfies Lipschitz condition for $\alpha>1$. However for generalized Lipschitz class there is no such restriction on α. We required a finer scale of smoothness than is provided by Lipschitz class. For each $\alpha>0$ Besov developed a remarkable technique for restricting modulus of smoothness by introducing a third parameter q (in addition to p on α) and applying $\alpha \cdot q$ norms (rather than α, ∞ norms) to the modulus of smoothness $w_{k}(f, \cdot)_{p}$ of f.

Definition 2.7 (Besov space). Let $\alpha>0$ be given and let $k=[\alpha]+1$. For $0<p, q \leq \infty$, the Besov space ([2]) $B_{q}^{\alpha}\left(L_{p}\right)$ is defined as follows:

$$
B_{q}^{\alpha}\left(L_{p}\right)=\left\{f \in L_{p}:|f|_{B_{q}^{\alpha}\left(L_{p}\right)}=\left\|w_{k}(f, \cdot)\right\|_{(\alpha, q)} \text { is finite }\right\}
$$

where

$$
\left\|w_{k}(f, \cdot)\right\|_{(\alpha, q)}= \begin{cases}\left(\int_{0}^{\infty}\left(t^{-\alpha} w_{k}(f, t)_{p}\right)^{q} \frac{d t}{t}\right)^{\frac{1}{q}}, & 0<q<\infty \tag{25}\\ \sup _{t>0} t^{-\alpha} w_{k}(f, t)_{p}, & q=\infty\end{cases}
$$

It is known ([2]) that $\left\|w_{k}(f, \cdot)\right\|_{(\alpha, q)}$ is a seminorm if $1 \leq p, q \leq \infty$ and a quasi-seminorm in other cases.
The Besov norm for $B_{q}^{\alpha}\left(L_{p}\right)$ is

$$
\begin{equation*}
\|f\|_{B_{q}^{\alpha}\left(L_{p}\right)}=\|f\|_{p}+\left\|w_{k}(f, \cdot)\right\|_{(\alpha, q)} \tag{26}
\end{equation*}
$$

It is known ([4]) that for 2π-periodic function f, the integral $\left(\int_{0}^{\infty}\left(t^{-\alpha} w_{k}(f, t)_{p}\right)^{q} \frac{d t}{t}\right)^{\frac{1}{q}}$ is replaced by $\left(\int_{0}^{\pi}\left(t^{-\alpha} w_{k}(f, t)_{p}\right)^{q} \frac{d t}{t}\right)^{\frac{1}{q}}$. We know ([2, 4]) the following inclusion relations. For fixed α and p

$$
B_{q}^{\alpha}\left(L_{p}\right) \subset B_{q_{1}}^{\alpha}\left(L_{p}\right), q<q_{1} .
$$

For fixed p and q

$$
B_{q}^{\alpha}\left(L_{p}\right) \subset B_{q}^{\beta}\left(L_{p}\right), \beta<\alpha
$$

For fixed α and q

$$
B_{q}^{\alpha}\left(L_{p}\right) \subset B_{q}^{\alpha}\left(L_{p_{1}}\right), p_{1}<p .
$$

Definition 2.8 (Special cases of Besov space). For $q=\infty, B_{\infty}^{\alpha}\left(L_{p}\right), \alpha>0, p \geq 1$ is same as Lip ${ }^{*}\left(\alpha, L_{p}\right)$ the generalized Lipschitz space and the corresponding norm $\|\cdot\|_{B_{\infty}^{\alpha}\left(L_{p}\right)}$ is given by

$$
\begin{equation*}
\|f\|_{B_{\infty}^{\alpha}\left(L_{p}\right)}=\|f\|_{p}+\sup _{t>0} t^{-\alpha} w_{k}(f, t)_{p} \tag{27}
\end{equation*}
$$

for every $\alpha>0$ with $k=[\alpha]+1$.
For the special case when $0<\alpha<1, B_{\infty}^{\alpha}\left(L_{p}\right)$ space reduces to $H_{(\alpha, p)}$ space due to Das et al. [1] and the corresponding norm is given by

$$
\begin{equation*}
\|f\|_{B_{\infty}^{\alpha}\left(L_{p}\right)}=\|f\|_{(\alpha, p)}=\|f\|_{p}+\sup _{t>0} t^{-\alpha} w(f, t)_{p}, 0<\alpha<1 . \tag{28}
\end{equation*}
$$

For $\alpha=1$, the norm is given by

$$
\begin{equation*}
\|f\|_{B_{\infty}^{1}\left(L_{p}\right)}=\|f\|_{p}+\sup _{t>0} t^{-\alpha} w_{2}(f, t)_{p} . \tag{29}
\end{equation*}
$$

Note that $\|f\|_{B_{\infty}^{1}\left(L_{p}\right)}$ is not same as $\|f\|_{(1, p)}$ and the space $B_{\infty}^{1}\left(L_{p}\right)$ includes the space $H(1, p), p \geq 1$. If we further specialize by taking $p=\infty, B_{\infty}^{\alpha}, 0<\alpha<1$, coincides with H_{α} space due to Prossodorf [3] and the norm is given by

$$
\begin{equation*}
\|f\|_{B_{\infty}^{\alpha}\left(L_{\infty}\right)}=\|f\|_{\alpha}=\|f\|_{c}+\sup _{t>0} t^{\alpha} w(f, t), 0<\alpha<1 . \tag{30}
\end{equation*}
$$

For $\alpha=1, p=\infty$, the norm is given by

$$
\begin{equation*}
\|f\|_{B_{\infty}^{1}\left(L_{\infty}\right)}=\|f\|_{c}+\sup _{t>0} t^{-1} w_{2}(f, t), \alpha=1 \tag{31}
\end{equation*}
$$

which is different from $\|f\|_{1}$ and $B_{\infty}^{1}\left(L_{\infty}\right)$ includes the H_{1} space.

3. Main Result

We prove the following theorem.

Theorem 3.1. Let the matrix $A=\left(a_{n, k}\right)$ satisfy the following conditions
(i). $\sup _{n} \sum_{k=0}^{\infty}\left|a_{n, k}\right|<\infty$
(ii). $\sum_{k=0}^{\infty} a_{n, k}=1$ for all n and
(iii). $\sum_{k=\mu_{n}}^{\infty} k\left|a_{n, k}\right|=O\left(\mu_{n}\right)$.
where $\left(\mu_{n}\right)$ is a positive non-decreasing sequence $\mu_{1}=1$.
Let $\psi(n)=\sum_{k=0}^{\infty}\left|a_{n, k}-a_{n, k+1}\right|$ and $0<\alpha<2$ and $0 \leq \beta<\alpha$. If $f \in B_{q}^{\alpha}\left(L_{p}\right), p \geq 1$ and $1<q \leq \infty$ and let $t_{n}(x)$ be the A-transform of the Fourier series of f, that is,

$$
t_{n}(f)=t_{n}(f ; x)=\sum_{k=0}^{\infty} a_{n, k} s_{k}(x)
$$

Then
Case $1(1<q<\infty)$

$$
\left\|T_{n}(\cdot)\right\|_{B_{q}^{\beta}\left(L_{p}\right)}=O\left(\frac{1}{\mu_{n}^{\alpha-\beta-\frac{1}{q}}}\right)+O(\psi(n))\left\{\sum_{k=1}^{n}\left(\frac{\left(\mu_{k+1}-\mu_{k}\right)^{1-\frac{1}{q}}}{\mu_{k}^{\alpha-\beta-\frac{2}{q}}}\right)^{\frac{q}{q-1}}\right\}^{1-\frac{1}{q}}
$$

