International Journal of Mathematics And its Applications

Some Fixed Point Theorems in Cone Banach Spaces Using Φ_{p} Operator

Research Article

R. Krishnakumar ${ }^{1}$ and D.Dhamodharan ${ }^{2 *}$
1 Department of Mathematics, Urumu Dhanalakshmi College, Tiruchirappalli, Tamilnadu, India.
2 Department of Mathematics, Jamal Mohamed College (Autonomous), Tiruchirappalli, Tamilnadu, India.

```
Abstract: In this paper, some contraction principles of Cone Banach Space(CBS) are stated and proved with the help of 种 operator and also some fixed point theorems related to the above concepts are studied.
MSC: \(\quad 47 \mathrm{H} 10,54 \mathrm{H} 25\).
```

Keywords: Cone Banach Space, Fixed point, Φ_{p} operator.
(c) JS Publication.

1. Introduction

The notion of cone metric space is initiated by Huang and Zhang [4] and also they discussed some properties of the convergence of sequences and proved the fixed point theorems of a contraction mapping for cone metric spaces; Any mapping T of a complete cone metric space X into itself that satisfies, for some $0 \leq k<1$, the inequality $d(T x, T y) \leq k d(x, y)$, for all $x, y \in X$ has a unique fixed point. Some fixed theorems in cone Banach space are proved by Karapinar[3].

In this paper, some new contraction principles of CBSs are proved and investigated some fixed point theorems of CBSs using p-Laplacian operator.

2. Preliminaries

Throughout this paper, E means a Banach algebra, $E:=(E,\|\cdot\|)$ stands for real Banach space.

Definition 2.1. A subset P of E is called a cone if and only if:
(i). P is closed, nonempty and $P \neq 0$
(ii). $a x+b y \in P$ for all $x, y \in P$ and nonnegative real numbers a, b
(iii). $P \cap(P)=\{0\}$.

[^0]Given a cone $P \subset E$, we define a partial ordering \leq with respect to P by $x \leq y$ if and only if $y-x \in P$. We will write $x<y$ to indicate that $x \leq y$ but $x \neq y$, while x, y will stand for $y-x \in \operatorname{int} P$, where $\operatorname{int} P$ denotes the interior of P.

The cone P is called normal if there is a number $K>0$ such that $0 \leq x \leq y$ implies $\|x\| \leq K\|y\|$ for all $x, y \in E$. The least positive number satisfying the above is called the normal constant.

Example $2.2([7])$. Let $K>1$. be given. Consider the real vector space with $E=\left\{a x+b: a, b \in R ; x \in R\left[1-\frac{1}{k}, 1\right]\right\}$ with supremum norm and the cone $P=\{a x+b: a \geq 0, b \leq 0\}$ in E. The cone P is regular and so normal.

Definition 2.3 ([5]). A Banach algebra is an algebra E that has a norm relative to E is a Banach space and such that for all $x, y \in E$
(i). $\|x y\| \leq\|x\|\|y\|$
(ii). $\|e\| \leq 1$

Where e is the multiplicative identity in E.
Definition 2.4. Suppose that E is a real Banach space, then P is a cone in E with int $P \neq \emptyset$, and \leq is partial ordering with respect to P. Let X be a nonempty set, a function $d: X \times X \rightarrow E$. is called a cone metric on X if it satisfies the following conditions with
(i). $d(x, y) \geq 0$, and $d(x, y)=0$ if and only if $x=y \forall x, y \in X$,
(ii). $d(x, y)=d(y, x), \forall x, y \in X$,
(iii). $d(x, y) \leq d(x, z)+d(z, y), \forall x, y, z \in X$,

Then (X, d) is called a cone metric space (CMS).
Example 2.5. Let $E=R^{2} ; P=\{(x, y): x, y \geq 0\} ; X=R$ and $d: X \times X \rightarrow E$ such that $d(x, y)=(|x-y|, \alpha|x-y|)$, where $\alpha \geq 0$ is a constant. Then (X, d) is a cone metric space.

