International Journal of Mathematics And its Applications

On Study Generalized $\mathcal{B} \boldsymbol{R}$-Recurrent Finsler Space

Research Article

Fahmi Yaseen Abdo Qasem ${ }^{1 *}$ and Ala'a Abdalnasser Awad Abdallah ${ }^{1}$
1 Department of Mathematics, Faculty of Education-Aden, University of Aden, Khormakssar, Aden, Yemen.

Abstract: In this paper, we defined the generalized $\mathcal{B} R$-recurrent space which characterized by the following condition

$$
\mathcal{B}_{m} R_{j k h}^{i}=\lambda_{m} R_{j k h}^{i}+\mu_{m}\left(\delta_{j}^{i} g_{k h}-\delta_{k}^{i} g_{j h}\right), \quad R_{j k h}^{i} \neq 0
$$

where \mathcal{B}_{m} is Berwald's covariant differential operator with respect to $x^{m}, \quad \lambda_{m}$ and μ_{m} are known as recurrence vectors. The purpose of the present paper to obtain the necessary and sufficient condition for (i) Berwald curvature tensor $H_{j k h}^{i}$, its associative $H_{j p k h}$ and Cartan's fourth curvature tensor to be generalized recurrent, (ii) the tensor ($H_{h k}-H_{k h}$) and H-Ricci tensor $H_{k h}$ are to be non-vanishing and (iii) the torsion tensor $K_{j k}^{i}$, the deviation tensor K_{h}^{i}, K-Ricci tensor $K_{j k}$, the curvature vectors K_{k}, R_{j} and the curvature scalar H to behave as recurrent. Also to study the covariant vectors λ_{m} and μ_{m}.

Keywords: Finsler Space, Generalized $\mathcal{B R}$-Recurrent Space, Landsberg Space.
(C) JS Publication.

1. Introduction

For the first time, the idea of recurrent of curvature tensor was study in Finsler space by A.Moor [1]. Due to different connections of Finsler space, the recurrent of Cartan's third curvature tensor $R_{j k h}^{i}$ have been discussed by R.Verma [9]. P.N.Pandey, S.Saxena and A.Goswami [8] introduced a generalized H-recurrent Finsler space, F.Y.A.Qasem and A.M.A.Al-qashbari $([2,4])$ introduced a generalized H^{h}-recurrent space and studied some types of this space, also they defined a generalized R^{h}-recurrent space and obtained some identities satisfied in such space [3]. F.Y.A. Qasem and A.A.A. Abdallah [5] studied certain types of generalized $\mathcal{B} R$-recurrent space.

Let F_{n} be an n-dimensional Finsler space equipped with the metric function $\mathrm{F}(\mathrm{x}, \mathrm{y})$ satisfying the request conditions [6]. The vector y_{i} is defined by

$$
\begin{equation*}
\text { a) } y_{i}=g_{i j}(x, y) y^{j} \quad \text { and } \quad \text { b) } y_{i} y^{i}=F^{2} \tag{1}
\end{equation*}
$$

The two sets of quantities $g_{i j}$ and its associative $g^{i j}$, which are components of a metric tensor connected by

$$
g_{i j} g^{i k}=\delta_{j}^{k}= \begin{cases}1, & \text { if } j=k \tag{2}\\ 0, & \text { if } j \neq k\end{cases}
$$

[^0]In view of (1) and (2), we have
a) $\left.\delta_{k}^{i} y_{i}=y_{k}, b\right) \delta_{k}^{i} y^{k}=y^{i}$, c) $\left.\left.\left.\left.\dot{\partial}_{j} y^{i}=\delta_{j}^{i}, d\right) \delta_{j}^{i} g_{i r}=g_{j r}, e\right) \dot{\partial}_{i} y_{j}=g_{i j}, f\right) \delta_{j}^{i} g^{j k}=g^{i k}, g\right) \delta_{i}^{i}=n$ and $\left.h\right) \delta_{j}^{i} \delta_{k}^{j}=\delta_{k}^{i}$.

The tensor $C_{i j k}$ is defined by

$$
\begin{equation*}
C_{i j k}=\frac{1}{2} \dot{\partial}_{k} g_{i j} \tag{4}
\end{equation*}
$$

which is positively homogeneous of degree -1 in y^{i} and symmetric in all its indices and called (h)hv-torsion tensor [7] and its associative $C_{j k}^{i}$ is positively homogeneous of degree -1 in y^{i} and symmetric in its lower indices and called (v)hv-torsion tensor. According to Euler's theorem on homogeneous functions, these tensors satisfy the following:

> a) $C_{i j k} y^{i}=C_{k i j} y^{i}=C_{j k i} y^{i}=0$, b) $C_{j k}^{i} y^{k}=0=C_{k j}^{i} y^{k}$, c) $C_{j r}^{i} y^{j r}=C^{i}$,
> d) $C_{j r}^{i} \delta_{k}^{r}=C_{j k}^{i}$, e) $C_{i r}^{i}=C_{r}$ and f) $C^{i} y_{i}=0$.