Case $2(q=\infty)$

$$
\left\|T_{n}(\cdot)\right\|_{B_{q}^{\beta}\left(L_{p}\right)}=O\left(\frac{1}{\mu_{n}^{\alpha-\beta}}\right)+O(\psi(n)) \sum_{k=1}^{n}\left(\frac{\left(\mu_{k+1}-\mu_{k}\right)}{\mu_{k}^{\alpha-\beta}}\right)
$$

4. Additional Notations and Lemmas

We need the following additional notations

$$
\phi(x, t, u)= \begin{cases}\phi_{x+t}(u)-\phi_{x}(u), & 0<\alpha<1 \\ \phi_{x+t}(u)+\phi_{x-t}(u)-2 \phi_{x}(u), & 1 \leq \alpha<2\end{cases}
$$

For $k=[\alpha]+1$, we have for $p \geq 1$

$$
w_{k}(f, t)_{p}= \begin{cases}w_{1}(f, t)_{p}, & 0<\alpha<1 \\ w_{2}(f, t)_{p}, & 1 \leq \alpha<2\end{cases}
$$

Let

$$
T_{n}(x, t)= \begin{cases}T_{n}(x+t)-T_{n}(x), & 0<\alpha<1 \\ T_{n}(x+t)+T_{n}(x-t)-2 T_{n}(x), & 1 \leq \alpha<2\end{cases}
$$

Using above equation and definition of $w_{k}(f, t)_{p}$, we have

$$
w_{k}\left(T_{n}, t\right)_{p}=\left\|T_{n}(\cdot, t)\right\|_{p}
$$

We require the following lemmas for the proof of the theorem.
Lemma 4.1. Let $1 \leq p \leq \infty$ and $0<\alpha<2$. If $f \in L_{p}[0,2 \pi]$, then for $0<t, u \leq \pi$
(i). $\|\phi(\cdot, t, u)\|_{p} \leq 4 w_{k}(f, t)_{p}$
(ii). $\|\phi(\cdot, t, u)\|_{p} \leq 4 w_{k}(f, u)_{p}$
(iii). $\|\phi .(u)\|_{p} \leq 2 w_{k}(f, u)_{p}$,
where $k=[\alpha]+1$.
Proof. Case $0<\alpha<1$.
Clearly $k=[\alpha]+1=1$. By virtue of $(3), \phi(x, t, u)=\phi_{x+t}(u)-\phi_{x}(u)$, can be written as

$$
\phi(x, t, u)=\left\{\begin{array}{l}
\{f(x+t+u)-f(x+u)\}+\{f(x+t-u)-f(x-u)\}-2\{f(x+t)-f(x)\} \tag{32}\\
\{f(x+t+u)-f(x+t)\}+\{f(x-u+t)-f(x+t)\}-\{f(x+u)-f(x)\}-\{f(x-u)-f(x)\}
\end{array}\right.
$$

Applying Minkowski's inequality to (32), we get for $p \geq 1$

$$
\begin{aligned}
\|\phi(\cdot, t, u)\|_{p} & \leq\|f(\cdot+t+u)-f(\cdot+u)\|_{p}+\|f(\cdot+t-u)-f(\cdot-u)\|_{p}+2\|f(\cdot+t)-f(\cdot)\|_{p} \\
& \leq 4 w_{1}(f, t)_{p}, \quad 0<\alpha<1
\end{aligned}
$$

Similarly applying Minkowski's inequality to (32), we get for $p \geq 1$

$$
\|\phi(\cdot, t, u)\|_{p} \leq 4 w_{1}(f, u)_{p}
$$

Case $1 \leq \alpha<2$.
Clearly $k=[\alpha]+1=2$. By virtue of (3), $\phi(x, t, u)=\phi_{x+t}(u)+\phi_{x-t}(u)-2 \phi_{x}(u)$, can be written as

$$
\phi(x, t, u)=\left\{\begin{array}{l}
\{f(x+t+u)+f(x+t-u)-2 f(x+t)\}+\{f(x-t+u)+f(x-t-u) \tag{33}\\
-2 f(x-t)\}-2\{f(x+u)+f(x-u)-2 f(x)\} \\
\{f(x+t+u)+f(x-t+u)-2 f(x+u)\}+\{f(x+t-u)+f(x-t-u) \\
-2 f(x-u)\}-2\{f(x+t)+f(x-t)-2 f(x)\}
\end{array}\right.
$$

Applying Minkowski's inequality to (33), we obtain for $p \geq 1$

$$
\begin{aligned}
\|\phi(\cdot, t, u)\|_{p} & \leq\|f(\cdot+t+u)+f(\cdot+t-u)-2 f(\cdot+t)\|_{p} \\
& +\|f(\cdot-t+u)+f(\cdot-t-u)-2 f(\cdot-t)\|_{p} \\
& +2\|f(\cdot+u)+f(\cdot-u)-2 f(\cdot)\|_{p} \\
& \leq 4 w_{2}(f, u)_{p}
\end{aligned}
$$

Using (33) and proceeding as above, we get

$$
\|\phi(\cdot, t, u)\|_{p} \leq 4 w_{2}(f, t)_{p}
$$

this completes the proof of part (i) and (ii). We omit the proof of (iii) as it is trivial.
Lemma 4.2. Let $0<\alpha<2$. Suppose that $0 \leq \beta<\alpha$. If $f \in B_{q}^{\alpha}\left(L_{p}\right), p \geq 1,1<q<\infty$, then
(i). $\int_{0}^{\pi}\left|K_{n}(u)\right|\left(\int_{0}^{u} \frac{\|\phi(\cdot, t u)\|_{p}^{q}}{t^{\beta q}} \frac{d t}{t}\right)^{\frac{1}{q}} d u=O(1)\left\{\int_{0}^{\pi}\left(u^{\alpha-\beta}\left|K_{n}(u)\right|\right)^{\frac{q}{q-1}} d u\right\}^{1-\frac{1}{q}}$
(ii). $\int_{0}^{\pi}\left|K_{n}(u)\right|\left(\int_{u}^{\pi} \frac{\|\phi(\cdot, t, u)\|_{p}^{q}}{t^{\beta q}} \frac{d t}{t}\right)^{\frac{1}{q}} d u=O(1)\left\{\int_{0}^{\pi}\left(u^{\alpha-\beta+\frac{1}{q}}\left|K_{n}(u)\right|\right)^{\frac{q}{q-1}} d u\right\}^{1-\frac{1}{q}}$
where $K_{n}(u)$ is defined as in (5).

