International Journal of Mathematics And its Applications

A Right Inverse Function for Collatz Function

T.Kannan ${ }^{1 *}$ and C.Ganesa Moorthy ${ }^{2}$
1 Department of Mathematics, Sree Sevugan Annamalai college, Devakottai, Tamil Nadu, India.
2 Department of Mathematics, Alagappa University, Karaikudi, Tamil Nadu, India.

Abstract: A right inverse function $S(x)$ from the set of natural numbers N into itself for classical Collatz function is defined by

$$
S(x)= \begin{cases}2 m+1, & \text { if } x=3 m+2 \\ 6 m, & \text { if } x=3 m \\ 6 m+2, & \text { if } x=3 m+1\end{cases}
$$

This study assumes that the positive integers x, satisfying $S^{k}(x)>x$, for some k as integers favourable to Collatz conjecture. The integers of the form $x=3 m+2$ poses difficulty for Collatz conjecture. Hence $N_{3}=\{3 m+2: m \in N\}$ is spilitted into many sets till it happens that $y=3^{k+1} p+x$ with $x \in N_{3}$ are favourable to Collatz conjecture (with $p=0,1,2, \ldots)$.

MSC: $\quad 11 \mathrm{~B} 05,11 \mathrm{~A} 07,11 \mathrm{~A} 99,11 \mathrm{Y} 55$.
Keywords: Right inverse, Collatz conjecture.
(C) JS Publication.

1. Introduction

Let $T: N \rightarrow N$, on the set of natural numbers N be defined by

$$
T(x)= \begin{cases}\frac{x}{2}, & \text { if } x \text { is even } \\ \frac{3 x+1}{2}, & \text { if } x \text { is odd }\end{cases}
$$

The Collatz conjecture claims that repeated iteration of $T(x)$, starting from any positive integer x, eventually reaches the value 1 . Let $S: N \rightarrow N$, be defined by

$$
S(x)= \begin{cases}2 m+1, & \text { if } x=3 m+2 \\ 6 m, & \text { if } x=3 m \\ 6 m+2, & \text { if } x=3 m+1\end{cases}
$$

when $m=0,1,2,3, \ldots$ for the cases $x=3 m+1$ and $x=3 m+2$, and when $m=1,2,3,4, \ldots$ for the case $x=3 m$. Then $T \circ S: N \rightarrow N$ is the identity mapping, so that S becomes a right inverse of T. To each $x \in N, T^{k}(x)$ reaches eventually 1 ,

[^0]by varying k, if and only if $\left\{x \in N: T^{k}(x)<x\right.$, for some k, depending on $\left.x\right\}=N-\{1\}$. This result shows that the positive integers x, satisfying $T^{k}(x)<x$, for some k may be considered as integers favourable to Collatz conjecture. So the positive integers x, satisfying $S^{k}(x)>x$, for some k are considered as integers favourable to Collatz conjecture in this article. This article is to find this type of favourable integers. But this excludes the case $x=1$ or 2 , because $S(1)=2, S^{2}(1)=1$ and $S(2)=1, S^{2}(2)=2$. There are articles $[1,4,8-10,12,13]$ of this type which find particular integers "favourable " to Collatz conjecture, apart from a type of articles [2, 3, 5-7, 11, 14-17] proving theoretical results.

2. First Approach

Case 1: Suppose $x=3 m$ or $x=3 m+1$, for some $m=1,2,3,4, \ldots$ Then $S(x)=2 x>x$. Therefore the numbers of the form $x=3 m$ or $x=3 m+1$, for $m=1,2,3,4, \ldots$ are integers favourable to Collatz conjecture.

Case 2: Suppose $x=3 m+2$ and $m=3 n$, with $n=1,2,3,4, \ldots$. Then $x=9 n+2=3(3 n)+2, S(x)=2(3 n)+1=3(2 n)+1$, $S^{2}(x)=6(2 n)+2>9 n+2=x$. Hence $S^{2}(x)>x$. Therefore $x=9 n+2$, for $n=1,2,3,4, \ldots$ are integers favourable to Collatz conjecture.