Berwald connected parameter $G_{j k}^{i}$, the functions G_{k}^{i} and G^{i} are homogeneous of degree zero, one and two, respectively [6] and satisfy the following :

$$
\begin{equation*}
\text { a) } \left.G_{j k h}^{i}=\partial_{j} \partial_{k} G^{i} \text {, b) } G_{j k}^{i} y^{j}=G_{k}^{i} \text { and } c\right) \dot{\partial}_{j} G_{k}^{i}=G_{j k}^{i} \text {. } \tag{6}
\end{equation*}
$$

The tensor $G_{j k h}^{i}$ is positively homogeneous of degree -1 in y^{i} and symmetric in all its lower indices. In view of (4) and (6a) and due to Euler's theorem, we have

$$
\begin{equation*}
G_{j k h}^{i} y^{j}=G_{k j h}^{i} y^{j}=G_{k h j}^{i} y^{j}=0 . \tag{7}
\end{equation*}
$$

Berwald covariant derivative $\mathcal{B}_{k} T_{j}^{i}$ of an arbitrary tensor field T_{j}^{i} with respect to x^{k} is given by

$$
\mathcal{B}_{k} T_{j}^{i}:=\partial_{k} T_{j}^{i}-\left(\dot{\partial}_{r} T_{j}^{i}\right) G_{k}^{r}+T_{j}^{r} G_{r k}^{i}-T_{r}^{i} G_{j k}^{r}
$$

The processes of Berwald covariant differentiation with respect to x^{h} and the partial differentiation with respect to y^{k} commute according to

$$
\begin{equation*}
\left(\dot{\partial}_{k} \mathcal{B}_{h}-\mathcal{B}_{k} \dot{\partial}_{h}\right) T_{j}^{i}=T_{j}^{r} G_{k h r}^{i}-T_{r}^{i} G_{k h j}^{r} \tag{8}
\end{equation*}
$$

for an arbitrary tensor field T_{j}^{i}. In most of existing literature, Berwald covariant derivative $\mathcal{B}_{k} T_{j}^{i}$ appears as $T_{j(k)}^{i}$. Berwald covariant derivative of the vector y^{i} vanish identically, i.e.

$$
\begin{equation*}
\mathcal{B}_{k} y^{i}=0 . \tag{9}
\end{equation*}
$$

But, in general, Berwald covariant derivative of the metric tensor $g_{i j}$ does not vanish and given by

$$
\begin{equation*}
\mathcal{B}_{k} g_{i j}=-2 C_{i j k \mid h} y^{h}=-2 y^{h} \mathcal{B}_{h} C_{i j k} . \tag{10}
\end{equation*}
$$

The h-curvature tensor (Cartan's third curvature tensor) is defined by

$$
R_{j k h}^{i}=\partial_{h} \Gamma_{j k}^{* i}+\left(\partial_{l} \Gamma_{j k}^{* i}\right) G_{h}^{l}+C_{j m}^{i}\left(\partial_{k} G_{h}^{m}-G_{k l}^{m} G_{h}^{l}\right)+\Gamma_{m k}^{* i} \Gamma_{j h}^{* m}-k / h^{*} .
$$

The curvature tensor $R_{j k h}^{i}$ and the $\mathrm{h}(\mathrm{v})$-torsion tensor $H_{k h}^{i}$ are related by

$$
\begin{equation*}
R_{j k h}^{i} y^{j}=H_{k h}^{i}=K_{j k h}^{i} y^{j} . \tag{11}
\end{equation*}
$$

The $\mathrm{h}(\mathrm{v})$-torsion tensor satisfies the relation

$$
\begin{equation*}
H_{k h}^{i} y^{k}=H_{h}^{i}=-H_{h k}^{i} y^{k} . \tag{12}
\end{equation*}
$$