Proof. Applying Lemma 4.1(i), we have

$$
\begin{aligned}
\int_{0}^{\pi}\left|K_{n}(u)\right|\left(\int_{0}^{u} \frac{\|\phi(\cdot, t, u)\|_{p}^{q}}{t^{\beta q+1}} d t\right)^{\frac{1}{q}} d u & =O(1) \int_{0}^{\pi}\left|K_{n}(u)\right|\left(\int_{0}^{u}\left(\frac{w_{k}(f, t)_{p}}{t^{\alpha}}\right)^{q} t^{(\alpha-\beta) q} \frac{d t}{t}\right)^{\frac{1}{q}} d u \\
& =O(1) \int_{0}^{\pi}\left|K_{n}(u)\right| u^{(\alpha-\beta)} d u\left(\int_{0}^{u} \frac{w_{k}(f, t)_{p}}{t^{\alpha}} \frac{d t}{t}\right)^{\frac{1}{q}} \\
& =O(1) \int_{0}^{\pi}\left|K_{n}(u)\right| u^{(\alpha-\beta)} d u
\end{aligned}
$$

by Second Mean value theorem and by the definition of Besov space. Applying Holders inequality

$$
\begin{aligned}
& =O(1)\left\{\int_{0}^{\pi}\left(\left|K_{n}(u)\right| u^{(\alpha-\beta)}\right)^{\frac{q}{q-1}} d u\right\}^{1-\frac{1}{q}}\left(\int_{0}^{\pi} 1^{q} d u\right)^{\frac{1}{q}} \\
& =O(1)\left\{\int_{0}^{\pi}\left(\left|K_{n}(u)\right| u^{(\alpha-\beta)}\right)^{\frac{q}{q-1}} d u\right\}^{1-\frac{1}{q}}
\end{aligned}
$$

For the second part, applying Lemma 4.1(ii), we get

$$
\begin{aligned}
\int_{0}^{\pi}\left|K_{n}(u)\right| d u\left(\int_{u}^{\pi} \frac{\|\left.\phi(\cdot, t, u)\right|_{p} ^{q}}{t^{\beta q+1}} d t\right)^{\frac{1}{q}} & =O(1) \int_{0}^{\pi}\left|K_{n}(u)\right| w_{k}(f, u)_{p} d u\left(\int_{u}^{\pi} \frac{d t}{t^{\beta q+1}}\right)^{\frac{1}{q}} \\
& =O(1) \int_{0}^{\pi}\left|K_{n}(u)\right| w_{k}(f, u)_{p} u^{-\beta} d u \\
& =O(1) \int_{0}^{\pi}\left(\frac{w_{k}(f, u)_{p}}{u^{\alpha+\frac{1}{q}}}\right) u^{\alpha-\beta+\frac{1}{q}}\left|K_{n}(u)\right| d u
\end{aligned}
$$

Applying Hölder's inequality

$$
\begin{aligned}
& =O(1)\left\{\int_{0}^{\pi}\left(\frac{w_{k}(f, u)_{p}}{u^{\alpha}}\right)^{q} \frac{d u}{u}\right\}^{\frac{1}{q}}\left\{\int_{0}^{u}\left(u^{\alpha-\beta+\frac{1}{q}}\left|K_{n}(u)\right|\right)^{\frac{q}{q-1}} d u\right\}^{1-\frac{1}{q}} \\
& =O(1)\left\{\int_{0}^{\pi}\left(u^{\alpha-\beta+\frac{1}{q}}\left|K_{n}(u)\right|\right)^{\frac{q}{q-1}} d u\right\}^{1-\frac{1}{q}}
\end{aligned}
$$

by definition of Besov space.

Lemma 4.3. Let $0<\alpha<2$. Suppose that $0 \leq \beta<\alpha$. If $f \in B_{q}^{\alpha}\left(L_{p}\right), p \geq 1$ and $q=\infty$, then

$$
\sup _{0<t, u \leq \pi} t^{-\beta}\|\phi(\cdot, t, u)\|_{p}=O\left(u^{\alpha-\beta}\right)
$$

Proof. For $0<t \leq u \leq \pi$, applying Lemma 4.1(i), we have

$$
\begin{aligned}
\sup _{\substack{t, 0<t \leq u \leq \pi}} t^{-\beta}\|\phi(\cdot, t, u)\|_{p} & =\sup _{\substack{t, 0<t \leq u \leq \pi}} t^{\alpha-\beta}\left(t^{-\alpha}\|\phi(\cdot, t, u)\|_{p}\right) \\
& \leq 4 u^{\alpha-\beta} \sup _{t}\left(t^{-\alpha} w_{k}(f, t)_{p}\right) \\
& =O\left(u^{\alpha-\beta}\right), \quad \text { by the hypothesis. }
\end{aligned}
$$

Next for $0<u \leq t \leq \pi$, applying Lemma 4.1(ii), we get

$$
\begin{aligned}
\sup _{\substack{t, 0<u \leq t \leq \pi}} t^{-\beta}\|\phi(\cdot, t, u)\|_{p} & \leq 4 w_{k}(f, u)_{p} \sup _{\substack{t, 0<\leq \leq \leq \leq \pi}} t^{-\beta} \\
& \leq 4 u^{\alpha-\beta} \sup _{u}\left(u^{-\alpha} w_{k}(f, u)_{p}\right) \\
& =O\left(u^{\alpha-\beta}\right), \quad \text { by the hypothesis }
\end{aligned}
$$

and this completes the proof.

Lemma 4.4.

(a) Let $K_{n}(u)$ be defined as in (6). Let there exist a positive non-decreasing sequence (μ_{n}) with $\mu_{1}=1$, then for $0<u \leq \pi$

$$
K_{n}(u)=O\left(\mu_{n}\right) .
$$

(b) Let $\psi(n)=\sup \sum_{k=0}^{\infty}\left|a_{n, k}-a_{n, k+1}\right|$. Then for $0<u \leq \pi$,

$$
K_{n}(u)=O\left(u^{-2} \psi(n)\right)
$$

Proof.
(a) From (4), we have

$$
\begin{align*}
\left|D_{k}(u)\right| & =\left|\frac{1}{2}+\sum_{v=0}^{k} \cos v u\right| \\
& \leq \frac{1}{2}+\sum_{v=0}^{k}|\cos v u| \\
& \leq k+1 \tag{34}
\end{align*}
$$

Then

$$
\begin{aligned}
\left|K_{n}(u)\right| & \leq \sum_{k=0}^{\infty}\left|a_{n, k} D_{k}(u)\right| \\
& \leq \sum_{k=0}^{\mu_{n}}\left|a_{n, k}\right|(k+1)+\sum_{k=\mu_{n}+1}^{\infty}\left|a_{n, k}\right|(k+1) \quad \text { (by using (34)) } \\
& \leq \mu_{n} \sum_{k=0}^{\mu_{n}}\left|a_{n, k}\right|+\sum_{k=\mu_{n}+1}^{\infty}\left|a_{n, k}\right|(k+1) \\
& \leq \mu_{n} \sum_{k=0}^{\mu_{n}}\left|a_{n, k}\right|+O\left(\mu_{n}\right) \\
& =O\left(\mu_{n}\right)+O\left(\mu_{n}\right) \\
& =O\left(\mu_{n}\right), \quad \text { (by hypothesis (iii)) }
\end{aligned}
$$