Case 3: Suppose $x=3 m+2$ and $m=3 n+1$, with $n=0,1,2,3,4, \ldots$. Then $x=9 n+5=3(3 n+1)+2, S(x)=$ $2(3 n+1)+1=3(2 n+1)=$ a multiple of $3, S^{2}(x)=6(2 n+1)=3(4 n+2)>9 n+5=x$. Hence $S^{2}(x)>x$. Therefore $x=9 n+5$, for $n=0,1,2,3,4 \ldots$, are integers favourable to Collatz conjecture.

Case 4: Suppose $x=9 m+8$ and $m=3 n$, with $n=0,1,2,3,4, \ldots$. Then $x=27 n+8=3(9 n+2)+2, S(x)=2(9 n+2)+1=$ $3(6 n+1)+2, S^{2}(x)=2(6 n+1)+1=3(4 n+1)=$ a multiple of $3, S^{3}(x)=6(4 n+1)=3(8 n+2)=$ a multiple of 3, $S^{4}(x)=6(8 n+2)=48 n+12>27 n+8=x$. Hence $S^{4}(x)>x$. Therefore $x=9 n+5$, for $n=0,1,2,3,4, \ldots$ are integers favourable to Collatz conjecture.

Case 5: Suppose $x=9 m+8, m=3 n+1$, and $n=3 p$ with $p=0,1,2,3,4, \ldots$. Then $x=81 p+17=3(27 p+5)+2$, $S(x)=2(27 p+5)+1=3(18 p+5)+1, S^{2}(x)=6(18 p+5)+2=108 p+32>81 p+17=x$. Hence $S^{2}(x)>x$. Therefore $x=81 p+17$, for $p=0,1,2,3,4, \ldots$ are integers favourable to Collatz conjecture.

Case 6: Suppose $x=9 m+8, m=3 n+1$, and $n=3 p+1$ with $p=0,1,2,3,4, \ldots$ Then $x=81 p+44=3(27 p+13)+2$, $S(x)=2(27 p+13)+1=3(18 p+9)=$ a multiple of $3, S^{2}(x)=6(18 p+9)=108 p+54>81 p+44=x$. Hence $S^{2}(x)>x$. Therefore $x=81 p+44$, for $p=0,1,2,3,4, \ldots$ are integers favourable to Collatz conjecture.

Case 7: Suppose $x=9 m+8, m=3 n+2, n=3 p$, and $p=3 r$ with $r=0,1,2,3,4 \ldots$. Then $x=243 r+26=3(81 r+8)+2$, $S(x)=2(81 r+8)+1=3(54 r+5)+2, S^{2}(x)=2(54 r+5)+2=3(36 r+3)+2, S^{3}(x)=2(36 r+3)+1=3(24 r+2)+1$, $S^{4}(x)=6(24 r+2)+2=3(48 r+4), S^{5}(x)=2(48 r+4)+1=3(32 r+3)=$ a multiple of $3, S^{6}(x)=6(32 r+3)=$ $3(64 r+6)=$ a multiple of $3, S^{7}(x)=6(64 r+6)=384 r+36>243 r+26=x$. Hence $S^{7}(x)>x$. Therefore $x=243 r+26$, for $r=0,1,2,3,4 \ldots$, are integers favourable to Collatz conjecture.

Case 8: Suppose $x=9 m+8, m=3 n+2$, and $n=3 p+1$, with $p=0,1,2,3,4 \ldots$. Then $x=81 p+53=3(27 p+17)+2$, $S(x)=2(27 p+17)+1=3(18 p+11)+2, S^{2}(x)=2(18 p+11)+1=3(12 p+7)+2, S^{3}(x)=2(12 p+7)+1=3(8 p+5)=$ a multiple of $3, S^{4}(x)=6(8 p+5)=3(16 p+10)=$ a multiple of $3, S^{5}(x)=6(16 p+10)=96 p+60>81 p+53=x$. Hence $S^{5}(x)>x$. Therefore $x=81 p+53$, with $p=0,1,2,3,4 \ldots$, are integers favourable to Collatz conjecture.