Berwald curvature tensor $H_{j k h}^{i}$ and the $\mathrm{h}(\mathrm{v})$-torsion tensor $H_{k h}^{i}$ are skew-symmetric in the lower indices k and h and they are positively homogenous of degree zero and one in y^{i}, respectively. They are satisfy the following:

$$
\begin{equation*}
\text { a) } \dot{\partial}_{r} H_{k h}^{i}=H_{r k h}^{i}, \text { b) } H_{j k r}^{r}=H_{j k}, \text { c) } H_{i j k h}:=g_{j r} H_{i k h}^{r}, \text { d) } H_{k i}^{i}=H_{k} \text { and e) } \dot{\partial}_{h} H_{k}=H_{k h} . \tag{13}
\end{equation*}
$$

The deviation tensor H_{h}^{i} is positively homogeneous of degree two in y_{i}. In view of Euler's theorem on homogeneous functions we have the following relations

$$
\begin{equation*}
\text { a) } \left.H=\frac{1}{n-1} H_{r}^{r} \text {, b) } H_{k} y^{k}=(n-1) H \text { and } c\right) H_{i k h}^{i}=H_{k h}-H_{h k} \tag{14}
\end{equation*}
$$

where H is the curvature scalar. The tensor $K_{j k h}^{i}$ is called Cartan's is fourth curvature tensor defined as follows:

$$
K_{j k h}^{i}:=\partial_{h} \Gamma_{k j}^{* i}+\left(\dot{\partial}_{l} \Gamma_{j h}^{* i}\right) G_{k}^{l}+\Gamma_{m h}^{* i} \Gamma_{k j}^{* m}-h / k .
$$

This curvature tensor is positively homogeneous of degree zero in y_{i} and skew-symmetric in its last two lower indices. The curvature tensor $K_{j k h}^{i}$ satisfies the following relation

$$
\begin{equation*}
\text { a) } K_{j k h}^{i} y^{h}=K_{j k}^{i} \text { and b) } K_{j k h}^{i} g^{j k}=K_{h}^{i} \text {. } \tag{15}
\end{equation*}
$$

Ricci tensor $K_{j k}$, the curvature vector and the curvature scalar of the curvature tensor $K_{j k h}^{i}$ are given by

$$
\begin{equation*}
\text { a) } K_{j k i}^{i}=K_{j k}, \text { b) } K_{i k}^{i}=K_{k} \text { and c) } K_{i}^{i}=K \tag{16}
\end{equation*}
$$

2. A Generalized $\mathcal{B} \boldsymbol{R}$ - Recurrent Space

Let us consider a Finsler space F_{n} in which Cartan's third curvature tensor $R_{j k h}^{i}$ satisfies the generalized recurrence property with respect to Berwald's connection parameters $G_{k h}^{i}$, i.e. characterized by the following condition

$$
\begin{equation*}
\mathcal{B}_{m} R_{j k h}^{i}=\lambda_{m} R_{j k h}^{i}+\mu_{m}\left(\delta_{j}^{i} g_{k h}-\delta_{k}^{i} g_{j h}\right), \quad R_{j k h}^{i} \neq 0, \tag{17}
\end{equation*}
$$

where \mathcal{B}_{m} is Berwald's covariant differential operator with respect to x^{m}, λ_{m} and μ_{m} are called recurrence vectors.
Definition 2.1. A Finsler space F_{n} in which Cartan's third curvature tensor $R_{j k h}^{i}$ satisfies the condition (17), where λ_{m} and μ_{m} are non-zero covariant vectors field. Such space and the tensor which satisfy the condition (17) will celled a generalized $\mathcal{B} R$-recurrent space and a generalized \mathcal{B}-recurrenttensor, respectively and denoted them briefly by $G(\mathcal{B} R)-R F_{n}$ and $G \mathcal{B}-R$, respectively.

Let us consider a $G(\mathcal{B} R)-R F_{n}$ which characterized by the condition (17). Transvecting the condition (17) by y^{j}, using (11), (9), (3b) and (1a), we get

$$
\begin{equation*}
\mathcal{B}_{m} H_{k h}^{i}=\lambda_{m} H_{k h}^{i}+\mu_{m}\left(y^{i} g_{k h}-\delta_{k}^{i} y_{h}\right) . \tag{18}
\end{equation*}
$$

Further, transvecting the condition (18) by y^{k}, using (12), (9), (1a) and (3b), we get

$$
\begin{equation*}
\mathcal{B}_{m} H_{h}^{i}=\lambda_{m} H_{h}^{i} . \tag{19}
\end{equation*}
$$

Contracting the indices i and h in the condition (18), using (13d), (1a) and (3a), we get

$$
\begin{equation*}
\mathcal{B}_{m} H_{k}=\lambda_{m} H_{k} . \tag{20}
\end{equation*}
$$

