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Abstract: Let G be a simple connected and undirected graph. The shadow graph of G, denoted D2(G) is the graph constructed

from G by taking two copies of G namely G itself and G
′

and by joining each vertex u in G to the neighbors of the
corresponding vertex u

′
in G

′
. Let D be the set of all distances between distinct pairs of vertices in G and let Ds (called

the distance set) be a subset of D. The distance graph of G denoted by D(G,Ds) is the graph having the same vertex

set as that of G and two vertices u and v are adjacent in D(G,Ds) whenever d(u, v) ∈ Ds. In this paper, we define a new
graph called the shadow distance graph and determine the edge domination number of the shadow distance graph of the

path graph, the cycle graph and the sunlet graph with specified distance sets.
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1. Introduction

The theory of domination in graphs is of vast interest to researchers in graph theory due to its many and varied applications

in fields such as optimization, linear algebra, design and analysis of communication networks, military surveillance and social

sciences.

By a graph G = (V,E) we mean a finite undirected graph without loops and multiple edges. Throughout this paper, Pn

and Cn will denote the path graph and cycle graph with n vertices respectively. A subset S of V is called a dominating

set of G if every vertex not in S is adjacent to some vertex in S. The domination number of G denoted by γ(G) is the

minimal cardinality taken over all dominating sets of G. A subset F of E is called an edge dominating set if each edge in

E is either in F or is adjacent to an edge in F . An edge dominating set F is called minimal if no proper subset of F is an

edge dominating set. The edge domination number of G denoted by γ
′
(G) is the minimum cardinality taken over all edge

dominating sets of G.

The concept of edge domination in graphs was introduced by Mitchell and Hedetniemi [2]. Arumugam and Velammal[3]

have characterized connected graphs for which γ
′
(G) = bV

2
c and in [4], Armugam and Jerry have studied edge domination

and fractional edge domination in graphs. In [2], Vaidya and Pandit have discussed edge domination in some path and

cycle related graphs and have determined the edge domination number for shadow graphs, middle graph, and total graphs

of paths and cycles.

∗ E-mail: upparivijay@gmail.com

125

http://ijmaa.in/


Edge Domination in Shadow Distance Graphs

The open neighbourhood of an edge e ∈ E denoted by N(e) is the set of all edges adjacent to e in G. If e = (u, v) is an edge

in G, the degree of e denoted by deg(e) is defined as deg(e) = deg(u) + deg(v) − 2. The maximum degree of an edge in G

is denoted by 4
′
(G). The shadow graph of G, denoted by D2(G) is the graph constructed from G by taking two copies of

G namely G itself and G
′

and by joining each vertex u in G to the neighbors of the corresponding vertex u
′

in G
′
. Let D

be the set of all distances between distinct pairs of vertices in G and let Ds (called the distance set) be a subset of D. The

distance graph of G denoted by D(G,Ds) is the graph having the same vertex set as that of G and two vertices u and v are

adjacent in D(G,Ds) whenever d(u, v) ∈ Ds. The shadow distance graph of G, denoted by Dsd(G,Ds) is constructed from

G with the following conditions:

i) consider two copies of G say G itself and G
′

ii) if u ∈ V (G) (first copy) then we denote the corresponding vertex as u
′
∈ V (G

′
) (second copy)

iii) the vertex set of Dsd(G,Ds) is V (G) ∪ V (G
′
)

iv) the edge set of Dsd(G,Ds) is E(G)∪E(G
′
)∪Eds where Eds is the set of all edges between two distinct vertices u ∈ V (G)

and v
′
∈ V (G

′
) that satisfy the condition d(u, v) ∈ Ds in G.

The shadow distance graphs Dsd(P5, {2}) and Dsd(C6, {3}) are illustrated in figure 1 and figure 2 respectively.