So we have the following conclusion.
Theorem 2.1. The following types of integers are favourable to Collatz conjecture.
(i). $x=3 m$, with $m=1,2,3,4 \ldots \ldots$
(ii). $x=3 n+1, x=9 n+2, x=9 n+5, x=27 n+8, x=81 n+17, x=81 n+44, x=81 n+53, x=243 n+26$ with $n=0,1,2,3 \ldots$.

3. Second Approach

If we write $N-\{1,2\}=N_{1} \cup N_{2} \cup N_{3}$, where $N_{1}=\{3 m: m \in N\}, N_{2}=\{3 m+1: m \in N\}, N_{3}=\{3 m+2: m \in N\}$, then the integers in N_{1} and N_{2} are integers favourable to Collatz conjecture. But it is being difficult to find, whether the integers of N_{3} are integers favourable to Collatz conjecture or not. For this difficult case, here N_{3} is splitted in to many sets like, $B_{1}=\{3 m+2$ with $m=3 n: n=1,2,3 \ldots \ldots\}, B_{2}=\{3 m+2$ with $m=3 n+1: n=1,2,3 \ldots \ldots\}, B_{3}=\{9 m+8$ with $m=3 n: n=1,2,3 \ldots ..\}, B_{4}=\{9 m+8$ with $m=3 n+1$ and $n=3 p: p=0,1,2,3 \ldots \ldots\}, B_{5}=\{9 m+8$ with $m=3 n+1$ and $n=3 p+1: p=0,1,2,3 \ldots \ldots\}, B_{6}=\{9 m+8$ with $m=3 n+2, n=3 p$ and $p=3 r: r=0,1,2,3 \ldots\},. B_{7}=\{9 m+8$ with $m=3 n+2$ and $n=3 p+1: p=0,1,2,3 \ldots$.$\} etc., to find integers favourable to Collatz conjecture. B_{1}, B_{2}, B_{3}, B_{4}, B_{5}$, B_{6}, B_{7} are sets of integers favourable to Collatz conjecture in view of Theorem 2.1.
Let us consider the set $N_{3}=\{5,8,11,14 \ldots \ldots\}$ again for discussion. Let us apply S succesively on these integers x in N_{3} till $S^{l}(x)>(x)$ or $S^{l}(x)$ is a multiple of 3 , for some smallest l. For the second case let k be the smallest integer such that divisibility of 3^{k} is done till it becomes a multiple of 3 . That is there are l iterations in which integers of the type $3 q+2$ are encountered k times, before $S^{l}(x)$ is a multiple of 3 . Similarly, let same k be the smallest integer such that divisibility by 3^{k+1} is done till it satisfies the relation $S^{l}(x)>(x)$, for some smallest l for the first case. That is, there are l iterations in which integers of the type $3 q+2$ are encountered $(k+1)$ times. Then it happens that $3^{k+1} p+x$ is favourable in both cases for Collatz conjecture (with $p=0,1,2,3, \ldots \ldots$.). One may understand the validity of this reason through the following illustrations.

Case 1: Consider $x=5=3(1)+2$. Then $S(x)=2(1)+1=3=$ a multiple of 3 . Therefore the value of k is 1 . Take $y=3^{k+1} p+x$, with $p=0,1,2,3, \ldots$. Then $y=3^{2} p+5$, with $p=0,1,2,3, \ldots$ and $y=3(3 p+1)+2$, $S(y)=2(3 p+1)+1=3(2 p+1)=$ a multiple of $3, S^{2}(y)=6(2 p+1)=12 p+6>3^{2} p+5=y$. Hence $S^{2}(y)>y$, for all y in A_{1}, where $A_{1}=\left\{3^{2} p+5: p=0,1,2 \ldots\right\}$ and A_{1} has integers favourable to Collatz conjecture.

Case 2: Consider $x=8=3(2)+2$. Then $S(x)=2(2)+1=3(1)+2, S^{2}(x)=2(1)+1=3=$ a multiple of 3 . Therefore the value of k is 2. Take $y=3^{k+1} p+x$, with $p=0,1,2,3, \ldots$. Then $y=3^{3} p+5$, with $p=0,1,2,3, \ldots$ and $y=3(9 p+2)+2, S(y)=2(9 p+2)+1=3(6 p+1)+2, S^{2}(y)=2(6 p+1)+1=3(4 p+1)=$ a multiple of 3 , $S^{4}(y)=6(8 p+2)=48 p+16>27 p+8=y$. Hence $S^{4}(y)>y$, for all y in A_{2}, where $A_{2}=\left\{3^{3} p+8: p=0,1,2 \ldots.\right\}$ and A_{2} has integers favourable to Collatz conjecture.