3. Necessary and Sufficient Condition

In this section, we shall obtain the necessary and sufficient condition for some tensors to be generalized recurrent in a $G(\mathcal{B} R)-R F_{n}$ which characterized by the condition (17). Let us consider a $G(\mathcal{B} R)-R F_{n}$ which characterized by the condition (17). Differentiating (18) partially with respect to y^{j}, using (13a), (3c), (4) and (3e), we get

$$
\begin{equation*}
\dot{\partial}_{j}\left(\mathcal{B}_{m} H_{k h}^{i}\right)=\left(\dot{\partial}_{j} \lambda_{m}\right) H_{k h}^{i}+\lambda_{m} H_{j k h}^{i}+\left(\dot{\partial}_{j} \mu_{m}\right)\left(y^{i} g_{k h}-\delta_{k}^{i} y_{h}\right)+\mu_{m}\left(\delta_{j}^{i} g_{k h}+2 y^{i} C_{k h j}-\delta_{k}^{i} g_{j h}\right) . \tag{21}
\end{equation*}
$$

Using the commutation formula exhibited by (8) for $\left(H_{k h}^{i}\right)$ in (21) and using (13a), we get

$$
\begin{gather*}
\mathcal{B}_{m} H_{j k h}^{i}+H_{k h}^{r} G_{m j r}^{i}-H_{r h}^{i} G_{m j k}^{r}-H_{k r}^{i} G_{m j h}^{r}=\left(\dot{\partial}_{j} \lambda_{m}\right) H_{k h}^{i}+\lambda_{m} H_{j k h}^{i}+\left(\dot{\partial}_{j} \mu_{m}\right)\left(y^{i} g_{k h}-\delta_{k}^{i} y_{h}\right) \\
+\mu_{m}\left(\delta_{j}^{i} g_{k h}-\delta_{k}^{i} g_{j h}\right)+2 y^{i} \mu_{m} C_{j k h} . \tag{22}
\end{gather*}
$$

Thus, shows that

$$
\mathcal{B}_{m} H_{j k h}^{i}=\lambda_{m} H_{j k h}^{i}+\mu_{m}\left(\delta_{j}^{i} g_{k h}-\delta_{k}^{i} g_{j h}\right)
$$

if and only if

$$
\begin{equation*}
H_{k h}^{r} G_{m j r}^{i}-H_{r h}^{i} G_{m j k}^{r}-H_{k r}^{i} G_{m j h}^{r}-\left(\dot{\partial}_{j} \lambda_{m}\right) H_{k h}^{i}-\left(\dot{\partial}_{j} \mu_{m}\right)\left(y^{i} g_{k h}-\delta_{k}^{i} y_{h}\right)-2 y^{i} \mu_{m} C_{j k h}=0 . \tag{23}
\end{equation*}
$$

Thus, we conclude

Theorem 3.1. In $G(\mathcal{B R})-\mathrm{RF}_{\mathrm{n}}$, Berwald curvature tensor $H_{j k h}^{i}$ is a generalized recurrent tensor if and only if (23) holds good.

Transvecting (22) by $g_{i p}$, using (13c), (10), (3d) and (1a), we get

$$
\mathcal{B}_{m} H_{j p k h}=\lambda_{m} H_{j p k h}+\mu_{m}\left(g_{j p} g_{k h}-g_{k p} g_{j h}\right)
$$

if and only if

$$
\begin{align*}
g_{i p}\left[H_{k h}^{r} G_{m j r}^{i}-H_{r h}^{i} G_{m j k}^{r}-H_{k r}^{i} G_{m j h}^{r}\right]=g_{i p} & {\left[\left(\dot{\partial}_{j} \lambda_{m}\right) H_{k h}^{i}+\left(\dot{\partial}_{j} \mu_{m}\right)\left(y^{i} g_{k h}-\delta_{k}^{i} y_{h}\right)\right] } \\
& +2 y_{p} \mu_{m} C_{j k h}+2 H_{j k h}^{i} y^{t} \mathcal{B}_{t} C_{i p m} . \tag{24}
\end{align*}
$$

Thus, we conclude

Theorem 3.2. In $G(\mathcal{B R})-\mathrm{RF}_{\mathrm{n}}$, the associate curvature tensor $H_{j p k h}$ is generalized recurrent if and only if (24) holds good.