Definition 2.6. Let X be a vector space over R. Suppose the mapping $\|.\|_{C}: X \rightarrow E$ satisfies
(i). $\|x\|_{C} \geq 0$ for all $x \in X$,
(ii). $\|x\|_{C}=0$ if and only if $x=0$,
(iii). $\|x+y\|_{C} \leq\|x\|_{C}+\|y\|_{C}$ for all $x, y \in X$,
(iv). $\|k x\|_{C}=|k|\|x\|_{C}$ for all $k \in R$ and for all $x \in X$,
then $\|\cdot\|_{C}$ is called a cone norm on X, and the pair $\left(X,\|\cdot\|_{C}\right)$ is called a cone normed space (CNS).

Definition 2.7. Let $\left(X,\|.\|_{C}\right)$ be a CNS, $x \in X$ and $\left\{x_{n}\right\}_{n \geq 0}$ be a sequence in X. Then $\left\{x_{n}\right\}_{n \geq 0}$ converges to x whenever for every $c \in E$ with $0 \ll E$, there is a natural number $N \in N$ such that $\left\|x_{n}-x\right\|_{C} \ll c$ for all $n \geq N$. It is denoted by $\lim _{n \rightarrow \infty} x_{n}=x$ or $x_{n} \rightarrow x$

Definition 2.8. Let $\left(X,\|.\|_{C}\right)$ be a CNS, $x \in X$ and $\left\{x_{n}\right\}_{n \geq 0}$ be a sequence in $X .\left\{x_{n}\right\}_{n \geq 0}$ is a Cauchy sequence whenever for every $c \in E$ with $0 \ll c$, there is a natural number $N \in N$, such that $\left\|x_{n}-x_{m}\right\|_{C} \ll c$ for all $n, m \geq N$

Definition 2.9. Let $\left(X,\|\cdot\|_{C}\right)$ be a $C N S, x \in X$ and $\left\{x_{n}\right\}_{n \geq 0}$ be a sequence in $X .\left(X,\|\cdot\|_{C}\right)$ is a complete cone normed space if every Cauchy sequence is convergent. Complete cone normed spaces will be called cone Banach spaces.

Definition 2.10. Let E be Banach algebra and $\left(E,\|\cdot\|_{C}\right)$ be a Banach space $\Phi_{p}: E \rightarrow E$ is an increasing and positive mapping.

$$
\text { (ie) } \Phi_{p}(x)=\|x\|^{p-2} x, \text { where } \frac{1}{p}+\frac{1}{q}=1
$$

If $E=R$, then $\Phi_{p}: R \rightarrow R$ is a $p-L a p l a c i a n$ operator,

$$
\text { (ie) } \Phi_{p}(x)=|x|^{p-2} x, \text { for some } p>1
$$

Lemma 2.11. Show that the operator $\Phi_{p}: E \rightarrow E$ holds the following properties:
(i). If $x \leq y$, then $\Phi_{p}(x) \leq \Phi_{p}(y), \forall x, y \in E$
(ii). Φ_{p} is a continuous bijection and its inverse mapping is also continuous.(That is, Φ_{p} is homeomorphism)
(iii). $\Phi_{p}(x y)=\Phi_{p}(x) \Phi_{p}(y) \forall x, y \in E$.
(iv). $\Phi_{p}(x+y) \leq \Phi_{p}(x)+\Phi_{p}(y) \forall x, y \in E$

Definition 2.12. Let C be a closed and convex subset of a cone Banach space with the norm $\|\cdot\|_{C}$ and $T: C \rightarrow C$ be a mapping. Consider the condition $\|T x-T y\|_{C} \leq\|x-y\|_{C}$ for all $x, y \in C$, then T is called non expansive.