The n-sunlet graph denoted by Sn is the graph on 2n vertices obtained by attaching n−pendant edges to each of the
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Figure 1. The graph Dsd(P5, {2})
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Figure 2. The graph Dsd(C6, {3})

vertices of the cycle graph Cn. In the next section we determine the edge domination number of the shadow distance graph

of the path graph, the cycle graph and the sunlet graph with Ds = {2}and{3} respectively.

2. Main Results

We recall the following results related to the edge domination number of a graph.
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Theorem 2.1 ([5]). An edge dominating set F is minimal if and only if for each edge e ∈ G, one of the following two

conditions holds:

i) N(e) ∩ F = φ

ii) there exists an edge e ∈ E − F such that N(e) ∩ F = {e}.

Theorem 2.2 ([6]). γ
′
(Cn) = dn

3
e for n ≥ 3.

We begin our results with the distance shadow graph associated with the path Pn.

Theorem 2.3. For n ≥ 3, γ
′
(Dsd{Pn, {2}}) = 2dn−2

2
e.

Proof. Consider two copies of Pn, one Pn itself and the other denoted by P
′
n. Let v1, v2, . . . , vn be the vertices of Pn

and let v
′
1, v

′
2, . . . , v

′
n be the vertices of P

′
n. Let e1, e2, . . . , en−1 be the edges of the first copy Pn and e

′
1, e

′
2, . . . , e

′
n−1 be the

edges of the second copy P
′
n, where ei = (vi, vi+1), e

′
i = (v

′
i , v

′
i+1) for i = 1, 2, . . . , n − 1. Let G = (Dsd{Pn, {2}}). Then

|V (G)| = 2n, |E(G)| = 4n − 6 and E(G) = {ei} ∪ {e
′
i} ∪ {e(j),(j+2)

′ } ∪ {e(k−2)
′
,(k)} where 1 6 i 6 n − 1, 1 6 j 6 n − 2,

3 6 k 6 n.

For n = 3, since G ∼= C6 it follows that γ
′
(G) = 2 (Theorem 2.2). For n = 4 and 5, it is easy to verify that the sets F =

{e2, e
′
2} and F = {e2, e

′
2, e4, e

′
4} are the respective minimal edge dominating sets with minimum cardinality and hence γ

′
(G)

= 2 = 2dn−2
2
e for n = 4 and γ

′
(G) = 4 = 2dn−2

2
e for n = 5 respectively.

Let n > 6. Consider the set F = {e2, e
′
2, e4, e

′
4, ...., e2i+2, e

′
2i+2} for each i such that 0 6 i 6 dn− 4

2
e. Then, clearly, |F | =

2dn−2
2
e.

Now, each edge of G is either an element of F or is adjacent to some element in F . Hence F is an edge dominating set.

Also, this set F is a minimal edge dominating set since for any edge ei ∈ F , F − {ei} is not an edge dominating set for

N(ei) in G and moreover,

N(en−1) = {en−2, e(n−3)
′
(n−1), e(n−2)

′
(n)}

N(e
′
n−1) = {e

′
n−2, e

′

(n−3)(n−1)
′ , e

′

(n−2)(n)
′ }

and for all other ei such that ei ∈ F ,

N(ei) = {ei−1, ei+1, e(i−2)
′
(i), e(i+2)

′
(i), e(i+1)(i−1)

′ , e(i+1)(i+3)
′ }

N(e
′
i) = {e

′
i−1, e

′
i+1, e

′

(i−2)(i)
′ , e

′

(i+2)(i)
′ , e

′

(i−1)(i+1)
′ , e

′

(i+3)(i+1)
′ }

Hence, N(ei) ∩ F = φ. Further, 4
′
(G) = 6 which implies that an edge of G can dominate atmost seven distinct edges

including itself. But the graph G is such that there are 4 edges of degree 3, 4 edges of degree 4, 8 edges of degree 5 and

2(2n− 11) edges of degree 6. Hence atmost 2(2n− 11) distinct edges of G can dominate seven distinct edges including itself

and each of the remaining edges can dominate less than 6 edges of G. Hence, any set containing the edges less that in F

cannot be an edge dominating set of G.

