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1. Introduction

The notion of cone metric space is initiated by Huang and Zhang [4] and also they discussed some properties of the conver-

gence of sequences and proved the fixed point theorems of a contraction mapping for cone metric spaces; Any mapping T

of a complete cone metric space X into itself that satisfies, for some 0 ≤ k < 1, the inequality d(Tx, Ty) ≤ kd(x, y), for all

x, y ∈ X has a unique fixed point. Some fixed theorems in cone Banach space are proved by Karapinar[3].

In this paper, some new contraction principles of CBSs are proved and investigated some fixed point theorems of CBSs using

p-Laplacian operator.

2. Preliminaries

Throughout this paper, E means a Banach algebra, E := (E, ‖.‖) stands for real Banach space.

Definition 2.1. A subset P of E is called a cone if and only if:

(i). P is closed, nonempty and P 6= 0

(ii). ax+ by ∈ P for all x, y ∈ P and nonnegative real numbers a, b

(iii). P ∩ (P ) = {0}.
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Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by x ≤ y if and only if y−x ∈ P . We will write x < y

to indicate that x ≤ y but x 6= y, while x, y will stand for y − x ∈ intP , where intP denotes the interior of P .

The cone P is called normal if there is a number K > 0 such that 0 ≤ x ≤ y implies ‖x‖ ≤ K‖y‖ for all x, y ∈ E. The least

positive number satisfying the above is called the normal constant.

Example 2.2 ([7]). Let K > 1. be given. Consider the real vector space with E = {ax+ b : a, b ∈ R;x ∈ R[1− 1
k
, 1]} with

supremum norm and the cone P = {ax+ b : a ≥ 0, b ≤ 0} in E. The cone P is regular and so normal.

Definition 2.3 ([5]). A Banach algebra is an algebra E that has a norm relative to E is a Banach space and such that for

all x, y ∈ E

(i). ‖xy‖ ≤ ‖x‖‖y‖

(ii). ‖e‖ ≤ 1

Where e is the multiplicative identity in E.

Definition 2.4. Suppose that E is a real Banach space, then P is a cone in E with intP 6= ∅, and ≤ is partial ordering

with respect to P . Let X be a nonempty set, a function d : X × X → E. is called a cone metric on X if it satisfies the

following conditions with

(i). d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y ∀x, y ∈ X,

(ii). d(x, y) = d(y, x), ∀x, y ∈ X,

(iii). d(x, y) ≤ d(x, z) + d(z, y), ∀x, y, z ∈ X,

Then (X, d) is called a cone metric space (CMS).

Example 2.5. Let E = R2; P = {(x, y) : x, y ≥ 0}; X = R and d : X × X → E such that d(x, y) = (|x − y|, α|x − y|),

where α ≥ 0 is a constant. Then (X, d) is a cone metric space.

Definition 2.6. Let X be a vector space over R. Suppose the mapping ‖.‖C : X → E satisfies

(i). ‖x‖C ≥ 0 for all x ∈ X,

(ii). ‖x‖C = 0 if and only if x = 0,

(iii). ‖x+ y‖C ≤ ‖x‖C + ‖y‖C for all x, y ∈ X,

(iv). ‖kx‖C = |k|‖x‖C for all k ∈ R and for all x ∈ X,

then ‖.‖C is called a cone norm on X, and the pair (X, ‖.‖C) is called a cone normed space (CNS).

Definition 2.7. Let (X, ‖.‖C) be a CNS, x ∈ X and {xn}n≥0 be a sequence in X. Then {xn}n≥0 converges to x whenever

for every c ∈ E with 0 � E, there is a natural number N ∈ N such that ‖xn − x‖C � c for all n ≥ N . It is denoted by

limn→∞ xn = x or xn → x

Definition 2.8. Let (X, ‖.‖C) be a CNS, x ∈ X and {xn}n≥0 be a sequence in X. {xn}n≥0 is a Cauchy sequence whenever

for every c ∈ E with 0� c, there is a natural number N ∈ N , such that ‖xn − xm‖C � c for all n,m ≥ N

Definition 2.9. Let (X, ‖.‖C) be a CNS, x ∈ X and {xn}n≥0 be a sequence in X. (X, ‖.‖C) is a complete cone normed

space if every Cauchy sequence is convergent. Complete cone normed spaces will be called cone Banach spaces.
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Definition 2.10. Let E be Banach algebra and (E, ‖.‖C) be a Banach space Φp : E → E is an increasing and positive

mapping.

(ie) Φp(x) = ‖x‖p−2x, where
1

p
+

1

q
= 1.