3. Main Result

Theorem 3.1. Let C be a closed and convex subset of a Banach space X with the norm $\|.\|_{C}$. Let E be a Banach algebra and $\Phi_{p}: E \rightarrow E$ and $T: C \rightarrow C$ be mappings and T satisfy the following condition:

$$
\begin{equation*}
\Phi_{p}(d(x, T y))+\Phi_{p}(d(y, T x)) \leq k \Phi_{p}(d(x, y)) \tag{1}
\end{equation*}
$$

for all $x, y \in C$, where $2^{p-1} \leq k<4^{p-1}$ in E. Then T has at least one fixed point.
Proof. Let $x_{0} \in C$ be arbitrary. Define a sequence $\left\{x_{n}\right\}$ in the following way: $x_{n+1}=\frac{x_{n}+T x_{n}}{2}, n=0,1,2,3, \cdots$. Then $x_{n}-T x_{n}=2\left(x_{n}-x_{n+1}\right)$. Which yields that $d\left(x_{n}, T x_{n}\right)=\left\|x_{n}-T x_{n}\right\|_{C}=2\left\|x_{n}-x_{n+1}\right\|_{C}=2 d\left(x_{n}, x_{n+1}\right)$. Substitute $x=x_{n-1}$ and $y=x_{n}$ in (1). Then we have

$$
\begin{aligned}
\Phi_{p}\left(d\left(x_{n-1}, T x_{n}\right)\right)+\Phi_{p}\left(d\left(x_{n}, T x_{n-1}\right)\right) & \leq k \Phi_{p}\left(d\left(x_{n}, x_{n-1}\right)\right) \\
\Phi_{p}\left(2 d\left(x_{n-1}, x_{n+1}\right)\right)+\Phi_{p}\left(2 d\left(x_{n}, x_{n}\right)\right) & \leq k \Phi_{p}\left(d\left(x_{n}, x_{n-1}\right)\right) \\
\Phi_{p}\left(2 d\left(x_{n-1}, x_{n+1}\right)\right) & \leq k \Phi_{p}\left(d\left(x_{n}, x_{n-1}\right)\right)
\end{aligned}
$$

From the property of Φ_{p} operator,

$$
\Phi_{p}\left(2\left(d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right)\right) \leq k \Phi_{p}\left(d\left(x_{n}, x_{n-1}\right)\right)
$$

from (2.10) we get,

$$
\begin{aligned}
d\left(x_{n}, x_{n+1}\right) & \leq\left(\frac{\Phi_{q}(k)}{2}-1\right)\left(d\left(x_{n-1}, x_{n}\right)\right) \\
\text { similarly } d\left(x_{n-1}, x_{n}\right) & \leq\left(\frac{\Phi_{q}(k)}{2}-1\right)\left(d\left(x_{n-2}, x_{n-1}\right)\right) \\
\Rightarrow d\left(x_{n}, x_{n+1}\right) & \leq\left(\frac{\Phi_{q}(k)}{2}-1\right)^{2}\left(d\left(x_{n-2}, x_{n-1}\right)\right)
\end{aligned}
$$

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq\left(\frac{\Phi_{q}(k)}{2}-1\right)^{n}\left(d\left(x_{0}, x_{1}\right)\right) \tag{2}
\end{equation*}
$$

Let $m>n$, them from above equation (2), we get

$$
\begin{aligned}
d\left(x_{m}, x_{n}\right) & \leq d\left(x_{m}, x_{m-1}\right)+\cdots+d\left(x_{n+1}, x_{n}\right) \\
& \leq\left[\left(\frac{\Phi_{q}(k)}{2}-1\right)^{m-1}+\left(\frac{\Phi_{q}(k)}{2}-1\right)^{m-2}+\cdots+\left(\frac{\Phi_{q}(k)}{2}-1\right)^{n}\right] d\left(x_{1}, x_{0}\right) \\
& \leq \frac{\left(\frac{\Phi_{q}(k)}{2}-1\right)^{n}}{2-\frac{\Phi_{q}(k)}{2}} d\left(x_{1}, x_{0}\right) .
\end{aligned}
$$