(b) Applying Abel's transformation, we have

$$
\begin{aligned}
\sum_{k=0}^{\infty} a_{n, k} \sin \left(k+\frac{1}{2}\right) u & =O\left(u^{-1}\right) \sum_{k=0}^{\infty}\left|a_{n, k}-a_{n, k+1}\right| \\
& =O\left(u^{-1} \psi(n)\right)
\end{aligned}
$$

from which it follows that

$$
K_{n}(u)=O\left(u^{-2} \psi(n)\right)
$$

5. Proof of Theorem

Case $1(1<q<\infty)$
Since $t_{n}(x)$ denote the transformations of the Fourier series f, we have

$$
\begin{align*}
t_{n}(x) & =\sum_{k=0}^{\infty} a_{n, k} s_{k}(x) \tag{35}\\
& =\sum_{k=0}^{\infty} a_{n, k}\left[\frac{1}{\pi} \int_{0}^{\pi} \phi_{x}(u) D_{k}(u) d u+f(x)\right](\text { by }(2)) \\
& =\frac{1}{\pi} \sum_{k=0}^{\infty} a_{n, k} \int_{0}^{\pi} \phi_{x}(u) D_{k}(u) d u+\sum_{k=0}^{\infty} a_{n, k} f(x) \\
& =\frac{1}{\pi} \int_{0}^{\pi}\left(\sum_{k=0}^{\infty} a_{n, k} D_{k}(u)\right) \phi_{x}(u) d u+f(x) \sum_{k=0}^{\infty} a_{n, k} \\
\text { Now, } T_{n}(x) & =\frac{1}{\pi} \int_{0}^{\pi} \phi_{x}(u) K_{n}(u) d u \tag{36}\\
\text { where we write } T_{n}(x) & =t_{n}(x)-f(x) \tag{37}
\end{align*}
$$

We first consider the case $1<q<\infty$. We have for $p \geq 1$ and $0 \leq \beta<\alpha<2$, by use of Besov norm defined in (26) for $B_{q}^{\beta}\left(L_{p}\right)$ is

$$
\begin{align*}
\|f\|_{B_{q}^{\alpha}\left(L_{p}\right)} & =\|f\|_{p}+\left\|w_{k}(f, \cdot)\right\|_{\alpha, q} \tag{38}\\
\left\|T_{n}(\cdot)\right\|_{B_{q}^{\beta}\left(L_{p}\right)} & =\left\|T_{n}(\cdot)\right\|_{p}+\left\|w_{k}\left(T_{n}, \cdot\right)\right\|_{\beta, q} \tag{39}
\end{align*}
$$

Applying Lemma 4.1(iii) in equation (39), we have

$$
\begin{aligned}
\left\|T_{n}(\cdot)\right\|_{p} & \leq \frac{1}{\pi} \int_{0}^{\pi}\|\phi \cdot(u)\|_{p}\left|K_{n}(u)\right| d u \\
& \leq \frac{1}{\pi} \int_{0}^{\pi} 2 w_{k}(f, u)_{p}\left|K_{n}(u)\right| d u \\
& =\frac{2}{\pi} \int_{0}^{\pi}\left|K_{n}(u)\right| w_{k}(f, u)_{p} d u
\end{aligned}
$$

Applying Hölder's inequality, we have

$$
\left\|T_{n}(\cdot)\right\|_{p} \leq \frac{2}{\pi}\left\{\int_{0}^{\pi}\left(\left|K_{n}(u)\right| u^{\alpha+\frac{1}{q}}\right)^{\frac{q}{q-1}} d u\right\}^{1-\frac{1}{q}}\left\{\int_{0}^{\pi}\left(\frac{w_{k}(f, u)_{p}}{u^{\alpha+\frac{1}{q}}}\right)^{q} d u\right\}^{\frac{1}{q}}
$$

By definition of Besov Space, we have

$$
\begin{align*}
\left\|T_{n}(\cdot)\right\|_{p} & \leq O(1)\left\{\int_{0}^{\pi}\left(\left|K_{n}(u)\right| u^{\alpha+\frac{1}{q}}\right)^{\frac{q}{q-1}} d u\right\}^{1-\frac{1}{q}} \\
& =O(1)\left[\left\{\int_{0}^{\mu_{n}}\left(\left|K_{n}(u)\right| u^{\alpha+\frac{1}{q}}\right)^{\frac{q}{q-1}} d u\right\}^{1-\frac{1}{q}}+\left\{\int_{\mu_{n}}^{\pi}\left(\left|K_{n}(u)\right| u^{\alpha+\frac{1}{q}}\right)^{\frac{q}{q-1}} d u\right\}^{1-\frac{1}{q}}\right]^{\prime} \\
& =O(1)[I+J], \quad(\text { say }) \tag{40}
\end{align*}
$$

By using Lemma 4.4(a) in I of (40), we have

$$
\begin{align*}
I & =\left\{\int_{0}^{\frac{\pi}{\mu_{n}}}\left(\left|K_{n}(u)\right| u^{\alpha+\frac{1}{q}}\right)^{\frac{q}{q-1}} d u\right\}^{1-\frac{1}{q}} \\
& =O\left(\mu_{n}\right)\left\{\int_{0}^{\frac{\pi}{\mu_{n}}} u^{\left(\alpha+\frac{1}{q}\right) \cdot \frac{q}{q-1}} d u\right\}^{1-\frac{1}{q}} \\
& =O\left(\mu_{n}\right)\left\{\int_{0}^{\frac{\pi}{\mu_{n}}} u^{\frac{q}{q-1}(\alpha+1)-1} d u\right\}^{1-\frac{1}{q}} \\
& =O\left(\frac{1}{\mu_{n}^{\alpha}}\right) \tag{41}
\end{align*}
$$

Applying Lemma 4.4(b) in J of (40), we have

$$
\begin{align*}
J & =\left\{\int_{\frac{\pi}{\mu_{n}}}^{\pi}\left(\left|K_{n}(u)\right| u^{\alpha+\frac{1}{q}}\right)^{\frac{q}{q-1}} d u\right\}^{1-\frac{1}{q}} \\
& =O(\psi(n))\left\{\int_{\frac{\pi}{\mu_{n}}}^{\pi}\left(u^{\alpha+\frac{1}{q}-2}\right)^{\frac{q}{q-1}} d u\right\}^{1-\frac{1}{q}} \\
& =O(\psi(n))\left\{\sum_{k=1}^{n-1} \int_{\frac{\pi}{\mu_{k+1}}}^{\frac{\pi}{\mu_{k}}}\left(u^{\alpha+\frac{1}{q}-2}\right)^{\frac{q}{q-1}} d u\right\}^{1-\frac{1}{q}} \\
& =O(\psi(n))\left\{\sum_{k=1}^{n} \int_{\frac{\pi}{\mu_{k+1}}}^{\frac{\pi}{\mu_{k}}} u^{\left(\alpha+\frac{1}{q}-2\right) \cdot \frac{q}{q-1}} d u\right\}^{1-\frac{1}{q}} \\
& =O(\psi(n))\left\{\sum_{k=1}^{n} \frac{\mu_{k+1}-\mu_{k}}{\mu_{k}^{2} \mu_{k}^{\frac{q}{q-1}\left(\alpha+\frac{1}{q}-2\right)}}\right\}^{1-\frac{1}{q}} \\
& =O(\psi(n))\left\{\sum_{k=1}^{n}\left(\frac{\left(\mu_{k+1}-\mu_{k}\right)^{1-\frac{1}{q}}}{\mu_{k}^{\left(\alpha-\frac{1}{q}\right)}}\right)^{\frac{q}{q-1}}\right\}^{1-\frac{1}{q}} \tag{42}
\end{align*}
$$