This implies that the set F described above is of minimum cardinality and since |F | = 2dn−2
2
e, it follows that γ

′
(G) =

2dn−2
2
e.

Theorem 2.4.

γ
′
(Dsd{Pn, {3}}) =


3, n = 4

2dn−2
2
e, n ≥ 5
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Proof. Let G = (Dsd{Pn, {3}}). We consider the vertex set of G as in Theorem 2.3 and E(G) = {ei}∪{e
′
i}∪{e(j),(j+3)

′ }∪

{e(k−3)
′
,(k)} where 1 6 i 6 n− 1, 1 6 j 6 n− 3, 4 6 k 6 n. Clearly, |V (G)| = 2n, |E(G)| = 4n− 8.

For n = 4, since G ∼= C8, it follows that γ
′
(G) = 3 (Theorem 2.2). For n = 5, 6 and n = 7, 8 the sets F = {e2i+2, e

′
2i+2}, for

0 6 i 6 1 and 0 6 i 6 2 respectively are minimal edge dominating sets with minimum cardinality and hence γ
′
(G) = 2dn−2

2
e.

Let n > 9. Consider the set F = {e2, e
′
2, e4, e

′
4, ...., e2i+2, e

′
2i+2} for each i such that 0 6 i 6 dn− 4

2
e. Then, clearly,

|F | = 2dn−2
2
e.

Now, each edge of G is either an element of F or is adjacent to some element in F . Hence F is an edge dominating set. Also

this set F is a minimal edge dominating set since for any edge ei ∈ F , F − {ei} is not an edge dominating set for N(ei) in

G and, moreover,

N(en−1) = {en−2, e(n−4)
′
(n−1), e(n−3)

′
(n)}

N(e
′
n−1) = {e

′
n−2, e

′

(n−4)(n−1)
′ , e

′

(n−3)(n)
′ }

and for all other ei such that ei ∈ F

N(ei) = {ei−1, ei+1, e(i−3)
′
(i), e(i+3)

′
(i), e(i+1)(i−2)

′ , e(i+1)(i+4)
′ }

N(e
′
i) = {e

′
i−1, e

′
i+1, e

′

(i−3)(i)
′ , e

′

(i+3)(i)
′ , e

′

(i−2)(i+1)
′ , e

′

(i+4)(i+1)
′ }

Hence, N(ei) ∩ F = φ. Further, 4
′
(G) = 6 which implies that an edge of G can dominate at most seven distinct edges

including itself. But the graph G is such that there are 4 edges of degree 3, 8 edges of degree 4, 12 edges of degree 5 and

2(2n− 16) edges of degree 6. Hence atmost 2(2n− 16) distinct edges of G can dominate seven distinct edges including itself

and each of the remaining edges can dominate less than 6 edges of G. Hence, any set containing the edges less that in F

cannot be an edge dominating set of G. This implies that the set F described above is of minimum cardinality and since

|F | = 2dn−2
2
e, it follows that γ

′
(G) = 2dn−2

2
e.

For the cycle graph Cn, we have the following results.

Theorem 2.5. For n = 4,

γ
′
(Dsd{cn, {2}}) =


2dn−1

3
e, if n ≡ 0 or 2 (mod3)

2dn+1
3
e, otherwise

Proof. Consider two copies of Cn, one Cn itself and the other denoted by C
′
n. Let v1, v2, . . . , vn be the vertices of Cn

and v
′
1, v

′
2, . . . , v

′
n be the vertices of C

′
n. Let e1, e2, . . . , en be the edges of the first copy Cn and e

′
1, e

′
2, . . . , e

′
n be the edges

of the second copy C
′
n. Where ei = (vi, vi+1) and e

′
i = (v

′
i , v

′
i+1) for i = 1, 2, . . . , n, where computation is under modulo

n. Let G = (Dsd{Cn, {2}}). Then, for n = 4, |V (G)| = 8 and |E(G)| = 12 and the set F = {e2, e4, e
′
2, e

′
4} is the minimal

dominating set with minimum cardinality and hence γ′(G) = 4.