Since $2^{p-1} \leq k<4^{p-1},\left\{x_{n}\right\}$ is a Cauchy sequence in C. Because C is a closed and convex subset of a cone Banach space, thus $\left\{x_{n}\right\}$ sequence converges to some $z \in C$. That is, $x_{n} \rightarrow z, z \in C$. Regarding the inequality,

$$
\begin{aligned}
& d\left(z, T x_{n}\right) \leq d\left(z, x_{n}\right)+d\left(x_{n}, T x_{n}\right) \\
& d\left(z, T x_{n}\right) \leq d\left(z, x_{n}\right)+2 d\left(x_{n}, x_{n+1}\right)
\end{aligned}
$$

as $n \rightarrow \infty$, then $d\left(z, T x_{n}\right) \leq 0$. Thus $T x_{n} \rightarrow z$. Finally, we substitute $x=z$ and $y=x_{n}$ in (1). Then we can get

$$
\Phi_{p}\left(d\left(z, T x_{n}\right)\right)+\Phi_{p}\left(d\left(x_{n}, T z\right)\right) \leq k \Phi\left(d\left(z, x_{n}\right)\right)
$$

from the property of Φ_{p} mapping,

$$
\Phi_{p}\left(d\left(z, T x_{n}\right)+d\left(x_{n}, T z\right)\right) \leq k \Phi\left(d\left(z, x_{n}\right)\right)
$$

when $n \rightarrow \infty, d(z, T z)=0$. Then $T z=z$.
Theorem 3.2. Let C be a closed and convex subset of a Banach space X with the norm $\|.\|_{C}$. Let E be a Banach algebra and $\Phi_{p}: E \rightarrow E$ and $T: C \rightarrow C$ be mappings and T satisfy the following condition:

$$
\begin{equation*}
\Phi_{p}(d(x, T x))+\Phi_{p}(d(y, T y))+\Phi_{p}(d(x, T y))+\Phi_{p}(d(y, T x)) \leq k \Phi_{p}(d(x, y)) \tag{3}
\end{equation*}
$$

for all $x, y \in C$, where $2^{p-1} \leq k<4^{p-1}$ in E. Then T has at least one fixed point.
Proof. Let $x_{0} \in C$ be arbitrary. Define a sequence $\left\{x_{n}\right\}$ in the following way:

$$
x_{n+1}=\frac{x_{n}+T x_{n}}{2}, n=0,1,2,3, \cdots
$$

Then

$$
x_{n}-T x_{n}=2\left(x_{n}-x_{n+1}\right)
$$

Which yields that

$$
d\left(x_{n}, T x_{n}\right)=\left\|x_{n}-T x_{n}\right\|_{C}=2\left\|x_{n}-x_{n+1}\right\|_{C}=2 d\left(x_{n}, x_{n+1}\right)
$$

Substitute $x=x_{n-1}$ and $y=x_{n}$ in (3). Then we have

$$
\Phi_{p}\left(d\left(x_{n-1}, T x_{n-1}\right)\right)+\Phi_{p}\left(d\left(x_{n}, T x_{n}\right)\right)+\Phi_{p}\left(d\left(x_{n-1}, T x_{n}\right)\right)+\Phi_{p}\left(d\left(x_{n}, T x_{n-1}\right)\right) \leq k \Phi_{p}\left(d\left(x_{n}, x_{n-1}\right)\right)
$$

From the property of Φ_{p} operator,

$$
\begin{aligned}
\Phi_{p}\left(2 d\left(x_{n-1}, x_{n}\right)\right)+\Phi_{p}\left(2 d\left(x_{n}, x_{n+1}\right)\right)+\Phi_{p}\left(2 d\left(x_{n-1}, x_{n+1}\right)\right)+\Phi_{p}\left(2 d\left(x_{n}, x_{n}\right)\right) & \leq k \Phi_{p}\left(d\left(x_{n}, x_{n-1}\right)\right) \\
\Phi_{p}\left(2 d\left(x_{n-1}, x_{n}\right)\right)+\Phi_{p}\left(2 d\left(x_{n}, x_{n+1}\right)\right)+\Phi_{p}\left(2\left(d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right)\right) & \leq k \Phi_{p}\left(d\left(x_{n}, x_{n-1}\right)\right) \\
\Phi_{p}\left(4\left(d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right)\right) & \leq k \Phi_{p}\left(d\left(x_{n}, x_{n-1}\right)\right)
\end{aligned}
$$