Using (41) and (42) and we have from (40),

$$
\begin{equation*}
\left\|T_{n}(\cdot)\right\|_{p}=O\left(\frac{1}{\mu_{n}^{\alpha}}\right)+O(\psi(n))\left\{\sum_{k=1}^{n}\left(\frac{\left(\mu_{k+1}-\mu_{k}\right)^{1-\frac{1}{q}}}{\mu_{k}^{\left(\alpha-\frac{1}{q}\right)}}\right)^{\frac{q}{q-1}}\right\}^{1-\frac{1}{q}} \tag{43}
\end{equation*}
$$

By using Besov space, we have

$$
\begin{aligned}
\left\|w_{k}\left(T_{n}, \cdot\right)\right\|_{\beta, q} & =\left\{\int_{0}^{\pi}\left(t^{-\beta} w_{k}\left(T_{n}, t\right)_{p}\right)^{q} \frac{d t}{t}\right\}^{\frac{1}{q}} \\
& =\int_{0}^{\pi}\left\{\left(\frac{w_{k}\left(T_{n}, t\right)_{p}}{t^{\beta}}\right)^{q} \frac{d t}{t}\right\}^{\frac{1}{q}}
\end{aligned}
$$

From definition of $w_{k}\left(T_{n}, t\right)_{p}$, we have

$$
\begin{aligned}
w_{k}\left(T_{n}, t\right)_{p} & =\left\|T_{n}(\cdot, t)\right\|_{p} \\
& \leq\left\{\int_{0}^{\pi}\left(\frac{\left\|T_{n}(\cdot, t)\right\|_{p}}{t^{\beta}}\right)^{q} \frac{d t}{t}\right\}^{\frac{1}{q}} \\
& =\left[\int_{0}^{\pi}\left\{\int_{0}^{\pi}\left|T_{n}(x, t)\right|^{p} d x\right\}^{\frac{q}{p}} \frac{d t}{t^{\beta q+1}}\right]^{\frac{1}{q}} \\
& =\left[\int_{0}^{\pi}\left\{\int_{0}^{\pi}\left|\int_{0}^{\pi} \phi(x, t, u) K_{n}(u) d u\right|^{p} d x\right\}^{\frac{q}{p}} \frac{d t}{t^{\beta q+1}}\right]^{\frac{1}{q}}
\end{aligned}
$$

By repeated application of generalized Minkowski's inequality, we have

$$
\begin{align*}
\left\|w_{k}\left(T_{n}, \cdot\right)\right\|_{\beta, p} \leq & \frac{1}{\pi}\left[\int_{0}^{\pi}\left\{\int_{0}^{\pi}\left(\int_{0}^{\pi}|\phi(x, t, u)|^{p}\left|K_{n}(u)\right|^{p} d x\right)^{\frac{1}{p}} d u\right\}^{q} \frac{d t}{t^{\beta q+1}}\right]^{\frac{1}{q}} \\
= & \frac{1}{\pi}\left[\int_{0}^{\pi}\left\{\int_{0}^{\pi}\left|K_{n}(u)\right| \|\left.\phi(\cdot, t, u)\right|_{p} d u\right\}^{q} \frac{d t}{t^{\beta q+1}}\right]^{\frac{1}{q}} \\
\leq & \frac{1}{\pi} \int_{0}^{\pi}\left|K_{n}(u)\right| d u\left(\int_{0}^{\pi} \frac{\|\left.\phi(\cdot, t, u)\right|_{p} ^{q}}{t^{\beta q}} \frac{d t}{t}\right)^{\frac{1}{q}} \\
= & \frac{1}{\pi} \int_{0}^{\pi}\left|K_{n}(u)\right| d u\left\{\left(\int_{0}^{u}+\int_{u}^{\pi}\right) \frac{\|\left.\phi(\cdot, t, u)\right|_{p} ^{q}}{t^{\beta q}} \frac{d t}{t}\right\}^{\frac{1}{q}} \\
\leq & \frac{1}{\pi} \int_{0}^{\pi}\left|K_{n}(u)\right| d u\left\{\int_{0}^{u} \frac{\|\left.\phi(\cdot, t, u)\right|_{p} ^{q}}{t^{\beta q}} \frac{d t}{t}\right\}^{\frac{1}{q}} \\
& +\frac{1}{\pi} \int_{0}^{\pi}\left|K_{n}(u)\right| d u\left\{\int_{u}^{\pi} \frac{\|\left.\phi(\cdot, t, u)\right|_{p} ^{q}}{t^{\beta q}} \frac{d t}{t}\right\}^{\frac{1}{q}} \\
= & O(1)\left[\left\{\int_{0}^{\pi}\left(\left|K_{n}(u)\right| u^{\alpha-\beta}\right)^{\frac{q}{q-1}} d u\right\}^{1-\frac{1}{q}}\left\{\int_{0}^{\pi}\left(\left|K_{n}(u)\right| u^{\alpha-\beta+\frac{1}{q}}\right)^{\frac{q}{q-1}} d u\right\}^{1-\frac{1}{q}}\right](\text { using Lemma } 4.2) \\
= & O(1)\left[I^{\prime}+J^{\prime}\right], \quad(s a y) \tag{44}\\
& \quad I^{\prime}=\left\{\int_{0}^{\pi}\left(\left|K_{n}(u)\right| u^{\alpha-\beta}\right)^{\frac{q}{q-1}} d u\right\}^{1-\frac{1}{q}} \\
& =\left\{\int_{0}^{\prime}+I_{2}^{\prime}, \quad(s a y)\right. \\
& \left.\left.\left.=\left\{\int_{0}^{\mu_{n}}+\int_{\mu_{n}}^{\pi}\right)\left(\left|K_{n}(u)\right| u^{\alpha-\beta}\right)^{\frac{q}{q-1}} d u\right\}^{\alpha-\beta}\right)^{\frac{q}{q-1}} d u\right\}^{1-\frac{1}{q}}+\left\{\int_{\mu_{n}}^{\pi}\left(\left|K_{n}(u)\right| u^{\alpha-\beta}\right)^{\frac{q}{q-1}} d u\right\}^{1-\frac{1}{q}}
\end{align*}
$$