Case 3: Consider $x=11=3(3)+2$. Then $S(x)=2(3)+1=3(2)+1, S^{2}(x)=6(2)+2=14>11=x$. Therefore the value of $(k+1)$ is 2 . Take $y=3^{k+1} p+x$, with $p=0,1,2,3, \ldots$. Then $y=3^{2} p+11$, with $p=0,1,2,3, \ldots$ and $y=3(3 p+3)+2, S(y)=2(3 p+3)+1=3(2 p+2)+1, S^{2}(y)=6(2 p+2)+2=12 p+14>9 p+11=y$. Hence $S^{2}(y)>y$, for all y in A_{3}, where $A_{3}=\left\{3^{2} p+11: p=0,1,2 \ldots.\right\}$ and A_{3} has integers favourable to Collatz conjecture.

Case 4: Consider $x=14=3(4)+2$. Then $S(x)=2(4)+1=9=$ a multiple of 3 . Therefore the value of k is 1 . Take $y=3^{k+1} p+x$, with $p=0,1,2,3, \ldots$. Then $y=3^{2} p+14$, with $p=0,1,2,3, \ldots$ and $y=3(3 p+4)+2$, $S(y)=2(3 p+4)+1=3(2 p+3)=$ a multiple of $3, S^{2}(y)=6(2 p+3)=12 p+18>9 p+14=y$. Hence $S^{2}(y)>y$, for all y in A_{4}, where $A_{1}=\left\{3^{2} p+14: p=0,1,2 \ldots\right\}$ and A_{4} has integers favourable to Collatz conjecture.

Case 5: Consider $x=17=3(5)+2$. Then $S(x)=2(5)+1=3(3)+2, S^{2}(x)=2(3)+1=3(2)+1, S^{3}(x)=6(2)+2=3(4)+2$, $S^{4}(x)=2(4)+1=9=$ a multiple of 3 . Therefore the value of k is 3 . Take $y=3^{k+1} p+x$, with $p=0,1,2,3, \ldots \ldots$

Then $y=3^{4} p+17$, with $p=0,1,2,3, \ldots$ and $y=3(27 p+5)+2, S(y)=2(27 p+5)+1=3(18 p+3)+2$, $S^{2}(y)=2(18 p+3)+1=3(12 p+2)+1, S^{3}(y)=6(12 p+2)+2=3(24 p+4)+2, S^{4}(y)=2(24 p+4)+1=3(16 p+3)$, a multiple of $3, S^{5}(y)=6(16 p+3)=96 p+18>81 p+17=y$. Hence $S^{5}(y)>y$, for all y in A_{5}, where $A_{5}=\left\{3^{4} p+17\right.$: $p=0,1,2 \ldots\}$ and A_{5} has integers favourable to Collatz conjecture.

Case 6: Consider $x=20=3(6)+2$. Then $S(x)=2(6)+1=3(4)+1, S^{2}(x)=6(4)+2=26>20=x$. Therefore the value of $(k+1)$ is 2 . Take $y=3^{k+1} p+x$, with $p=0,1,2,3, \ldots$. Then $y=3^{2} p+20$, with $p=0,1,2,3, \ldots$ and $y=3(3 p+6)+2, S(y)=2(3 p+6)+1=3(2 p+4)+1, S^{2}(y)=6(2 p+4)+2=12 p+26>9 p+26=y$. Hence $S^{2}(y)>y$, for all y in A_{6}, where $A_{6}=\left\{3^{2} p+20: p=0,1,2 \ldots\right\}$ and A_{6} has integers favourable to Collatz conjecture.