from (2.10) we get,

$$
d\left(x_{n}, x_{n+1}\right) \leq\left(\frac{\Phi_{q}(k)}{4}-1\right)\left(d\left(x_{n-1}, x_{n}\right)\right)
$$

similarly

$$
\begin{align*}
d\left(x_{n-1}, x_{n}\right) & \leq\left(\frac{\Phi_{q}(k)}{4}-1\right)\left(d\left(x_{n-2}, x_{n-1}\right)\right) \\
\Rightarrow d\left(x_{n}, x_{n+1}\right) & \leq\left(\frac{\Phi_{q}(k)}{4}-1\right)^{2}\left(d\left(x_{n-2}, x_{n-1}\right)\right) \\
& \vdots \tag{4}\\
d\left(x_{n}, x_{n+1}\right) & \leq\left(\frac{\Phi_{q}(k)}{4}-1\right)^{n}\left(d\left(x_{0}, x_{1}\right)\right)
\end{align*}
$$

Let $m>n$, them from above equation (4) we get,

$$
\begin{aligned}
d\left(x_{m}, x_{n}\right) & \leq d\left(x_{m}, x_{m-1}\right)+\cdots+d\left(x_{n+1}, x_{n}\right) \\
& \leq\left[\left(\frac{\Phi_{q}(k)}{4}-1\right)^{m-1}+\left(\frac{\Phi_{q}(k)}{4}-1\right)^{m-2}+\cdots+\left(\frac{\Phi_{q}(k)}{4}-1\right)^{n}\right] d\left(x_{1}, x_{0}\right) \\
& \leq \frac{\left(\frac{\Phi_{q}(k)}{4}-1\right)^{n}}{4-\frac{\Phi_{q}(k)}{4}} d\left(x_{1}, x_{0}\right) .
\end{aligned}
$$

Since $2^{p-1} \leq k<4^{p-1},\left\{x_{n}\right\}$ is a Cauchy sequence in C. Because C is a closed and convex subset of a cone Banach space, thus $\left\{x_{n}\right\}$ sequence converges to some $z \in C$. That is, $x_{n} \rightarrow z, z \in C$. Regarding the inequality,

$$
\begin{aligned}
& d\left(z, T x_{n}\right) \leq d\left(z, x_{n}\right)+d\left(x_{n}, T x_{n}\right) \\
& d\left(z, T x_{n}\right) \leq d\left(z, x_{n}\right)+2 d\left(x_{n}, x_{n+1}\right)
\end{aligned}
$$

as $n \rightarrow \infty$, then $d\left(z, T x_{n}\right) \leq 0$. Thus $T x_{n} \rightarrow z$. Finally, we substitute $x=z$ and $y=x_{n}$ in (3). Then we can get

$$
\Phi_{p}(d(z, T z))+\Phi_{p}\left(d\left(x_{n}, T x_{n}\right)\right)+\Phi_{p}\left(d\left(z, T x_{n}\right)\right)+\Phi_{p}\left(d\left(x_{n}, T z\right)\right) \leq k \Phi\left(d\left(z, x_{n}\right)\right)
$$

from the property of Φ_{p} mapping,

$$
\Phi_{p}\left(d(z, T z)+d\left(x_{n}, T x_{n}\right)+d\left(z, T x_{n}\right)+d\left(x_{n}, T z\right)\right) \leq k \Phi_{p}\left(d\left(z, x_{n}\right)\right)
$$

when $n \rightarrow \infty, d(z, T z)=0$. Then $T z=z$.
Theorem 3.3. Let C be a closed and convex subset of a Banach space X with the norm $\|.\|_{C}$. Let E be a Banach algebra and $\Phi_{p}: E \rightarrow E$ and $T: C \rightarrow C$ be mappings and T satisfy the following condition:

$$
\begin{equation*}
\alpha \Phi_{p}(d(T x, T y))+\beta \Phi_{p}(d(x, T x))+\gamma \Phi_{p}(d(y, T y))+\delta \Phi_{p}(d(x, T y))+\omega \Phi_{p}(d(y, T x)) \leq k \Phi_{p}(d(x, y)) \tag{5}
\end{equation*}
$$

for all $x, y \in C$, where $0 \leq \Phi_{q}(k)<\Phi_{q}(\alpha)+2\left(\Phi_{q}(\beta)+\Phi_{q}(\gamma)+\Phi_{q}(\delta)+\Phi_{q}(\omega)\right)$. Then T has at least one fixed point.