Applying Lemma 4.4(a) in I_{1}^{\prime}, we have

$$
\begin{align*}
I_{1}^{\prime} & =\left\{\int_{0}^{\frac{\pi}{\mu_{n}}}\left(\left|K_{n}(u)\right| u^{\alpha-\beta}\right)^{\frac{q}{q-1}} d u\right\}^{1-\frac{1}{q}} \\
& =O\left(\mu_{n}\right)\left\{\int_{0}^{\frac{\pi}{\mu_{n}}} u^{\alpha-\beta\left(\frac{q}{q-1}\right)} d u\right\}^{1-\frac{1}{q}} \\
& =O\left(\mu_{n}\right)\left\{\int_{0}^{\frac{\pi}{\mu_{n}}} u^{\frac{q}{q-1}\left(\alpha-\beta+1-\frac{1}{q}\right)-1} d u\right\}^{1-\frac{1}{q}} \\
& =O\left(\frac{1}{\mu_{n}^{\alpha-\beta-\frac{1}{q}}}\right) \tag{46}
\end{align*}
$$

Applying Lemma 4.4(b) in I_{2}^{\prime}, we have

$$
\begin{aligned}
I_{2}^{\prime} & =\left\{\int_{\frac{\pi}{\mu_{n}}}^{\pi}\left(\left|K_{n}(u)\right| u^{\alpha-\beta}\right)^{\frac{q}{q-1}} d u\right\}^{1-\frac{1}{q}} \\
& =O(\psi(n))\left\{\int_{\frac{\pi}{\mu_{n}}}^{\pi}\left(u^{\alpha-\beta-2}\right)^{\frac{q}{q-1}} d u\right\}^{1-\frac{1}{q}} \\
& =O(\psi(n))\left\{\sum_{k=1}^{n-1} \int_{\frac{\pi}{\mu_{k+1}}}^{\frac{\pi}{\mu_{k}}} u^{(\alpha-\beta-2) \frac{q}{q-1}} d u\right\}^{1-\frac{1}{q}} \\
& =O(\psi(n))\left\{\sum_{k=1}^{n} \int_{\frac{\pi}{\mu_{k+1}}}^{\frac{\pi}{\mu_{k}}} u^{(\alpha-\beta-2) \frac{q}{q-1}} d u\right\}^{1-\frac{1}{q}}
\end{aligned}
$$

Let $h(u)=\left(u^{\alpha-\beta}\right)^{\frac{q}{q-1}}$ and $H(u)$ be a primitive of $h(u)$, then

$$
\begin{align*}
& \int_{\frac{\pi}{\mu_{k+1}}}^{\frac{\pi}{\mu_{k}}}\left(u^{\alpha-\beta-2}\right)^{\frac{q}{q-1}} d u=\int_{\frac{\pi}{\mu_{k+1}}}^{\frac{\pi}{\mu_{k}}} h(u) d u \\
&=H\left(\frac{\pi}{\mu_{k}}\right)-H\left(\frac{\pi}{\mu_{k+1}}\right) \\
&=\left(\frac{\pi}{\mu_{k}}-\frac{\pi}{\mu_{k+1}}\right) h(c), \text { for some } \frac{\pi}{\mu_{k+1}}<c<\frac{\pi}{\mu_{k}} \\
&=O(1) \frac{\left(\mu_{k+1}-\mu_{k}\right)}{\mu_{k}^{2}}\left(\frac{1}{\mu_{k}^{\alpha-\beta-2}}\right)^{\frac{q}{q-1}} \\
&=O(1)\left(\frac{\left(\mu_{k+1}-\mu_{k}\right)^{1-\frac{1}{q}}}{\mu_{k}^{\alpha-\beta-\frac{2}{q}}}\right)^{\frac{q}{q-1}} \\
& I_{2}^{\prime}=O(\psi(n))\left\{\sum_{k=1}^{n}\left(\frac{\left(\mu_{k+1}-\mu_{k}\right)^{1-\frac{1}{q}}}{\mu_{k}^{\left(\alpha-\beta-\frac{2}{q}\right)}}\right)^{\frac{q}{q-1}}\right\}^{1-\frac{1}{q}} \tag{47}
\end{align*}
$$

From (46), (47) and (45), we have

$$
\begin{align*}
& I^{\prime}=O\left(\frac{1}{\mu_{n}^{\alpha-\beta-\frac{1}{q}}}\right)+O(\psi(n))\left\{\sum_{k=1}^{n}\left(\frac{\left(\mu_{k+1}-\mu_{k}\right)^{1-\frac{1}{q}}}{\mu_{k}^{\left(\alpha-\beta-\frac{2}{q}\right)}}\right)^{\frac{q}{q-1}}\right\}^{1-\frac{1}{q}} \tag{48}\\
& J^{\prime}=\left\{\int_{0}^{\pi}\left(\left|K_{n}(u)\right| u^{\alpha-\beta+\frac{1}{q}}\right)^{\frac{q}{q-1}} d u\right\}^{1-\frac{1}{q}} \\
&=\left\{\left(\int_{0}^{\frac{\pi}{\mu_{n}}}+\int_{\frac{\pi}{\mu_{n}}}^{\pi}\right)\left(\left|K_{n}(u)\right| u^{\alpha-\beta+\frac{1}{q}}\right)^{\frac{q}{q-1}} d u\right\}^{1-\frac{1}{q}} \\
& \leq\left\{\int_{0}^{\frac{\pi}{\mu_{n}}}\left(\left|K_{n}(u)\right| u^{\alpha-\beta+\frac{1}{q}}\right)^{\frac{q}{q-1}} d u\right\}^{1-\frac{1}{q}} \\
&+\left\{\int_{\frac{\pi}{\mu_{n}}}^{\pi}\left(\left|K_{n}(u)\right| u^{\alpha-\beta+\frac{1}{q}}\right)^{\frac{q}{q-1}} d u\right\}^{1-\frac{1}{q}} \\
&=\left(J_{1}^{1}+J_{2}^{1}\right), \quad(\text { say }) \tag{49}
\end{align*}
$$

Applying Lemma 4.4(a) in J_{1}^{1}, we have

$$
\begin{align*}
J_{1}^{1} & =\left\{\int_{0}^{\frac{\pi}{\mu_{n}}}\left(\left|K_{n}(u)\right| u^{\alpha-\beta+\frac{1}{q}}\right)^{\frac{q}{q-1}} d u\right\}^{1-\frac{1}{q}} \\
& =O\left(\frac{1}{\mu_{n}}\right)\left\{\int_{0}^{\frac{\pi}{\mu_{n}}} u^{\frac{q}{q-1}\left(\alpha-\beta+\frac{1}{q}\right)} d u\right\}^{1-\frac{1}{q}} \\
& =O\left(\frac{1}{\mu_{n}}\right)\left\{\int_{0}^{\frac{\pi}{\mu_{n}}} u^{\frac{q}{q-1}(\alpha-\beta+1)-1} d u\right\}^{1-\frac{1}{q}} \\
& =O\left(\frac{1}{\mu_{n}^{\alpha-\beta}}\right) \tag{50}
\end{align*}
$$