Case 7: Consider $x=23=3(7)+2$. Then $S(x)=2(7)+1=15=$ a multiple of 3 . Therefore the value of k is 1 . Take $y=3^{k+1} p+x$, with $p=0,1,2,3, \ldots$. Then $y=3^{2} p+23$, with $p=0,1,2,3, \ldots$ and $y=3(3 p+7)+2$, $S(y)=2(3 p+7)+1=3(2 p+5)=$ a multiple of $3, S^{2}(y)=6(2 p+5)=12 p+30>9 p+23=y$. Hence $S^{2}(y)>y$, for all y in A_{7}, where $A_{7}=\left\{3^{2} p+23: p=0,1,2, \ldots\right\}$ and A_{7} has integers favourable to Collatz conjecture.

Case 8: Consider $x=26=3(8)+2$. Then $S(x)=2(8)+1=3(5)+2, S^{2}(x)=2(5)+1=3(3)+2, S^{3}(x)=2(3)+1=3(2)+1$, $S^{4}(x)=6(2)+2=3(4)+2, S^{5}(x)=2(4)+1=9=$ a multiple of 3 . Therefore the value of k is 4 . Take $y=3^{k+1} p+x$, with $p=0,1,2,3, \ldots$. Then $y=3^{5} p+26$, with $p=0,1,2,3, \ldots$ and $y=3(81 p+8)+2, S(y)=2(81 p+8)+1=3(54 p+5)+2$, $S^{2}(y)=2(54 p+5)+1=3(36 p+3)+2, S^{3}(y)=2(36 p+3)+1=3(24 p+2)+1, S^{4}(y)=6(24 p+2)+2=3(48 p+4)+2$, $S^{5}(y)=2(48 p+4)+1=3(32 p+3)=$ a multiple of $3, S^{6}(y)=6(32 p+3)=3(64 p+6)=$ a multiple of 3, , $S^{7}(y)=6(64 p+6)=384 p+36>243 p+26=y$. Hence $S^{7}(y)>y$, for all y in A_{8}, where $A_{8}=\left\{3^{5} p+26\right.$: $p=0,1,2, \ldots\}$ and A_{8} has integers favourable to Collatz conjecture.

Case 9: Consider $x=29=3(9)+2$. Then $S(x)=2(9)+1=3(6)+1, S^{2}(x)=6(6)+2=38>29=x$. Therefore the value of $(k+1)$ is 2. Take $y=3^{k+1} p+x$, with $p=0,1,2,3, \ldots$. Then $y=3^{2} p+29$, with $p=0,1,2,3, \ldots$ and $y=3(3 p+9)+2, S(y)=2(3 p+9)+1=3(2 p+6)+1, S^{2}(y)=6(2 p+6)+2=12 p+38>9 p+29=y$. Hence $S^{2}(y)>y$, for all y in A_{9}, where $A_{9}=\left\{3^{2} p+29: p=0,1,2, \ldots\right\}$ and A_{9} has integers favourable to Collatz conjecture.

Case 10: Consider $x=32=3(10)+2$. Then $S(x)=2(10)+1=21=$ a multiple of 3 . Therefore the value of k is 1 . Take $y=3^{k+1} p+x$, with $p=0,1,2,3, \ldots$. Then $y=3^{2} p+32$, with $p=0,1,2,3, \ldots$ and $y=3(3 p+10)+2$, $S(y)=2(3 p+10)+1=3(2 p+7)=$ a multiple of $3, S^{2}(y)=6(2 p+7)=12 p+42>9 p+32=y$. Hence $S^{2}(y)>y$, for all y in A_{10}, where $A_{10}=\left\{3^{2} p+32: p=0,1,2, \ldots\right\}$ and A_{10} has integers favourable to Collatz conjecture.

Case 11: Consider $x=35=3(11)+2$. Then $S(x)=2(11)+1=3(7)+2, S^{2}(x)=2(7)+1=15=$ a multiple of 3 . Therefore the value of k is 2 . Take $y=3^{k+1} p+x$, with $p=0,1,2,3, \ldots$. Then $y=3^{3} p+35$, with $p=0,1,2,3, \ldots$ and $y=3(9 p+11)+2, S(y)=2(9 p+11)+1=3(6 p+7)+2, S^{2}(y)=2(6 p+7)+1=3(4 p+5)=$ a multiple of 3 , $S^{3}(y)=6(4 p+5)=3(8 p+10)=$ a multiple of $3, S^{4}(y)=6(8 p+10)=48 p+60>27 p+35=y$. Hence $S^{4}(y)>y$, for all y in A_{11}, where $A_{11}=\left\{3^{3} p+35: p=0,1,2, \ldots\right\}$ and A_{11} has integers favourable to Collatz conjecture.

