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1. Introduction

Linear and Nonlinear partial differential equations can be found in wide variety scientific and engineering applications [1–5].

Many important mathematical models can be expressed in terms of linear and nonlinear partial differential equations.

Linear and Nonlinear Partial differential equations are generally difficult to be solved and their exact solution are difficult

to be obtained. The exact solution and numerical solutions of this kind of equations play an important role in physical

science and in engineering fields; therefore, there have been attempts to develop new techniques for obtaining analytical

solutions which reasonably approximate the exact solutions.

In recent years, many research workers have paid attention to find the solutions of linear and nonlinear differential equations

by using various methods. Among these are, the variational iteration method [6–10] the homotopy perturbation method,

the differential transform method (2008) and Elzaki Transform (Tarig and Salih, (2011), (2012)) [11–16], the Adomain

decomposition method, etc. the Adomain decomposition method (ADM) which was introduced by G. Adomian [1–5] in the

1980s in order to solve linear and nonlinear differential equations.

Aboodh Transform is derived from the classical Fourier integral. Based on the mathematical simplicity of the Aboodh

Transform and its fundamental properties, Aboodh Transform was introduced by Khalid Aboodh in 2013, to facilitate the

process of solving ordinary and partial differential equations in the time domain. This transformation has deeper connection

with the Laplace and Elzaki Transform [17, 18]. The main idea of this paper is to introduce a comparative study to solve

linear partial differential by using aboodh transform and Adomian decomposition method (ADM).
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2. Aboodh Transform

A new transform called the Aboodh transform defined for function of exponential order we consider functions in the set A,

defined by:

A ={f (t) : ∃ M , k1, k2>0 , |f (t)|<Me−vt} (1)

For a given function in the set M must be finite number,k1, k2 may be finite or infinite. Aboodh transform which is defined

by the integral equation

A [f (t)] = K (v) =
1

v

∫ ∞
0

f (t) e−vtdt, t ≥ 0 , k1≤v≤k2 (2)

2.1. Aboodh Transform of Some Functions

A (1) =
1

v2
, A (tn) =

n!

vn+2
,

A
(
eat
)

=
1

v2 − av , A
(
e−at

)
=

1

v2 + av
,

A (sin(at )) =
a

v(v2+a2)
, A (cos(at )) =

1

(v2+a2)
,

A (sinh(at )) =
a

v(v2−a2)
, A (cosh(at )) =

1

(v2−a2)
.

2.2. Aboodh Transform of Derivatives

A
[
f ′(t )

]
= vK (v)− f(0)

v
,

A
[
f ′′(t )

]
= v2K (v)− f ′(0)

v
− f(0),

A
[
f (n)(t)

]
= vnK (v)−

n−1∑
k=0

f (k)(0)

v2−n+k
.

2.3. Aboodh Transform of Some Partial Derivative

A (u(x, t)) = K (x, v) , A

(
∂u(x, t)

∂x

)
= K′ (x, v) ,

A

(
∂2u(x, t)

∂x2

)
= K′′ (x, v) , A

(
∂nu(x, t)

∂xn

)
= K(n) (x, v) ,

A

(
∂u(x, t)

∂t

)
= v K (x, v)− u(x, 0)

v
, A

(
∂2u(x, t)

∂t2

)
= v2K (x, v)−

∂u(x,0)
∂t

v
− u(x, 0)

3. Adomain Decomposition Method

Adomain decomposition method [19, 20] define the unknown function by an infinite series

u (x) =

∞∑
n=0

un (x), (3)
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Where the components un (x) are usually determined recurrently. The nonlinear operator F (u) can be decomposed into an

infinite series of polynomials given by

F (u) =

∞∑
n=0

An. (4)

Where An are the so called Adomain polynomial of u0, u1, u2, . . . , un defined by

An =
1

n!

dn

dλn

[
F (λiui)

]
λ=0

, n = 0, 1, 2, . . . (5)

It is now well known that these polynomials can be generated for all classes of nonlinear according to specific algorithms

defined by (5). Recently, an alternative algorithm for constructing Adomain polynomials has been developed by Wazwaz [22].

This powerful technique handles both linear and nonlinear equations in unified manner without any need for the so called

Adomain polynomials .however, Adomin decomposition method provides the component of the exact solution, where these

components should follow the summation given in (3), whereas ADM requires the evaluation of the Adomain polynomials

that mostly require tedious algebraic work [21].

4. Applications

In this section we introduce some examples to explain the method

Example 4.1. Find the solution of the first order initial value problem:

∂u(x, t)

∂t
+ u (x, t) = 0, u (x, 0) = 1 (6)

And u(x, t) is bounded for x > 0, t > 0.