Applying Lemma 4.4(b) in J_{2}^{1}, we have

$$
\begin{aligned}
J_{2}^{1} & =\left\{\int_{\frac{\pi}{\mu_{n}}}^{\pi}\left(\left|K_{n}(u)\right| u^{\alpha-\beta+\frac{1}{q}}\right)^{\frac{q}{q-1}} d u\right\}^{1-\frac{1}{q}} \\
& =O(\psi(n))\left\{\int_{\frac{\pi}{\mu_{n}}}^{\pi}\left(u^{\alpha-\beta-2+\frac{1}{q}}\right)^{\frac{q}{q-1}} d u\right\}^{1-\frac{1}{q}} \\
& =O(\psi(n))\left\{\sum_{k=1}^{n-1} \int_{\frac{\pi}{\mu_{k+1}}}^{\frac{\pi}{\mu_{k}}}\left(u^{\alpha-\beta-2+\frac{1}{q}}\right)^{\frac{q}{q-1}} d u\right\}^{1-\frac{1}{q}} \\
& =O(\psi(n))\left\{\sum_{k=1}^{n} \int_{\frac{\pi}{\mu_{k+1}}}^{\frac{\pi}{\mu_{k}}}\left(u^{\alpha-\beta-2+\frac{1}{q}}\right)^{\frac{q}{q-1}} d u\right\}^{1-\frac{1}{q}}
\end{aligned}
$$

Proceeding as in I_{2}^{1}, we have

$$
\begin{equation*}
J_{2}^{1}=O(\psi(n))\left\{\sum_{k=1}^{n}\left(\frac{\left(\mu_{k+1}-\mu_{k}\right)^{1-\frac{1}{q}}}{\mu_{k}^{\alpha-\beta-\frac{1}{q}}}\right)^{\frac{q}{q-1}}\right\}^{1-\frac{1}{q}} \tag{51}
\end{equation*}
$$

From (51), (50), (49), we have

$$
\begin{equation*}
J^{1}=O\left(\frac{1}{\mu_{n}^{\alpha-\beta}}\right)+O(\psi(n))\left\{\sum_{k=1}^{n}\left(\frac{\left(\mu_{k+1}-\mu_{k}\right)^{1-\frac{1}{q}}}{\mu_{k}^{\alpha-\beta-\frac{1}{q}}}\right)^{\frac{q}{q-1}}\right\}^{1-\frac{1}{q}} \tag{52}
\end{equation*}
$$

From (44), (48) and (52), we have

$$
\begin{align*}
\left\|w_{k}\left(T_{n, \cdot}\right)\right\|_{\beta, q}= & O(1)\left(I^{\prime}+J^{\prime}\right) \\
= & O\left(\frac{1}{\mu_{n}^{\alpha-\beta-\frac{1}{q}}}\right)+O(\psi(n))\left\{\sum_{k=1}^{n}\left(\frac{\left(\mu_{k+1}-\mu_{k}\right)^{1-\frac{1}{q}}}{\mu_{k}^{\left(\alpha-\beta-\frac{2}{q}\right)}}\right)^{\frac{q}{q-1}}\right\}^{1-\frac{1}{q}} \\
& +O\left(\frac{1}{\mu_{n}^{\alpha-\beta}}\right)+O(\psi(n))\left\{\sum_{k=1}^{n}\left(\frac{\left(\mu_{k+1}-\mu_{k}\right)^{1-\frac{1}{q}}}{\mu_{k}^{\alpha-\beta-\frac{1}{q}}}\right)^{\frac{q}{q-1}}\right\}^{1-\frac{1}{q}} \\
= & O\left(\frac{1}{\mu_{n}^{\alpha-\beta-\frac{1}{q}}}\right)+O(\psi(n))\left\{\sum_{k=1}^{n}\left(\frac{\left(\mu_{k+1}-\mu_{k}\right)^{1-\frac{1}{q}}}{\mu_{k}^{\left(\alpha-\beta-\frac{2}{q}\right)}}\right)^{\frac{q}{q-1}}\right\}^{1-\frac{1}{q}} \tag{53}
\end{align*}
$$

From (53), (43) and (39), we have

$$
\left\|T_{n}(\cdot)\right\|_{B_{q}^{\beta}\left(L_{p}\right)}=O\left(\frac{1}{\mu_{n}^{\alpha-\beta-\frac{1}{q}}}\right)+O(\psi(n))\left\{\sum_{k=1}^{n}\left(\frac{\left(\mu_{k+1}-\mu_{k}\right)^{1-\frac{1}{q}}}{\mu_{k}^{\left(\alpha-\beta-\frac{2}{q}\right)}}\right)^{\frac{q}{q-1}}\right\}^{1-\frac{1}{q}}
$$

This complete the proof of Case 1.
Case $2(q=\infty)$
Now, we consider the case $q=\infty$

$$
\begin{equation*}
\left\|T_{n}(\cdot)\right\|_{B_{\infty}^{\beta}\left(L_{p}\right)}=\left\|T_{n}(\cdot)\right\|_{p}+\left\|w_{k}\left(T_{n}, \cdot\right)\right\|_{\beta, \infty} \tag{55}
\end{equation*}
$$

We know $T_{n}(x)=\frac{1}{\pi} \int_{0}^{\pi} \phi_{x}(u) K_{n}(u) d u$.
Applying Lemma 4.1(iii), we have

$$
\begin{align*}
\left\|T_{n}(\cdot)\right\|_{p} & \leq \frac{1}{\pi} \int_{0}^{\pi}\|\phi \cdot(u)\|_{p} K_{n}(u) d u \\
& \leq \frac{2}{\pi} \int_{0}^{\pi}\left|K_{n}(u)\right| w_{k}(f, u)_{p} d u \\
& =O(1) \int_{0}^{\pi}\left|K_{n}(u)\right| u^{\alpha} d u \quad \text { (by the hypothesis) } \\
& =O(1)\left[\int_{0}^{\frac{\pi}{\mu_{n}}}\left|K_{n}(u)\right| u^{\alpha} d u+\int_{\frac{\pi}{\mu_{n}}}^{\pi}\left|K_{n}(u)\right| u^{\alpha} d u\right] \\
& =O(1)\left[I^{I I}+J^{I I}\right], \quad \text { (say) } \tag{56}
\end{align*}
$$

Applying Lemma 4.4(a) in $I^{I I}$, we have

$$
\begin{align*}
I^{I I} & =\int_{0}^{\frac{\pi}{\mu_{n}}}\left|K_{n}(u)\right| u^{\alpha} d u \\
& =O\left(\mu_{n}\right) \int_{0}^{\frac{\pi}{\mu_{n}}} u^{\alpha} d u \\
& =O\left(\frac{1}{\mu_{n}^{\alpha}}\right) \tag{57}
\end{align*}
$$

Applying Lemma $4.4(\mathrm{~b})$ in $J^{I I}$, we have

$$
\begin{aligned}
J^{I I} & =\int_{\frac{\pi}{\mu_{n}}}^{\pi}\left|K_{n}(u)\right| u^{\alpha} d u \\
& =O(\psi(n)) \int_{\frac{\pi}{\mu_{n}}}^{\pi} u^{\alpha-2} d u \\
& =O(\psi(n)) \sum_{k=1}^{n-1} \int_{\frac{\pi}{\mu_{k+1}}}^{\frac{\pi}{\mu_{k}}} u^{\alpha-2} d u \\
& =O(\psi(n)) \sum_{k=1}^{n} \int_{\frac{\pi}{\mu_{k+1}}}^{\frac{\pi}{\mu_{k}}} u^{\alpha-2} d u
\end{aligned}
$$

