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1. Introduction

Let G be a connected graph and k be an integer, k ≥ 1. A packing k-coloring of a graph G is a mapping

f : V (G) −→ {1, 2, ..., k} such that any two vertices of color i are at distance at least i + 1. The packing chro-

matic number χρ(G) of G is the smallest integer k for which G has packing k-coloring. The concept of packing coloring

comes from the area of frequency assignment in wireless networks and was introduced by Goddard et al. [1] under the name

broadcast coloring.

A connection pattern of the components in a system is called an interconnection network. The interconnection network

is responsible for fast and reliable communication among the processing nodes in any parallel computer. Processing and

distribution of data using interconnection networks have become indissoluble elements of the development of our society [4].

In this paper, we compute the packing chromatic number of an interconnection network, called benes network.

2. Benes Network

Efficient representations for butterfly and benes networks have been obtained by Manuel et al. [2]. Benes network is

constructed from butterfly network. Thus, we define the following definition for butterfly network.

Definition 2.1 ([4]). The n-dimensional butterfly network, denoted by BF (n); has vertex set

V = {(x; i) : x ∈ V (Qn), 0 ≤ i ≤ n}

Two vertices (x; i) and (y; j) are linked by an edge in BF (n) if and only if j = i + 1 and either (i) x = y, or (ii) x differs

from y in precisely the jth bit.
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Definition 2.2 ([2]). The n-dimensional Benes network consists of back-to-back butterfly, denoted by BB(n). The BB(n)

has 2n + 1 levels, each with 2n vertices. The first and last n + 1 levels in the BB(n) form two BF (n)’s respectively, while

the middle level in BB(n) is shared by these butterfly networks. A 2-dimensional benes network is shown in Figure 2.

Proposition 2.3 ([1]). Let H be a subgraph of G. Then χρ(H) ≤ χρ(G).

Proposition 2.4 ([1]). Let Cn be a cycle on n vertices. Then χρ(Cn) = 3, when n is a multiple of 4.

Theorem 2.5 ([3]). Let BF (3) be an 3-dimensional butterfly network. Then χρ(BF (3)) = 9.

Since a cycle on 4 vertices is a subgraph of BB(1), by Propositions 2.3 and 2.4, we have the following Remark.

Remark 2.6. χρ(BB(1)) = 3.

Figure 1. Benes Network BB(1)

Theorem 2.7. χρ(BB(2)) = 7.

Proof. Suppose χρ(BB(2)) = 6. Since diam(BB(2)) = 4, at most three vertices are colored 4, 5 and 6. Label BB(2) as

shown in Figure 2 (a).

Case 1: c(a1) = 3

Since d(a1, ai) = 4 for 2 ≤ i ≤ 4, we have c(ai) = 3 for 2 ≤ i ≤ 4. Since d(ai, {cj , dj}) = 1 for 1 ≤ i ≤ 4, i = j and d(ai, ej)

= 2 for 1 ≤ i, j ≤ 4, no other vertices of BB(2) receives color 3.

Case 1.1: c(b1) = 2

Since d(b1, bi) = 4 for 2 ≤ i ≤ 4, we have c(bi) = 2 for 2 ≤ i ≤ 4. Since d(bi, {cj , dj}) = 1 for 1 ≤ i ≤ 4, i = j, and d(bi, ej)

= 2 for 1 ≤ i, j ≤ 4, no other vertices of BB(2) receive color 2.

Case 1.2: c(c1) = 1

Since d(c1, ci) = 2 for 2 ≤ i ≤ 4, we have c(ci) = 1 for 2 ≤ i ≤ 4. Since d(ci, ej) ≥ 2 for 1 ≤ i, j ≤ 4, c(di) = 1 for ≤ i ≤ 4.

Since d(ci, {e1, e2}) = 1 and d(di, {e3, e4}) = 1 for 1 ≤ i ≤ 4, no other vertices of BB(2) receive color 1.

From Cases 1, 1.1 and 1.2, at most four vertices with 3 and four vertices with 2 and eight vertices with 1 can be colored.

Therefore, remaining one vertex should receive distinct color greater than 6.

Case 2: c(d1) = 3

Since d(d1, c2) = 4, we have c(c2) = 3. Since d(d1, {d3, d4}) = 2, d(c2, {c3, c4}) = 2, d(c2, {ai, bi}) ≤ 3 and d(d1, {ai, bi}) ≤ 3

for 1 ≤ i ≤ 4, no other vertices of BB(2) receive color 3.

Case 2.1: c(d2) = 2

Since d(d2, c1) = 4, we have c(c1) = 2. Since d(d2, {ai, bi}) = 3 and d(c1, {ai, bi}) = 3 for 3 ≤ i ≤ 4, c(a3) = c(a4) = 2. Since

d(d2, {d3, d4}) = 1, d(c1, {c3, c4}) = 1, d(c1, {a1, b1}) = 2, d(d2, {a2, b2}) = 2, d(d2, {e3, e4}) = 1 and d(c1, {e1, e2}) = 1, no

other vertices of BB(2) receive color 2.

Case 2.2: c(a1) = 1

Since d(a1, {a2, b1, b2}) = 2, we have c(a2) = c(b1) = c(b2) = 1. Since d(ei, {aj , bj}) = 2 for 1 ≤ i ≤ 4 and 1 ≤ j ≤ 2, c(ei)
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= 1 for 1 ≤ i ≤ 4. Then no other vertices of BB(2) receive color 1.

From Cases 2, 2.1 and 2.2, at most two vertices with 3 and four vertices with 2 and eight vertices with 1 can be colored.

Therefore, remaining three vertices should receive distinct color greater than 6.

Figure 2. Benes Network BB(2)

Case 3: c(e1) = 3

Since d(e1, e3) = 4, we have c(e3) = 3. Since d(e1, {ai, bi}) = 2, d(e1, ci) = 1 and d(e3, di) = 1 for 1 ≤ i ≤ 4, no ai, bi, ci

and di receive color 3.

Case 3.1: c(e2) = 2

Since d(e2, e4) = 4, we have c(e4) = 2. Since d(e2, {ai, bi}) = 2, d(e2, ci) = 1 and d(e4, di) = 1 for 1 ≤ i ≤ 4, no ai, bi, ci

and di receive color 2 and no other vertices receive color 2.

Case 3.2: c(b1) = 1

Since d(b1, {ai, bj}) ≥ 2 for 1 ≤ i ≤ 4 and 2 ≤ j ≤ 4, we have c(ai) = 1 and c(bj) = 1. Since d(ai, {cj , dj}) = 1 and

d(bi, {cj , dj}) = 1 for 1 ≤ i, j ≤ 4 and i = j, no other vertices of BB(2) receive color 1.

From Cases 3, 3.1 and 3.2, at most two vertices with 3 and two vertices with 2 and eight vertices with 1 can be colored.

Therefore, remaining five vertices should receive distinct color greater than 6. Thus χρ(BB(2)) ≥ 7. The coloring in Figure

2 (b) proves that χρ(BB(2)) = 7.

Figure 3. Benes Network BB(3)

Since BF (3) is a subgraph of BB(3), by Theorem 2.5, χρ(BB(3)) ≥ 9. The packing coloring of BB(3) is given in Figure 3.
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Thus we have the following Theorem.

Theorem 2.8. χρ(BB(3)) = 9.

Open Problem

The packing chromatic number of BB(r) is obtained for r = 1, 2 and 3. Finding χρ(BB(r)) for r > 3 is challenging and

the problem remains open for r > 3. The packing chromatic number of butterfly network is obtained and accepted for the

publication [3].
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