Proof. Let $x_{0} \in C$ be arbitrary. Define a sequence $\left\{x_{n}\right\}$ in the following way:

$$
x_{n+1}=\frac{x_{n}+T x_{n}}{2}, n=0,1,2,3, \cdots
$$

Then

$$
x_{n}-T x_{n}=2\left(x_{n}-x_{n+1}\right)
$$

Which yields that

$$
d\left(x_{n}, T x_{n}\right)=\left\|x_{n}-T x_{n}\right\|_{C}=2\left\|x_{n}-x_{n+1}\right\|_{C}=2 d\left(x_{n}, x_{n+1}\right)
$$

Thus the triangle inequality implies

$$
\begin{aligned}
& d\left(x_{n}, T x_{n}\right)-d\left(x_{n}, T x_{n-1}\right) \leq d\left(T x_{n-1}, T x_{n}\right) . \\
& 2 d\left(x_{n}, x_{n+1}\right)-d\left(x_{n-1}, x_{n}\right) \leq d\left(T x_{n-1}, T x_{n}\right) .
\end{aligned}
$$

By substituting $x=x_{n-1}$ and $y=x_{n}$ in (5). Then we have

$$
\begin{aligned}
& \alpha \Phi_{p}\left(d\left(T x_{n-1}, T x_{n}\right)\right)+\beta \Phi_{p}\left(d\left(x_{n-1}, T x_{n-1}\right)\right)+\gamma \Phi_{p}\left(d\left(x_{n}, T x_{n}\right)\right) \\
&+\delta \Phi_{p}\left(d\left(x_{n-1}, T x_{n}\right)\right)+\omega \Phi_{p}\left(d\left(x_{n}, T x_{n-1}\right)\right) \leq k \Phi_{p}\left(d\left(x_{n-1}, x_{n}\right)\right) \\
& \alpha \Phi_{p}\left(2 d\left(x_{n}, x_{n+1}\right)-d\left(x_{n-1}, x_{n}\right)\right)+\beta \Phi_{p}\left(d\left(x_{n-1}, T x_{n-1}\right)\right)+\gamma \Phi_{p}\left(d\left(x_{n}, T x_{n}\right)\right) \\
&+\delta \Phi_{p}\left(d\left(x_{n-1}, T x_{n}\right)\right)+\omega \Phi_{p}\left(d\left(x_{n}, T x_{n-1}\right)\right) \leq k \Phi_{p}\left(d\left(x_{n-1}, x_{n}\right)\right)
\end{aligned}
$$