The curvature tensor $R_{j k h}^{i}$ and $K_{j k h}^{i}$ are connected by the formula [6]

$$
\begin{equation*}
R_{j k h}^{i}=K_{j k h}^{i}+C_{j s}^{i} K_{r k h}^{s} y^{r} . \tag{25}
\end{equation*}
$$

Using (11) in (25), we get

$$
\begin{equation*}
R_{j k h}^{i}=K_{j k h}^{i}+C_{j r}^{i} H_{k h}^{r} . \tag{26}
\end{equation*}
$$

Taking the covariant derivative for (26) with respect to x^{j} in the sense of Berwald, we get

$$
\begin{equation*}
\mathcal{B}_{m} R_{j k h}^{i}=\mathcal{B}_{m} K_{j k h}^{i}+\left(\mathcal{B}_{m} C_{j r}^{i}\right) H_{k h}^{r}+C_{j r}^{i}\left(\mathcal{B}_{m} H_{k h}^{r}\right) . \tag{27}
\end{equation*}
$$

Using the conditions (17) and (18) in (27), we get

$$
\begin{equation*}
\lambda_{m} R_{j k h}^{i}+\mu_{m}\left(\delta_{j}^{i} g_{k h}-\delta_{k}^{i} g_{j h}\right)=\mathcal{B}_{m} K_{j k h}^{i}+\left(\mathcal{B}_{m} C_{j r}^{i}\right) H_{k h}^{r}+C_{j r}^{i}\left[\lambda_{m} H_{k h}^{r}+\mu_{m}\left(y^{r} g_{k h}-\delta_{k}^{r} y_{h}\right)\right] \tag{28}
\end{equation*}
$$

Using (26) in (28), we get

$$
\begin{equation*}
\mathcal{B}_{m} K_{j k h}^{i}=\lambda_{m} K_{j k h}^{i}+\mu_{m}\left(\delta_{j}^{i} g_{k h}-\delta_{k}^{i} g_{j h}\right)-\left(\mathcal{B}_{m} C_{j r}^{i}\right) H_{k h}^{r}-\mu_{m} C_{j r}^{i}\left(y^{r} g_{k h}-\delta_{k}^{r} y_{h}\right) . \tag{29}
\end{equation*}
$$

This shows that

$$
\mathcal{B}_{m} K_{j k h}^{i}=\lambda_{m} K_{j k h}^{i}+\mu_{m}\left(\delta_{j}^{i} g_{k h}-\delta_{k}^{i} g_{j h}\right)
$$

if and only if

$$
\begin{equation*}
\left(\mathcal{B}_{m} C_{j r}^{i}\right) H_{k h}^{r}+\mu_{m} C_{j r}^{i}\left(y^{r} g_{k h}-\delta_{k}^{r} y_{h}\right)=0 . \tag{30}
\end{equation*}
$$

Thus, we conclude
Theorem 3.3. In $G(\mathcal{B} R)-R F_{n}$, Cartan's fourth curvature tensor $K_{j k h}^{i}$ is a generalized recurrent if and only if (30) holds.
Contracting the indices i and j in (22), using (14c), (3g), (3d) and (5a), we get

$$
\mathcal{B}_{m}\left(H_{k h}-H_{h k}\right)=\lambda_{m}\left(H_{k h}-H_{h k}\right)+(n-1) \mu_{m} g_{k h} .
$$

if and only if

$$
\begin{equation*}
H_{k h}^{r} G_{m i r}^{i}-H_{r h}^{i} G_{m i k}^{r}-H_{k r}^{i} G_{m i h}^{r}-\left(\dot{\partial}_{i} \lambda_{m}\right) H_{k h}^{i}-\left(\dot{\partial}_{i} \mu_{m}\right)\left(y^{i} g_{k h}-\delta_{k}^{i} y_{h}\right)=0 . \tag{31}
\end{equation*}
$$

Thus, we conclude
Theorem 3.4. In $G(\mathcal{B} R)-R F_{n}$, the tensor $\left(H_{k h}-H_{h k}\right)$ is non vanishing if and only if (31) holds good.
Contracting the indices i and j in (22), Putting $\left(H_{i k h}^{i}=H_{k h}\right)$ and using (3g), (3d) and (5a), we get

$$
\begin{equation*}
\mathcal{B}_{m} H_{k h}=\lambda_{m} H_{k h}+(n-1) \mu_{m} g_{k h} . \tag{32}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
H_{k h}^{r} G_{m i r}^{i}-H_{r h}^{i} G_{m i k}^{r}-H_{k r}^{i} G_{m i h}^{r}-\left(\dot{\partial}_{i} \lambda_{m}\right) H_{k h}^{i}-\left(\dot{\partial}_{i} \mu_{m}\right)\left(y^{i} g_{k h}-\delta_{k}^{i} y_{h}\right)=0 \tag{33}
\end{equation*}
$$