Case 12: Consider $x=38=3(12)+2$. Then $S(x)=2(12)+1=3(8)+1, S^{2}(x)=6(8)+2=50>38=x$. Therefore the value of $(k+1)$ is 2. Take $y=3^{k+1} p+x$, with $p=0,1,2,3, \ldots$. Then $y=3^{2} p+38$, with $p=0,1,2,3, \ldots$ and $y=3(3 p+12)+2, S(y)=2(3 p+12)+1=3(2 p+8)+1, S^{2}(y)=6(2 p+8)+2=12 p+50>9 p+38=y$. Hence $S^{2}(y)>y$, for all y in A_{12}, where $A_{12}=\left\{3^{2} p+38: p=0,1,2, \ldots\right\}$ and A_{12} has integers favourable to Collatz conjecture.

Case 13: Consider $x=41=3(13)+2$. Then $S(x)=2(13)+1=27=$ a multiple of 3 . Therefore the value of k is 1 . Take $y=3^{k+1} p+x$, with $p=0,1,2,3, \ldots$. Then $y=3^{2} p+41$, with $p=0,1,2,3, \ldots$ and $y=3(3 p+13)+2$,
$S(y)=2(3 p+13)+1=3(2 p+9)=$ a multiple of $3, S^{2}(y)=6(2 p+9)=12 p+54>9 p+41=y$. Hence $S^{2}(y)>y$, for all y in A_{13}, where $A_{13}=\left\{3^{2} p+41: p=0,1,2, \ldots\right\}$ and A_{13} has integers favourable to Collatz conjecture.

Case 14: Consider $x=44=3(14)+2$. Then $S(x)=2(14)+1=3(9)+2, S^{2}(x)=2(9)+1=3(6)+1, S^{3}(x)=$ $6(6)+2=3(12)+2, S^{4}(x)=2(12)+1=3(8)+1, S^{5}(x)=6(8)+2=50>44$. Therefore the value of $(k+1)$ is 4. Take $y=3^{k+1} p+x$, with $p=0,1,2,3, \ldots$. Then $y=3^{4} p+44$, with $p=0,1,2,3, \ldots$ and $y=3(27 p+14)+2$, $S(y)=2(27 p+14)+1=3(18 p+9)+2, S^{2}(y)=2(18 p+9)+1=3(12 p+6)+1, S^{3}(y)=6(12 p+6)+2=3(24 p+12)+2$, $S^{4}(y)=2(24 p+12)+1=3(16 p+8)+1, S^{5}(y)=6(16 p+8)+2=96 p+49>81 p+44=y$. Hence $S^{5}(y)>y$, for all y in A_{14}, where $A_{14}=\left\{3^{4} p+44: p=0,1,2, \ldots\right\}$ and A_{14} has integers favourable to Collatz conjecture.

Case 15: Consider $x=47=3(15)+2$. Then $S(x)=2(15)+1=3(10)+1, S^{2}(x)=6(10)+2=62>47=x$. Therefore the value of $(k+1)$ is 2 . Take $y=3^{k+1} p+x$, with $p=0,1,2,3, \ldots$. Then $y=3^{2} p+47$, with $p=0,1,2,3, \ldots$ and $y=3(3 p+15)+2, S(y)=2(3 p+15)+1=3(2 p+10)+1, S^{2}(y)=6(2 p+10)+2=12 p+62>9 p+47=y$. Hence $S^{2}(y)>y$, for all y in A_{15}, where $A_{15}=\left\{3^{2} p+47: p=0,1,2, \ldots\right\}$ and A_{15} has integers favourable to Collatz conjecture.