From the property of Φ_{p} operator,

$$
\begin{aligned}
\alpha \Phi_{p}\left(2 d\left(x_{n}, x_{n+1}\right)\right. & \left.-d\left(x_{n-1}, x_{n}\right)\right)+\beta \Phi_{p}\left(2 d\left(x_{n-1}, x_{n}\right)\right)+\gamma \Phi_{p}\left(2 d\left(x_{n}, T x_{n+1}\right)\right) \\
& +\delta \Phi_{p}\left(d\left(x_{n-1}, x_{n+1}\right)\right)+\omega \Phi_{p}\left(d\left(x_{n}, x_{n}\right)\right) \leq k \Phi_{p}\left(d\left(x_{n-1}, x_{n}\right)\right) \\
2 \alpha \Phi_{p} d\left(x_{n}, x_{n+1}\right) & -\alpha \Phi_{p} d\left(x_{n-1}, x_{n}\right)+2 \beta \Phi_{p}\left(d\left(x_{n-1}, x_{n}\right)\right)+2 \gamma \Phi_{p}\left(d\left(x_{n}, T x_{n+1}\right)\right) \\
+ & 2 \delta \Phi_{p}\left(d\left(x_{n}, x_{n+1}\right)+d\left(x_{n-1}, x_{n}\right)\right)+\omega \Phi_{p}\left(d\left(x_{n}, x_{n}\right)\right) \leq k \Phi_{p}\left(d\left(x_{n-1}, x_{n}\right)\right) \\
2 \alpha \Phi_{p} d\left(x_{n}, x_{n+1}\right)- & \alpha \Phi_{p} d\left(x_{n-1}, x_{n}\right)+2 \beta \Phi_{p}\left(d\left(x_{n-1}, x_{n}\right)\right)+2 \gamma \Phi_{p}\left(d\left(x_{n}, T x_{n+1}\right)\right) \\
+ & 2 \delta \Phi_{p}\left(d\left(x_{n}, x_{n+1}\right)+d\left(x_{n-1}, x_{n}\right)\right)+\leq k \Phi_{p}\left(d\left(x_{n-1}, x_{n}\right)\right)
\end{aligned}
$$

from (2.10) we get,

$$
d\left(x_{n}, x_{n+1}\right) \leq\left(\frac{\Phi_{q}(r)+\Phi_{q}(\alpha)-2\left(\Phi_{q}(\beta)+\Phi_{q}(\delta)\right)}{2 \Phi_{q}(\alpha)+2 \Phi_{q}(\gamma)+2 \Phi_{q}(\delta)}\right) d\left(x_{n-1}, x_{n}\right)
$$

for all $n \geq 1$. Repeating this relation, we get $d\left(x_{n}, x_{n+1}\right) \leq h^{n} d\left(x_{0}, x_{1}\right)$, where $h=\left(\frac{\Phi_{q}(r)+\Phi_{q}(\alpha)-2\left(\Phi_{q}(\beta)+\Phi_{q}(\delta)\right)}{2 \Phi_{q}(\alpha)+2 \Phi_{q}(\gamma)+2 \Phi_{q}(\delta)}\right)<1$. Let $m>n$ then from above equation, we have

$$
\begin{aligned}
d\left(x_{m}, x_{n}\right) & \leq d\left(x_{m}, x_{m-1}\right)+\cdots+d\left(x_{n+1}, x_{n}\right) \\
& \leq\left[h^{m-1}+\cdots+h^{n}\right] d\left(x_{1}, x_{0}\right) \\
& \leq \frac{h^{n}}{1-h} d\left(x_{1}, x_{0}\right)
\end{aligned}
$$

Thus $\left\{x_{n}\right\}$ is a Cauchy sequence in C and thus it converges to some $z \in C$. Since $0 \leq \Phi_{q}(k)<\Phi_{q}(\alpha)+2\left(\Phi_{q}(\beta)+\Phi_{q}(\gamma)+\right.$ $\left.\Phi_{q}(\delta)+\Phi_{q}(\omega)\right),\left\{x_{n}\right\}$ is a Cauchy sequence in C. Because C is a closed and convex subset of a cone Banach space, thus $\left\{x_{n}\right\}$ sequence converges to some $z \in C$. That is, $x_{n} \rightarrow z, z \in C$. Regarding the inequality,

$$
\begin{aligned}
& d\left(z, T x_{n}\right) \leq d\left(z, x_{n}\right)+d\left(x_{n}, T x_{n}\right) \\
& d\left(z, T x_{n}\right) \leq d\left(z, x_{n}\right)+2 d\left(x_{n}, x_{n+1}\right)
\end{aligned}
$$

as $n \rightarrow \infty$, then $d\left(z, T x_{n}\right) \leq 0$. Thus $T x_{n} \rightarrow z$. Finally, we substitute $x=z$ and $y=x_{n}$ in (5). Then we can get