If E = R, then Φp : R→ R is a p−Laplacian operator,

(ie) Φp(x) = |x|p−2x, for some p > 1.

Lemma 2.11. Show that the operator Φp : E → E holds the following properties:

(i). If x ≤ y, then Φp(x) ≤ Φp(y), ∀x, y ∈ E

(ii). Φp is a continuous bijection and its inverse mapping is also continuous.(That is, Φp is homeomorphism)

(iii). Φp(xy) = Φp(x)Φp(y) ∀x, y ∈ E.

(iv). Φp(x+ y) ≤ Φp(x) + Φp(y) ∀x, y ∈ E

Definition 2.12. Let C be a closed and convex subset of a cone Banach space with the norm ‖.‖C and T : C → C be a

mapping. Consider the condition ‖Tx− Ty‖C ≤ ‖x− y‖C for all x, y ∈ C, then T is called non expansive.

3. Main Result

Theorem 3.1. Let C be a closed and convex subset of a Banach space X with the norm ‖.‖C . Let E be a Banach algebra

and Φp : E → E and T : C → C be mappings and T satisfy the following condition:

Φp(d(x, Ty)) + Φp(d(y, Tx)) ≤ kΦp(d(x, y)) (1)

for all x, y ∈ C, where 2p−1 ≤ k < 4p−1 in E. Then T has at least one fixed point.

Proof. Let x0 ∈ C be arbitrary. Define a sequence {xn} in the following way: xn+1 = xn+Txn
2

, n = 0, 1, 2, 3, · · · . Then

xn − Txn = 2(xn − xn+1). Which yields that d(xn, Txn) = ‖xn − Txn‖C = 2‖xn − xn+1‖C = 2d(xn, xn+1). Substitute

x = xn−1 and y = xn in (1). Then we have

Φp(d(xn−1, Txn)) + Φp(d(xn, Txn−1)) ≤ kΦp(d(xn, xn−1))

Φp(2d(xn−1, xn+1)) + Φp(2d(xn, xn)) ≤ kΦp(d(xn, xn−1))

Φp(2d(xn−1, xn+1)) ≤ kΦp(d(xn, xn−1))

From the property of Φp operator,

Φp(2(d(xn−1, xn) + d(xn, xn+1))) ≤ kΦp(d(xn, xn−1))

from (2.10) we get,

d(xn, xn+1) ≤
(

Φq(k)

2
− 1

)
(d(xn−1, xn))

similarly d(xn−1, xn) ≤
(

Φq(k)

2
− 1

)
(d(xn−2, xn−1))

⇒ d(xn, xn+1) ≤
(

Φq(k)

2
− 1

)2

(d(xn−2, xn−1))

...
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d(xn, xn+1) ≤
(

Φq(k)

2
− 1

)n
(d(x0, x1)) (2)

Let m > n, them from above equation (2), we get

d(xm, xn) ≤ d(xm, xm−1) + · · ·+ d(xn+1, xn)

≤

[(
Φq(k)

2
− 1

)m−1

+

(
Φq(k)

2
− 1

)m−2

+ · · ·+
(

Φq(k)

2
− 1

)n]
d(x1, x0)

≤
(

Φq(k)

2
− 1)n

2− Φq(k)

2

d(x1, x0).

Since 2p−1 ≤ k < 4p−1, {xn} is a Cauchy sequence in C. Because C is a closed and convex subset of a cone Banach space,

thus {xn} sequence converges to some z ∈ C. That is, xn → z, z ∈ C. Regarding the inequality,

d(z, Txn) ≤ d(z, xn) + d(xn, Txn)

d(z, Txn) ≤ d(z, xn) + 2d(xn, xn+1)

as n→∞, then d(z, Txn) ≤ 0. Thus Txn → z. Finally, we substitute x = z and y = xn in (1). Then we can get

Φp(d(z, Txn)) + Φp(d(xn, T z)) ≤ kΦ(d(z, xn))

from the property of Φp mapping,

Φp(d(z, Txn) + d(xn, T z)) ≤ kΦ(d(z, xn))

when n→∞, d(z, Tz) = 0. Then Tz = z.

Theorem 3.2. Let C be a closed and convex subset of a Banach space X with the norm ‖.‖C . Let E be a Banach algebra

and Φp : E → E and T : C → C be mappings and T satisfy the following condition:

Φp(d(x, Tx)) + Φp(d(y, Ty)) + Φp(d(x, Ty)) + Φp(d(y, Tx)) ≤ kΦp(d(x, y)) (3)

for all x, y ∈ C, where 2p−1 ≤ k < 4p−1 in E. Then T has at least one fixed point.