Case 16: Consider $x=50=3(16)+2$. Then $S(x)=2(16)+1=33=$ a multiple of 3 . Therefore the value of k is 1 . Take $y=3^{k+1} p+x$, with $p=0,1,2,3, \ldots$. Then $y=3^{2} p+50$, with $p=0,1,2,3, \ldots$ and $y=3(3 p+16)+2$, $S(y)=2(3 p+16)+1=3(2 p+11)=$ a multiple of $3, S^{2}(y)=6(2 p+16)=12 p+66>9 p+50=y$. Hence $S^{2}(y)>y$, for all y in A_{16}, where $A_{16}=\left\{3^{2} p+50: p=0,1,2, \ldots\right\}$ and A_{16} has integers favourable to Collatz conjecture.

Case 17: Consider $x=53=3(17)+2$. Then $S(x)=2(17)+1=3(11)+2, S^{2}(x)=2(11)+1=3(7)+2, S^{3}(x)=2(7)+1=$ $15=$ a multiple of 3 . Therefore the value of k is 3 . Take $y=3^{k+1} p+x$, with $p=0,1,2,3, \ldots$. Then $y=3^{4} p+53$, with $p=0,1,2,3, \ldots$ and $y=3(27 p+17)+2, S(y)=2(27 p+17)+1=3(18 p+11)+2, S^{2}(y)=2(18 p+11)+1=$ $3(12 p+7)+2, S^{3}(y)=2(12 p+7)+1=3(8 p+5)=$ a multiple of $3, S^{4}(y)=6(8 p+5)=3(16 p+10)=$ a multiple of $3, S^{5}(y)=6(16 p+10)=96 p+60>81 p+53=y$. Hence $S^{5}(y)>y$, for all y in A_{17}, where $A_{17}=\left\{3^{4} p+53\right.$: $p=0,1,2, \ldots\}$ and A_{17} has integers favourable to Collatz conjecture.

Case 18: Consider $x=56=3(18)+2$. Then $S(x)=2(18)+1=3(12)+1, S^{2}(x)=6(12)+2=72>56$. Therefore the value of $(k+1)$ is 2 . Take $y=3^{k+1} p+x$, with $p=0,1,2,3, \ldots$. Then $y=3^{2} p+56$, with $p=0,1,2,3, \ldots$ and $y=3(3 p+18)+2, S(y)=2(3 p+18)+1=3(2 p+12)+1, S^{2}(y)=6(2 p+12)+2=12 p+74>9 p+56=y$. Hence $S^{2}(y)>y$, for all y in A_{18}, where $A_{18}=\left\{3^{2} p+56: p=0,1,2, \ldots\right\}$ and A_{18} has integers favourable to Collatz conjecture.

Case 19: Consider $x=59=3(19)+2$. Then $S(x)=2(19)+1=39=$ a multiple of 3 . Therefore the value of k is 1 . Take $y=3^{k+1} p+x$, with $p=0,1,2,3, \ldots$. Then $y=3^{2} p+59$, with $p=0,1,2,3, \ldots$ and $y=3(3 p+19)+2$, $S(y)=2(3 p+19)+1=3(2 p+13)=$ a multiple of $\left.3, S^{2}(y)=6(2 p+13)=12 p+72\right)>9 p+59=y$. Hence $S^{2}(y)>y$, for all y in A_{19}, where $A_{19}=\left\{3^{2} p+59: p=0,1,2, \ldots\right\}$ and A_{19} has integers favourable to Collatz conjecture.

Case 20: Consider $x=62=3(20)+2$. Then $S(x)=2(20)+1=3(13)+2, S^{2}(x)=2(13)+1=27=$ a multiple of 3 . Therefore the value of k is 2 . Take $y=3^{k+1} p+x$, with $p=0,1,2,3, \ldots$. Then $y=3^{3} p+62$, with $p=0,1,2,3, \ldots$ and $y=3(9 p+20)+2, S(y)=2(9 p+20)+1=3(6 p+13)+2, S^{2}(y)=2(6 p+13)+1=3(4 p+9)=$ a multiple of 3 . $S^{3}(y)=6(4 p+9)=3(8 p+18)=$ a multiple of $3, S^{4}(y)=6(8 p+18)=48 p+108>27 p+62=y$.