$$
\alpha \Phi_{p}\left(d\left(z, T x_{n}\right)\right)+\beta \Phi_{p}(d(z, T z))+\gamma \Phi_{p}\left(d\left(x_{n}, T x_{n}\right)\right)+\delta \Phi_{p}\left(d\left(z, T x_{n}\right)\right)+\omega \Phi_{p}\left(d\left(x_{n}, T z\right)\right) \leq k \Phi_{p}\left(d\left(z, x_{n}\right)\right)
$$

from the property of Φ_{p} mapping,

$$
\begin{aligned}
\Phi_{p}\left(\alpha\left(d\left(T z, T x_{n}\right)\right)+\beta(d(z, T z))+\gamma\left(d\left(x_{n}, T x_{n}\right)\right)+\delta\left(d\left(z, T x_{n}\right)\right)+\omega\left(d\left(x_{n}, T z\right)\right)\right) & \leq k \Phi_{p}\left(d\left(z, x_{n}\right)\right) \\
\Phi_{p}(\alpha(d(T z, z))+\beta(d(z, T z))+\gamma(d(z, z))+\delta(d(z, z))+\omega(d(z, T z))) & \leq k \Phi_{p}(d(z, z)) \\
\Phi_{p}(\alpha(d(T z, z))+\beta(d(z, T z))+\omega(d(z, T z))) & \leq k \Phi_{p}(d(z, z)) \\
\Phi_{p}((\alpha+\beta+\omega) d(z, T z)) & \leq k \Phi_{p}(d(z, z))
\end{aligned}
$$

when $n \rightarrow \infty, d(z, T z)=0$. Then $T z=z$.

Corollary 3.4. Let C be a closed and convex subset of a Banach space X with the norm $\|.\|_{C}$. Let E be a Banach algebra and $\Phi_{p}: E \rightarrow E$ and $T: C \rightarrow C$ be mappings and T satisfy the following condition:

$$
\begin{equation*}
\alpha \Phi_{p}(d(T x, T y))+\beta \Phi_{p}(d(x, T x))+\gamma \Phi_{p}(d(y, T y))+\delta \Phi_{p}(d(x, T y)) \leq k \Phi_{p}(d(x, y)) \tag{6}
\end{equation*}
$$

for all $x, y \in C$, where $0 \leq \Phi_{q}(k)<\Phi_{q}(\alpha)+2\left(\Phi_{q}(\beta)+\Phi_{q}(\gamma)+\Phi_{q}(\delta)\right)$. Then T has at least one fixed point.

References

[1] S.D.Lin, A common fixed point theorem in abstract spaces, Indian J. Pure Appl. Math., 18(1987), 685-690.
[2] Ali Mutlu and Nermin Yolcu, Fixed point theorems for Φ_{p} operator in cone Banach spaces, Fixed Point Theory and Applications, 2013(2013), 1-6.
[3] E.Karapnar, Fixed point theorems in cone Banach spaces, Fixed Point Theory and Applications, 2009(2009), 1-9.
[4] L.G.Huang and Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332(2007), 1468-1476.
[5] John B.Conway, A course in functional analysis, Springer-Verlag New York Inc, (1985).
[6] T.Abdeljawad, D.Trkloglu and M.Abuloha, Some theorems and examples of cone metric spaces, J. Comput. Anal. Appl., 12(4)(2010), 739-753.
[7] Mehdi Asadi and Hossein Soleimani, Examples in Cone Metric Spaces: A Survey, Middle-East Journal of Scientific Research, 11(12)(2012), 1636-1640.
[8] R.Krishnakumar and M.Marudai, Cone Convex Metric Space and Fixed Point Theorems, Int. Journal of Math. Analysis, 6(22)(2012), 1087-1093.
[9] R.Krishnakumar and M.Marudai, Generalization of a Fixed Point Theorem in Cone Metric Spaces, Int. Journal of Math. Analysis, 5(11)(2011), 507-512.
[10] R.Krishnakumar and D.Dhamodharan, B_{2} Metric Space and Fixed Point Theorems, International J. of Pure \& Engineering Mathematics, 2(II)(2014), 75-84.

[^0]: * E-mail: dharan_raj28@yahoo.co.in