Proof. Let x0 ∈ C be arbitrary. Define a sequence {xn} in the following way:

xn+1 =
xn + Txn

2
, n = 0, 1, 2, 3, · · ·

Then

xn − Txn = 2(xn − xn+1)

Which yields that

d(xn, Txn) = ‖xn − Txn‖C = 2‖xn − xn+1‖C = 2d(xn, xn+1)

Substitute x = xn−1 and y = xn in (3). Then we have

Φp(d(xn−1, Txn−1)) + Φp(d(xn, Txn)) + Φp(d(xn−1, Txn)) + Φp(d(xn, Txn−1)) ≤ kΦp(d(xn, xn−1))

108



R.Krishnakumar and D.Dhamodharan

From the property of Φp operator,

Φp(2d(xn−1, xn)) + Φp(2d(xn, xn+1)) + Φp(2d(xn−1, xn+1)) + Φp(2d(xn, xn)) ≤ kΦp(d(xn, xn−1))

Φp(2d(xn−1, xn)) + Φp(2d(xn, xn+1)) + Φp(2(d(xn−1, xn) + d(xn, xn+1))) ≤ kΦp(d(xn, xn−1))

Φp(4(d(xn−1, xn) + d(xn, xn+1))) ≤ kΦp(d(xn, xn−1))

from (2.10) we get,

d(xn, xn+1) ≤
(

Φq(k)

4
− 1

)
(d(xn−1, xn))

similarly

d(xn−1, xn) ≤
(

Φq(k)

4
− 1

)
(d(xn−2, xn−1))

⇒ d(xn, xn+1) ≤
(

Φq(k)

4
− 1

)2

(d(xn−2, xn−1))

...

d(xn, xn+1) ≤
(

Φq(k)

4
− 1

)n
(d(x0, x1)) (4)

Let m > n, them from above equation (4) we get,

d(xm, xn) ≤ d(xm, xm−1) + · · ·+ d(xn+1, xn)

≤

[(
Φq(k)

4
− 1

)m−1

+

(
Φq(k)

4
− 1

)m−2

+ · · ·+
(

Φq(k)

4
− 1

)n]
d(x1, x0)

≤
(

Φq(k)

4
− 1)n

4− Φq(k)

4

d(x1, x0).

Since 2p−1 ≤ k < 4p−1, {xn} is a Cauchy sequence in C. Because C is a closed and convex subset of a cone Banach space,

thus {xn} sequence converges to some z ∈ C. That is, xn → z, z ∈ C. Regarding the inequality,

d(z, Txn) ≤ d(z, xn) + d(xn, Txn)

d(z, Txn) ≤ d(z, xn) + 2d(xn, xn+1)

as n→∞, then d(z, Txn) ≤ 0. Thus Txn → z. Finally, we substitute x = z and y = xn in (3). Then we can get

Φp(d(z, Tz)) + Φp(d(xn, Txn)) + Φp(d(z, Txn)) + Φp(d(xn, T z)) ≤ kΦ(d(z, xn))

from the property of Φp mapping,

Φp(d(z, Tz) + d(xn, Txn) + d(z, Txn) + d(xn, T z)) ≤ kΦp(d(z, xn))

when n→∞, d(z, Tz) = 0. Then Tz = z.

Theorem 3.3. Let C be a closed and convex subset of a Banach space X with the norm ‖.‖C . Let E be a Banach algebra

and Φp : E → E and T : C → C be mappings and T satisfy the following condition:

αΦp(d(Tx, Ty)) + βΦp(d(x, Tx)) + γΦp(d(y, Ty)) + δΦp(d(x, Ty)) + ωΦp(d(y, Tx)) ≤ kΦp(d(x, y)) (5)

for all x, y ∈ C, where 0 ≤ Φq(k) < Φq(α) + 2(Φq(β) + Φq(γ) + Φq(δ) + Φq(ω)). Then T has at least one fixed point.
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Proof. Let x0 ∈ C be arbitrary. Define a sequence {xn} in the following way:

xn+1 =
xn + Txn

2
, n = 0, 1, 2, 3, · · ·

Then

xn − Txn = 2(xn − xn+1)

Which yields that

d(xn, Txn) = ‖xn − Txn‖C = 2‖xn − xn+1‖C = 2d(xn, xn+1)

Thus the triangle inequality implies

d(xn, Txn)− d(xn, Txn−1) ≤ d(Txn−1, Txn).

2d(xn, xn+1)− d(xn−1, xn) ≤ d(Txn−1, Txn).