Proceeding as in I_{2}^{\prime}, we have

$$
\begin{equation*}
=O(\psi(n)) \sum_{k=1}^{n}\left(\frac{\mu_{k+1}-\mu_{k}}{\mu_{k}^{\alpha}}\right) \tag{58}
\end{equation*}
$$

From (56), (57) and (58), we have

$$
\begin{equation*}
\left\|T_{n}(\cdot)\right\|_{p}=O\left(\frac{1}{\mu_{n}^{\alpha}}\right)+O(\psi(n)) \sum_{k=1}^{n}\left(\frac{\mu_{k+1}-\mu_{k}}{\mu_{k}^{\alpha}}\right) \tag{59}
\end{equation*}
$$

Again,

$$
\begin{align*}
\left\|w_{k}\left(T_{n}, \cdot\right)\right\|_{\beta, q} & =\sup _{t>0} \frac{\left\|T_{n}(\cdot, t)\right\|_{p}}{t^{\beta}} \\
& =\sup _{t>0} \frac{t^{-\beta}}{\pi}\left[\int_{0}^{\pi}\left|\int_{0}^{\pi} \phi(x, t, u) K_{n}(u) d u\right|^{p} d x\right]^{\frac{1}{p}} \tag{60}
\end{align*}
$$

Applying generalised Minkowski's inequality, we have

$$
\begin{align*}
\left\|w_{k}\left(T_{n}, \cdot\right)\right\|_{\beta, q} & =\sup _{t>0} \frac{t^{-\beta}}{\pi} \int_{0}^{\pi} d u\left\{\int_{0}^{\pi}|\phi(x, t, u)|^{p}\left|K_{n}(u)\right|^{p} d x\right\}^{\frac{1}{p}} \\
& =\sup _{t>0} \frac{t^{-\beta}}{\pi} \int_{0}^{\pi}\left|K_{n}(u)\right|\|\phi(\cdot, t, u)\|_{p} d u \\
& \leq \frac{1}{\pi} \int_{0}^{\pi}\left|K_{n}(u)\right| d u \sup _{t>0} t^{-\beta}\|\phi(\cdot, t, u)\|_{p} \tag{61}
\end{align*}
$$

Using Lemma 4.3, we have

$$
\begin{align*}
\left\|w_{k}\left(T_{n}, \cdot\right)\right\|_{\beta, \infty} & \leq O(1) \int_{0}^{\pi} u^{\alpha-\beta}\left|K_{n}(u)\right| d u \\
& =O(1)\left(\int_{0}^{\frac{\pi}{\mu_{n}}}+\int_{\frac{\pi}{\mu_{n}}}^{\pi}\right) u^{\alpha-\beta}\left|K_{n}(u)\right| d u \\
& =O(1)\left[\int_{0}^{\frac{\pi}{\mu_{n}}} u^{\alpha-\beta}\left|K_{n}(u)\right| d u+\int_{\frac{\pi}{\mu_{n}}}^{\pi} u^{\alpha-\beta}\left|K_{n}(u)\right| d u\right] \\
& \left.=O(1)\left[I^{I I I}+J^{I I I}\right], \quad \text { (say }\right) \tag{62}
\end{align*}
$$

Using Lemma 4.4(a) in $I^{I I I}$, we have

$$
\begin{align*}
I^{I I I} & =\int_{0}^{\frac{\pi}{\mu_{n}}}\left|K_{n}(u)\right| u^{\alpha-\beta} d u \\
& =O\left(\mu_{n}\right) \int_{0}^{\frac{\pi}{\mu_{n}}} u^{\alpha-\beta} d u \\
& =O\left(\frac{1}{\mu_{n}^{\alpha-\beta}}\right) \tag{63}
\end{align*}
$$

Using Lemma 4.4(b) in $J^{I I I}$, we have

$$
\begin{align*}
J^{I I I} & =\int_{\frac{\pi}{\mu_{n}}}^{\pi} u^{\alpha-\beta}\left|K_{n}(u)\right| d u \\
& =O(\psi(n)) \int_{\frac{\pi}{\mu_{n}}}^{\pi} u^{\alpha-\beta-2} d u \\
& =O(\psi(n)) \sum_{k=1}^{n-1} \int_{\frac{\pi}{\mu_{k+1}}}^{\frac{\pi}{\mu_{k}}} u^{\alpha-\beta-2} d u \\
& =O(\psi(n)) \sum_{k=1}^{n} \int_{\frac{\pi}{\mu_{k+1}}}^{\frac{\pi}{\mu_{k}}} u^{\alpha-\beta-2} d u \\
& =O(\psi(n)) \sum_{k=1}^{n}\left(\frac{\mu_{k+1}-\mu_{k}}{\mu_{k}^{\alpha-\beta}}\right) \tag{64}
\end{align*}
$$

From (62), (63) and (64), we have

$$
\begin{equation*}
\left\|w_{k}\left(T_{n}, \cdot\right)\right\|_{\beta, \infty}=O\left(\frac{1}{\mu_{n}^{\alpha-\beta}}\right)+O(\psi(n)) \sum_{k=1}^{n}\left(\frac{\mu_{k+1}-\mu_{k}}{\mu_{k}^{\alpha-\beta}}\right) \tag{65}
\end{equation*}
$$

From (55),(59) and (65), we have

$$
\begin{equation*}
\left\|T_{n}(\cdot)\right\|_{B_{\infty}^{\beta}\left(L_{p}\right)}=O\left(\frac{1}{\mu_{n}^{\alpha-\beta}}\right)+O(\psi(n)) \sum_{k=1}^{n}\left(\frac{\mu_{k+1}-\mu_{k}}{\mu_{k}^{\alpha-\beta}}\right) \tag{66}
\end{equation*}
$$

This completes the Case 2.
Combining the Case 1 and Case 2, we obtain the proof of the theorem.

Acknowledgement

We thank Dr.B.K.Ray for his valuable suggestions.

References

[1] G.Das, T.Ghosh and B,K.Ray, Degree of Approximation of function by their Fourier series in the generalized Holder metric, Proc. Indian Acad. Sci. (Math.Sci), 106(1996), 139-153.
[2] A.Devore Ronald and G.Lorentz, Constructive approximation, Springler- Verlay, Berlin Heidelberg New York, (1993).
[3] S.Prossdorf, Zur Konvergenz der Fourier richen Holder stetiger Funktionen, Math. Nachar, 69(1975), 7-14.
[4] P.Wojtaszczyk, A Mathematical Introduction to Wevlets, London Mathematical Society students texts 37, Cambridge University Press, New York, (1997).
[5] A.Zygmund, Smooth fuctions, Duke Math. Jounal, 12(1945), 47-56.
[6] A.Zygmund, Trigonometric series, vols I \& II combined, Cambridge Univ. Press, New York, (1993).

[^0]: * E-mail: pinku_madhu@yahoo.com