4.1. Use Aboodh Transform

Let K(x, v) be the Aboodh transform of u(x, t). Then, taking the Aboodh transform of Equation (6) we have,

vK (x, v)− u(x, 0)

v
+K(x, v) = 0 (7)

by applying the initial condition, we get

vK (x, v)− 1

v
+K(x, v) = 0 (8)

and

K (x, v) =
1
v

(v + 1)
=

1

v (v + 1)
(9)

If we take the inverse Aboodh transform for Equation (9), we obtain solution of Equation (6) in the form.

u (x, t) = e−t. (10)

4.2. Use Adomain Decomposition Method

We first rewrite Equation (6) in an operator is

Ltu = −u (11)

Where the differential operators Lt, is

Lt (.) =
∂

∂t
(.) (12)
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The inverse L−1
t are assumed as an integral operator given by

L−1
t (.) =

∫ t

0

(.)dt (13)

Applying the inverse operator L−1
t on both sides of Equation (11) and using initial condition we find

u0 (x, t) = 1

un+1 (x, t) = −L−1
t [un] , n ≥ 0 (14)

Evaluating the components un(x, t), n = 0, 1, 2, . . .

u1 = −L−1
t [u0 (x, t)] = −

∫ t

0

(1)dt = −t

u2 = −L−1
t [u1 (x, t)] = −

∫ t

0

−tdt =
t2

2!

u3 = −L−1
t [u2 (x, t)] = −

∫ t

0

t2

2
dt = − t

3

3!
. . . (15)

Finally, using Equation (3) we obtain the solution in series form:

u (x, t) = u0 + u1 + u2 + . . .

That is

u (x, t) = 1− t+
t2

2!
− t3

3!
+ . . .

The exact solution is given by

u (x, t) = e−t (16)

Example 4.2. Consider

uxx − utt = 0 with 0 ≤ x ≤ π and t ≥ 0 (17)

u (x, 0) = sinx, u (0, t) = 0, ut (x, 0) = 0, u (π, t) = 0

4.3. Use Aboodh Transform

Let k(v) be the Aboodh transform of u(x.t). Then, taking the Aboodh transform of Equation (17) we have:

v2k (x, v)− 1

v
ut (x, 0)− u (x, 0)− k

′′
(x, v) = 0 (18)

by applying the initial conditions we get

v2k (x , v )− sinx − k
′′

(x , v) = 0

This is the second order differential equation have the particular, solution in the form

k (x, v) =
− sinx

D2 − v2 =
− sinx

−1− v2 =
sinx

1 + v2
, where D2 =

d2

dx2
(19)

If we take the inverse Aboodh transform for Equation (19), we obtain solution of Equation (17) in the form

u (x, t) = cos tsinx.
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4.4. Use Adomain Decomposition Method

We first rewrite Equation (17) in an operator is

Lxu = Ltu (20)

Where the differential operators Lt, Lx are

Lt (.) =
∂2

∂t2
(.) , Lx (.) =

∂2

∂x2
(.) (21)

The inverse L−1
t are assumed as an integral operator given by

L−1
t (.) =

∫ t

0

∫ t

0

(.)dtdt (22)

Applying the inverse operator L−1
t on both sides of (20) and using initial condition we find

u0 (x, t) = sinx

un+1 (x, t) =

∫ t

0

∫ t

0

∂2un(x, t)

∂x2
dtdt (23)

Evaluating the components un(x, t), n = 0, 1, 2, . . . , then

u1 (x, t) =

∫ t

0

∫ t

0

∂2u0(x, t)

∂x2
dtdt =

∫ t

0

∫ t

0

sinxdtdt = − t
2

2!
sinx

and

u2 (x, t) =

∫ t

0

∫ t

0

∂2u1(x, t)

∂x2
dtdt =

∫ t

0

∫ t

0

∂2

∂x2

(
− t

2

2!
sinx

)
dtdt =

t4

4!
sinx

and

u3 (x, t) = − t
6

6!
sinx, u4 (x, t) =

t8

8!
sinx. . .. . .. (24)

Finally, using Equation (3) we obtain the solution in series form:

u (x, t) =

∞∑
n=0

un (x, t)

= sinx− t2

2!
sinx+

t4

4!
sinx− t6

6!
sinx+

t8

8!
sinx− . . .

=

(
1− t2

2!
+
t4

4!
− t6

6!
+
t8

8!
− . . .

)
sinx

The exact solution is given by

u (x, t) = cos t sinx (25)

Example 4.3. Consider the homogeneous heat equation in one dimension in a normalized form:

ut = uxx, (26)

u (x, 0) = sin
π

l
x, u (0, t) = u (l, t) = 0
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4.5. Use Aboodh Transform

Let k(v) be the Aboodh transform of u(x.t). Then, taking the Aboodh transform of Equation (26) we have:

K
′′

(x, v)−
[
vK (x, v)− u (x, 0)

v

]
= 0

K
′′

(x, v)− vK (x, v) = −1

v
sin

π

l
x (27)

Solve for K (x, v) we find that the particular solution is

K (x, v) =
− 1
v

sin π
l
x

D2 − v =
− 1
v

sin π
l
x

−
(
π
l

)2 − v =
1

v2 + π2

l2
v

sin
π

l
x (28)