By substituting x = xn−1 and y = xn in (5). Then we have

αΦp(d(Txn−1, Txn)) + βΦp(d(xn−1, Txn−1)) + γΦp(d(xn, Txn))

+ δΦp(d(xn−1, Txn)) + ωΦp(d(xn, Txn−1)) ≤ kΦp(d(xn−1, xn))

αΦp(2d(xn, xn+1)− d(xn−1, xn)) + βΦp(d(xn−1, Txn−1)) + γΦp(d(xn, Txn))

+ δΦp(d(xn−1, Txn)) + ωΦp(d(xn, Txn−1)) ≤ kΦp(d(xn−1, xn))

From the property of Φp operator,

αΦp(2d(xn, xn+1)− d(xn−1, xn)) + βΦp(2d(xn−1, xn)) + γΦp(2d(xn, Txn+1))

+ δΦp(d(xn−1, xn+1)) + ωΦp(d(xn, xn)) ≤ kΦp(d(xn−1, xn))

2αΦpd(xn, xn+1)− αΦpd(xn−1, xn) + 2βΦp(d(xn−1, xn)) + 2γΦp(d(xn, Txn+1))

+ 2δΦp(d(xn, xn+1) + d(xn−1, xn)) + ωΦp(d(xn, xn)) ≤ kΦp(d(xn−1, xn))

2αΦpd(xn, xn+1)− αΦpd(xn−1, xn) + 2βΦp(d(xn−1, xn)) + 2γΦp(d(xn, Txn+1))

+ 2δΦp(d(xn, xn+1) + d(xn−1, xn))+ ≤ kΦp(d(xn−1, xn))

from (2.10) we get,

d(xn, xn+1) ≤
(

Φq(r) + Φq(α)− 2(Φq(β) + Φq(δ))

2Φq(α) + 2Φq(γ) + 2Φq(δ)

)
d(xn−1, xn)

for all n ≥ 1. Repeating this relation, we get d(xn, xn+1) ≤ hnd(x0, x1), where h =
(

Φq(r)+Φq(α)−2(Φq(β)+Φq(δ))

2Φq(α)+2Φq(γ)+2Φq(δ)

)
< 1.

Let m > n then from above equation, we have

d(xm, xn) ≤ d(xm, xm−1) + · · ·+ d(xn+1, xn)

≤ [hm−1 + · · ·+ hn]d(x1, x0)

≤ hn

1− hd(x1, x0)
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Thus {xn} is a Cauchy sequence in C and thus it converges to some z ∈ C. Since 0 ≤ Φq(k) < Φq(α) + 2(Φq(β) + Φq(γ) +

Φq(δ) + Φq(ω)), {xn} is a Cauchy sequence in C. Because C is a closed and convex subset of a cone Banach space, thus

{xn} sequence converges to some z ∈ C. That is, xn → z, z ∈ C. Regarding the inequality,

d(z, Txn) ≤ d(z, xn) + d(xn, Txn)

d(z, Txn) ≤ d(z, xn) + 2d(xn, xn+1)

as n→∞, then d(z, Txn) ≤ 0. Thus Txn → z. Finally, we substitute x = z and y = xn in (5) . Then we can get

αΦp(d(z, Txn)) + βΦp(d(z, Tz)) + γΦp(d(xn, Txn)) + δΦp(d(z, Txn)) + ωΦp(d(xn, T z)) ≤ kΦp(d(z, xn))

from the property of Φp mapping,

Φp(α(d(Tz, Txn)) + β(d(z, Tz)) + γ(d(xn, Txn)) + δ(d(z, Txn)) + ω(d(xn, T z))) ≤ kΦp(d(z, xn))

Φp(α(d(Tz, z)) + β(d(z, Tz)) + γ(d(z, z)) + δ(d(z, z)) + ω(d(z, Tz))) ≤ kΦp(d(z, z))

Φp(α(d(Tz, z)) + β(d(z, Tz)) + ω(d(z, Tz))) ≤ kΦp(d(z, z))

Φp((α+ β + ω)d(z, Tz)) ≤ kΦp(d(z, z))

when n→∞, d(z, Tz) = 0. Then Tz = z.

Corollary 3.4. Let C be a closed and convex subset of a Banach space X with the norm ‖.‖C . Let E be a Banach algebra

and Φp : E → E and T : C → C be mappings and T satisfy the following condition:

αΦp(d(Tx, Ty)) + βΦp(d(x, Tx)) + γΦp(d(y, Ty)) + δΦp(d(x, Ty)) ≤ kΦp(d(x, y)) (6)

for all x, y ∈ C, where 0 ≤ Φq(k) < Φq(α) + 2(Φq(β) + Φq(γ) + Φq(δ)). Then T has at least one fixed point.
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