Thus, we conclude
Theorem 3.5. In $G(\mathcal{B} R)-R F_{n}$, H-Ricci tensor $H_{k h}$ is non-vanishing if and only if (33) holds good.
Transvecting (29) by y^{h}, using (15a), (9), (1a), (12), (5b), (1b) and (5d), we get

$$
\begin{equation*}
\mathcal{B}_{m} K_{j k}^{i}=\lambda_{m} K_{j k}^{i}+\mu_{m}\left(\delta_{j}^{i} y_{k}-\delta_{k}^{i} y_{j}\right)+\left(\mathcal{B}_{m} C_{j r}^{i}\right) H_{k}^{r}-\mu_{m} C_{j k}^{i} F^{2} . \tag{34}
\end{equation*}
$$

This shows that

$$
\mathcal{B}_{m} K_{j k}^{i}=\lambda_{m} K_{j k}^{i}
$$

if and only if

$$
\begin{equation*}
\mu_{m}\left(\delta_{j}^{i} y_{k}-\delta_{k}^{i} y_{j}\right)+\left(\mathcal{B}_{m} C_{j r}^{i}\right) H_{k}^{r}-\mu_{m} C_{j k}^{i} F^{2}=0 . \tag{35}
\end{equation*}
$$

Thus, we conclude

Theorem 3.6. In $G(\mathcal{B} R)-R F_{n}$, the torsion tensor $K_{j k}^{i}$ behaves as recurrent if and only if (35) holds.
Transvecting (29) by $g^{j k}$ and using (15b), (3f), (3g), (3h), (5c) and (5b), we get

$$
\begin{equation*}
\mathcal{B}_{m} K_{h}^{i}=\lambda_{m} K_{h}^{i}+\left(\mathcal{B}_{m} C_{j r}^{i}\right) H_{k h}^{r} g^{j k}-\mu_{m} y_{h} C^{i}+K_{j k h}^{i}\left(\mathcal{B}_{m} g^{j k}\right) \tag{36}
\end{equation*}
$$

This shows that

$$
\mathcal{B}_{m} K_{h}^{i}=\lambda_{m} K_{h}^{i}
$$

if and only if

$$
\begin{equation*}
\left(\mathcal{B}_{m} C_{j r}^{i}\right) H_{k h}^{r} g^{j k}-\mu_{m} y_{h} C^{i}+K_{j k h}^{i}\left(\mathcal{B}_{m} g^{j k}\right)=0 \tag{37}
\end{equation*}
$$

Thus, we conclude

Theorem 3.7. In $G(\mathcal{B} R)-R F_{n}$, the deviation tensor K_{h}^{i} behaves as recurrent if and only if (37) holds.

Contracting the indices i and h in (29) and using (16a), (3d), (5b) and (5d), we get

$$
\mathcal{B}_{m} K_{j k}=\lambda_{m} K_{j k}
$$

if and only if

$$
\begin{equation*}
\left(\mathcal{B}_{m} C_{j r}^{i}\right) H_{k i}^{r}+\mu_{m} C_{j k}^{i} y_{h}=0 \tag{38}
\end{equation*}
$$

Thus, we conclude

Theorem 3.8. In $G(\mathcal{B R})-R F_{n}$, K-Ricci tensor $K_{j k}$ behaves as recurrent if and only if (38) holds.

Contracting the indices i and j in (34), using (16b), (3g), (3a) and (5e), we get

$$
\mathcal{B}_{m} K_{k}=\lambda_{m} K_{k}+(n-1) \mu_{m} y_{k}+\left(\mathcal{B}_{m} C_{r}\right) H_{k}^{r}-\mu_{m} C_{k} F^{2}
$$

This shows that

$$
\begin{equation*}
\mathcal{B}_{m} K_{k}=\lambda_{m} K_{k} \tag{39}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
(n-1) \mu_{m} y_{k}+\left(\mathcal{B}_{m} C_{r}\right) H_{k}^{r}-\mu_{m} C_{k} F^{2}=0 \tag{40}
\end{equation*}
$$

Thus, we conclude

Theorem 3.9. In $G(\mathcal{B} R)-R F_{n}$, The curvature vector K_{k} behaves as recurrent if and only if (40) holds.