Hence $S^{4}(y)>y$, for all y in A_{20}, where $A_{20}=\left\{3^{3} p+62: p=0,1,2, \ldots\right\}$ and A_{20} has integers favourable to Collatz conjecture. This procedure of finding k leads to the following conclusion.

Theorem 3.1. The following integers of the form are favourable to Collatz conjecture, in addition to integers of the form $3 m$ and $3 m+1$ and the integers 1 and 2 .
$\begin{array}{lllll}\text { (i) } x=3^{2} p+5 & \text { (ii) } x=3^{3} p+8 & \text { (iii) } x=3^{2} p+11 & \text { (iv) } x=3^{2} p+14 & \text { (v) } x=3^{4} p+17\end{array} \quad$ (vi) $x=3^{2} p+20 \quad$ (vii) $x=3^{2} p+23 \quad$ (viii) $x=3^{5} p+26 \quad$ (xi) $x=3^{2} p+29$ (x) $x=3^{2} p+32$ (xi) $x=3^{3} p+35 \quad$ (xii) $x=3^{2} p+38 \quad$ (xiii) $x=3^{2} p+41 \quad$ (xiv) $x=3^{4} p+44 \quad$ (xv) $x=3^{2} p+47 \quad$ (xvi) $x=3^{2} p+50 \quad$ (xvii) $x=3^{4} p+53 \quad$ (xviii) $x=3^{2} p+56 \quad$ (xix) $x=3^{2} p+59 \quad(x x) x=3^{2} p+62$, with $p=0,1,2, \ldots$.

References

[1] S.Anderson, Struggling with $3 x+1$ problem, The Math Asso., 71(1987), 271-274.
[2] D.Applegate and J.C.Lagarias, Density bounds for the 3x+1 problem.I.Tree-search method, Math. Comp., 64(1995), 411-426.
[3] D.Applegate and J.C.Lagarias, Density bounds for the 3x+1 problem.II. Krasikov inequalities, Math. Comp., 64(1995), 427-438.
[4] D.Applegate and J.C.Lagarias, Lower bounds for the total stopping Time of $3 x+1$ Iterates, Math. Comp., 172(2003), 1035-1049.
[5] D.J.Bernstein, A non-iterative 2-adic statement of the 3a+1 conjecture, Proc. mer. Math.Soc., 121(1994), 405-408.
[6] M.Bruschi, A Generalization of the Collatz problem and conjecture, http://arXiv.org/pdf/0810.5169v1.pdf (2008).
[7] J.M.Dolan, A.F.Gilman and S.Manickam, A generalization of Everett's result on the Collatz $3 x+1$ problem, Adv.in Applied Math., 8(1987), 405-409.
[8] C.J.Everett, Iteration of the number theoretic function $f(2 n)=n, f(2 n+1)=3 n+2$, Adv.in Math., 25(1997), 42-45.
[9] M.A.Idowu, A Novel Theoretical Framework Formulated for Information Discovery from Number System and Collatz Conjecture Data, Procedia computer science., 61(2015), 105-111.
[10] L.E.Garner, On heights in the Collatz $3 n+1$ problem, Discrete Mathematics., 55(1985), 57-64.
[11] J.C.Lagarias, The $3 x+1$ problem and its generalizations, Amer. Math. Monthly., 92(1985), 3-23.
[12] Masayoshi Kaneda, Two remarks on the Collatz cycle conjecture, arXiv:1010.6206v3[math.NT]., 21 Sep 2014.
[13] D.P.Mehendale, Some Observations on the 3x+1 Problem, http:arxiv.org/pdf/math/0504355.
[14] Micheal Misiurewich and Ana Rodrigues, Real 3x+1, Proc. Amer. Math. Soc., 133(2005), 1109-1118.
[15] B.Snapp and M.Tracy, The Collatz Problem and Analogues, Journal of Integer Sequences., 11(2008).
[16] R.Terras, On the existence of a density, Acta Arith., 35(1979), 101-102.
[17] G.Venturini, On the $3 x+1$ Problem, Adv. Appl. Math., 10(1989), 344-347.

[^0]: * E-mail: hardykannan@gmail.com