And similarly if we take the inverse Aboodh transform for Equation (28), we obtain the Solution of Equation (26) in the

form

u (x, t) = sin
π

l
x e

π2

l2
t

(29)

4.6. Use Adomain Decomposition Method

We first rewrite Equation (26) in an operator is

Ltu = Lxu (30)

Where the differential operators Lt, Lx are

Lt (.) =
∂

∂t
(.) , Lx (.) =

∂2

∂x2
(.) (31)

The inverse L−1
t are assumed as an integral operator given by

L−1
t (.) =

∫ t

0

(.)dt (32)

Applying the inverse operator L−1
t on both sides of Equation (30) and using initial condition we find

u0 (x, t) = sin
π

l
x

un+1 (x, t) =

∫ t

0

∂2un(x, t)

∂x2
dt (33)

Evaluating the components un(x, t), n = 0, 1, 2, . . . , then

u1 (x, t) =

∫ t

0

∂2u0(x, t)

∂x2
dt =

∫ t

0

∂2(sinπ
l
x)

∂x2
dt = −π

2

l2
t(sin

π

l
x)

and

u2 (x, t) =

∫ t

0

∂2(−π
2

l2
t(sinπ

l
x) )

∂x2
dt =

π4

l4
t2

2!
(sin

π

l
x)

and

u3 (x, t) = −π
6

l6
t3

3!
(sin

π

l
x) (34)
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Finally, using Equation (3) we obtain the solution in series form:

u (x, t) =

∞∑
n=0

un (x, t)

= sin
π

l
x − π2

l2
t(sin

π

l
x) +

π4

l4
t2

2!
(sin

π

l
x) − π6

l6
t3

3!
(sin

π

l
x) + . . .

= sin
π

l
x

[
1− π2

l2
t+

π4

l4
t2

2!
− π6

l6
t3

3!
+ . . .

]

The exact solution is given by

u (x, t) = sin
π

l
x e

π2

l2
t

(35)

Example 4.4. Consider the homogeneous heat equation in one dimension in a normalized form:

utt + uxx = 0 (36)

u (x, 0) = 0, ut (x, 0) = cosx; x, t > 0

4.7. Use Aboodh Transform

Equation (36) we can obtain

K
′′

(x, v) +

[
v2K (x, v)− ut (x, 0)

v
− u(x, 0)

]
= 0

K
′′

(x, v) + v2K (x, v) =
1

v
cosx (37)

Solve for K (x, v) we find that the particular solution is

K (x, v) =
1
v

cosx

D2 + v2
=

1
v

cosx

−1 + v2
=

cosx

v(v2 − 1)
(38)

And similarly if we take the inverse Aboodh transform for Equation (38), we obtain the Solution of Equation (36) in the

form

u (x, t) = sinhxcosx (39)

4.8. Use Adomain Decomposition Method

We first rewrite Equation (36) in an operator is

Ltu = −Lxu (40)

Where the differential operators Lt, Lx are

Lt (.) =
∂2

∂t2
(.) , Lx (.) =

∂2

∂x2
(.)

The inverse L−1
t are assumed as an integral operator given by

L−1
t (.) =

∫ t

0

(.)dt (41)

Applying the inverse operator L−1
t on both sides of (40) and using initial condition we find

u0 (x, t) = t cos x
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un+1 (x, t) = −
∫ t

0

∫ t

0

∂2un(x, t)

∂x2
dtdt (42)

Evaluating the components un(x, t), n = 0, 1, 2, . . . , then

u1 (x, t) = −
∫ t

0

∫ t

0

∂2u0(x, t)

∂x2
dtdt

= −
∫ t

0

∫ t

0

∂2(tcos x)

∂x2
dtdt = − t

3

3!
cosx and

u2 (x, t) = −
∫ t

0

∫ t

0

∂2(− t
3

3!
cosx )

∂x2
dtdt =

t5

5!
cosx

and

u3 (x, t) = − t
7

7!
cosx (43)

Finally, using Equation (3) we obtain the solution in series form:

u (x, t) =

∞∑
n=0

un (x, t) = tcosx− t3

3!
cosx+

t5

5!
cosx − t7

7!
cosx + . . .

=

[
t− t3

3!
+
t5

5!
− t7

7!
+ . . .

]
cosx

The exact solution is given by

u (x, t) = sinhx cosx (44)

5. Conclusion

In this paper, solved linear partial differential equations by two different transformations, one is Aboodh Integral Trans-

formations and the other one is Adomain decomposition method and solutions obtained by these two transformations are

compared, An important conclusion can made here. Adomain decomposition methods for solving linear partial differential

equations, the same problems are solved by Aboodh Transform. Adomain decomposition method provides the components

of exact solution, However, Application of the new transform Aboodh Transform to Solutions of linear PDEs has been

demonstrated.
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