Contracting the indices i and h in (36), using (16c), (5f) and (16a), we get

$$
\mathcal{B}_{m} K=\lambda_{m} K+\left(\mathcal{B}_{m} C_{j r}^{i}\right) H_{k i}^{r} g^{j k}+K_{j k}\left(\mathcal{B}_{m} g^{j k}\right)
$$

This shows that

$$
\mathcal{B}_{m} K=\lambda_{m} K
$$

if and only if

$$
\begin{equation*}
\left(\mathcal{B}_{m} C_{j r}^{i}\right) H_{k i}^{r} g^{j k}+K_{j k}\left(\mathcal{B}_{m} g^{j k}\right)=0 \tag{41}
\end{equation*}
$$

Thus, we conclude

Theorem 3.10. In $G(\mathcal{B} R)-R F_{n}$, The curvature scalar K behaves as recurrent if and only if (41) holds.

We know that [6]

$$
\begin{equation*}
R_{j}=K_{j}+C_{j r}^{i} H_{i}^{r} . \tag{42}
\end{equation*}
$$

Taking the covariant derivative for (42) with respect to x^{m} in the sense of Berwald, we get

$$
\begin{equation*}
\mathcal{B}_{m} R_{j}=\mathcal{B}_{m} K_{j}+\left(\mathcal{B}_{m} C_{j r}^{i}\right) H_{i}^{r}+C_{j r}^{i}\left(\mathcal{B}_{m} H_{i}^{r}\right) . \tag{43}
\end{equation*}
$$

Using (39) and (19) in (43), we get

$$
\begin{equation*}
\mathcal{B}_{m} R_{j}=\lambda_{m}\left(K_{j}+C_{j r}^{i} H_{i}^{r}\right)+\left(\mathcal{B}_{m} C_{j r}^{i}\right) H_{i}^{r} . \tag{44}
\end{equation*}
$$

Using (42) in (44), we get

$$
\mathcal{B}_{m} R_{j}=\lambda_{m} R_{j}+\left(\mathcal{B}_{m} C_{j r}^{i}\right) H_{i}^{r} .
$$

This shows that

$$
\mathcal{B}_{m} R_{j}=\lambda_{m} R_{j}
$$

if and only if

$$
\begin{equation*}
\left(\mathcal{B}_{m} C_{j r}^{i}\right) H_{i}^{r}=0 . \tag{45}
\end{equation*}
$$

Thus, we conclude

Theorem 3.11. In $G(\mathcal{B} R)-R F_{n}$, The curvature vector R_{j} behaves as recurrent if and only if (45) holds [provided (40) holds].

Differentiating the condition (20) partially with respect to y^{m}, we get

$$
\begin{equation*}
\dot{\partial}_{h}\left(\mathcal{B}_{m} H_{k}\right)=\left(\dot{\partial}_{h} \lambda_{m}\right) H_{k}+\lambda_{m}\left(\dot{\partial}_{h} H_{k}\right) . \tag{46}
\end{equation*}
$$

Using the commutation formula exhibited by (8) for $\left(H_{k}\right)$ in (46), in view of (13e), we get

$$
\begin{equation*}
\mathcal{B}_{m} H_{k h}-H_{r} G_{m h k}^{r}=\left(\dot{\partial}_{h} \lambda_{m}\right) H_{k}+\lambda_{m} H_{k h} . \tag{47}
\end{equation*}
$$

Using (32) in (47), we get

$$
\begin{equation*}
(n-1) \mu_{m} g_{k h}-H_{r} G_{m h k}^{r}=\left(\dot{\partial}_{h} \lambda_{m}\right) H_{k} . \tag{48}
\end{equation*}
$$

Transvecting (48) by y^{k}, using (1a), (7) and (14b), we get

$$
\mu_{m} y_{h}=\left(\dot{\partial}_{h} \lambda_{m}\right) H
$$

or

$$
\begin{equation*}
\mu_{m}=\frac{\left(\dot{\partial}_{h} \lambda_{m}\right) H}{y_{h}} \tag{49}
\end{equation*}
$$

Thus, we conclude

Theorem 3.12. In $G(\mathcal{B} R)-R F_{n}$, The covariant vector μ_{m} is independent of y^{i} if and only if the covariant vector λ_{m} is independent y^{i} [provided (33) holds].

Using (49) in (48), we get

$$
\begin{equation*}
\left(\dot{\partial}_{h} \lambda_{m}\right)\left[\frac{(n-1) H g_{k h}}{y_{h}}-H_{k}\right]=H_{r} G_{m h k}^{r} . \tag{50}
\end{equation*}
$$

Transvecting (50) by y^{m} and using (7), we get

$$
\left(\dot{\partial}_{h} \lambda_{m}\right) y^{m}\left[\frac{(n-1) H g_{k h}}{y_{h}}-H_{k}\right]=0
$$

or

$$
\begin{equation*}
\left(\dot{\partial}_{h} \lambda-\lambda_{h}\right)\left[\frac{(n-1) H g_{k h}}{y_{h}}-H_{k}\right]=0 \tag{51}
\end{equation*}
$$

where $\lambda=\lambda_{h} y^{h}$. The equation (51) implies at least one of the following condition

$$
\begin{equation*}
\text { a) } \lambda_{h}=\dot{\partial}_{h} \lambda, \quad \text { b) } H_{k}=\frac{(n-1) H g_{k h}}{y_{h}} \text {. } \tag{52}
\end{equation*}
$$

Thus, we conclude

Theorem 3.13. In $G(\mathcal{B R})-R F_{n}$, for which the covariant vector λ_{m} is not independent of y^{i}, at least one of the conditions (52a) or (52b) holds [provided (33) holds].

Suppose (52b) holds, then (50) implies

$$
H_{r} G_{m h k}^{r}=0
$$

Since $n \neq 1$ and $H \neq 0$, we get

$$
y_{r} G_{m h k}^{r}=0
$$

Therefore the space is a Landsberg space. Thus, we conclude
Theorem 3.14. The $G(\mathcal{B R})-R F_{n}$ is aLandsberg space if the condition (52b) holds [provided (33) holds].

4. Conclusion

(1). The space whose defined by the condition (17) is called generalized $\mathcal{B} R-$ recurrent Finsler space.
(2). In generalized $\mathcal{B} R$-recurrent Finsler space Berwald curvature tensor $H_{j k h}^{i}$, the associate curvature tensor $H_{j p k h}$ and Cartan's fourth curvature tensor $K_{j k h}^{i}$ are generalized recurrent if and only if (23), (24) and (30) hold, respectively.
(3). In generalized $\mathcal{B} R$-recurrent Finsler space, the tensor $\left(H_{k h}-H_{h k}\right)$ and H-Ricci tensor $H_{k h}$ are non-vanishing if and only if (31) and (33) hold, respectively.
(4). In generalized $\mathcal{B} R$-recurrent Finsler space, the torsion tensor $K_{j k}^{i}$, the deviation tensor K_{h}^{i}, K-Ricci tensor $K_{j k}$, the curvature vector K_{k} and the curvature scalar K behave as recurrent if and only if (35), (37), (38), (40) and (41) hold, respectively.
(5). In generalized $\mathcal{B} R$-recurrent Finsler space, the curvature vector R_{j} behaves as recurrent if and only if (45) holds [provided (40) holds].
(6). In generalized $\mathcal{B} R$-recurrent Finsler space The covariant vector μ_{m} is independent of y^{i} if and only if the covariant vector λ_{m} is independent y^{i} [provided (33) holds].
(7). In generalized $\mathcal{B} R$-recurrent Finsler space the covariant vector λ_{m} is not independent of y^{i}, at least one of the conditions (52a) or (52 b) holds [provided (33) holds].
(8). The generalized $\mathcal{B} R$-recurrent Finsler space is a Landsberg space if the condition (52b) holds [provided (33) holds].

References

[1] A.Moor, Untersuchungenüber Finslerränme von rekurrenterkrümmung, Tensor N.S., 13(1963), 1-18.
[2] F.Y.A.Qasem and A.M.A.Al-qashbari, On study generalized H^{h}-recurrent Finsler space, Journal of Yemen Engineer, 14(2015).
[3] F.Y.A.Qasem and A.M.A.Al-qashbari, Certain identities in generalized R^{h}-recurrent Finsler space, International Journal of Innovation in Science Mathematices, 4(2)(2016), 66-69.
[4] F.Y.A.Qasem and A.M.A.Al-qashbari, Some types of generalized H^{h}-recurrent in Finsler space, International Journal of Mathematics and its Application, 4(1-C)(2016), 1-10.
[5] F.Y.A.Qasem and A.A.A.Abdallah, On certain generalized $\mathcal{B} R$-recurrent Finsler space, International Journal of Applied Science and Mathematics, 3(3)(2016), 111-114.
[6] H.Rund, The differential geometry of Finsler spaces, Springer-Verlag, Berlin Göttingen, (1959); 2 ${ }^{\text {nd }}$ Edition (in Russian), Nauka, (Moscow), (1981).
[7] M.Matsumoto, On C-reducible Finsler space, Tensor N.S., 24(1972), 29-37.
[8] P.N.Pandey, S.Saxena and A.Goswani, On a generalized H-recurrent space, Journal of International Academy of physical Science, 15(2011), 201-211.
[9] R.Verma, Some transformations in Finsler space, Ph.D.Thesis, University of Allahabad, India, (1991).

[^0]: * E-mail: fahmi.yaseen@yahoo.com