Let n = 5. Then |V (G)| = 2n, |E(G)| = 4n and E(G) = {ei} ∪ {e
′
i} ∪ {e(j),(j+2)

′ } ∪ {e(j)′ ,(j+2)} ∪ {e(k),(k+n−2)
′ } ∪

{e(k+n−2),(k)
′ } where 1 6 i 6 n, 1 6 j 6 n− 2, 1 6 k 6 2. Consider the set

F =

 {e2, e5, . . . , e3i+2, e
′
2, e
′
5, . . . , e

′
3i+2}, if n ≡ 0 or 2 (mod3)

{e2, e5, . . . , e3i+2, e
′
2, e
′
5, . . . , e

′
3i+2} ∪ {en, e′n}, otherwise.
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where 0 6 i 6 bn−2
3
c. Clearly, |F | = 2dn−1

3
e for n ≡ 0 or 2 (mod3) and |F | = 2dn+1

3
e otherwise.

This set F is a minimal edge dominating set with minimum cardinality since for any edge ei ∈ F , F − {ei} is not an edge

dominating set for N(ei) in G. Hence, any set containing edges less than that of F cannot be a dominating set of G. Also

G is regular of degree 4 and each edge of G is of degree 6 and an edge of G can dominate atmost seven distinct edges of G

including itself.

Theorem 2.6. For n = 6, γ
′
(Dsd{Cn, {3}}) = 2dn−1

2
e.

Proof. Let G = (Dsd{Cn, {3}}). The vertex set of G is as in Theorem 2.5. For n = 6, |V (G)| = 12 and |E(G)| = 18 and

the edge set is E(G) = {ei}∪{e
′
i}∪{e(j),(j+3)

′ }∪{e(j)′ ,(j+3)} where 1 6 i 6 n, 1 6 j 6 3 and the set F = {e2, e4, e6, e
′
2, e

′
4, e

′
6}

is a minimal edge dominating set with minimum cardinality. Hence γ
′
(G) = 6.

For n = 7, |V (G)| = 14 and |E(G)| = 28 and the edge set is E(G) = {ei} ∪ {e
′
i} ∪ {e(j),(j+3))

′ } ∪ {e(k),(k+(n−3)))
′ } ∪

{e(j)′ ,(j+3)} ∪ {e(k)′ ,(k+(n−3))} where 1 6 i 6 n, 1 6 j 6 4, 1 6 k 6 3 and the set F = {e2, e5, e7, e
′
2, e

′
5, e

′
7} is a minimal

edge dominating set with minimum cardinality. Hence γ
′
(G) = 6.

Let n = 8. Then |V (G)| = 2n and |E(G)| = 4n and the edge set is E(G) = {ei} ∪ {e
′
i} ∪ {e(j),(j+3))

′ } ∪ {e(k),(k+n−3))
′ } ∪

{e(j)′ ,(j+3)} ∪ {e(k)′ ,(k+n−3)}, where 1 6 i 6 n, 1 6 j 6 n− 3, 1 6 k 6 3. Consider the set

F =

 {e2, e4, ....., e2i, e
′
2, e

′
4, ....., e

′
2i}, 0 6 i 6 n

2
(n is even)

{e2} ∪ {e
′
2} ∪ {e5, e7, e9....., e2j+3, e

′
5, e

′
7, ....., e

′
2j+3} ∪ {en, e

′
n}, 0 6 i 6 dn−1

3
e (n is odd).

Clearly |F | = 2dn−1
2
e. This set F is a minimal edge dominating set since for any edge ei ∈ F , F − {ei} is not an edge

dominating set for N(ei) in G. Hence any set containing edges less than that of F cannot be a dominating set of G. Also

G is regular of degree 4 and each of its edges has degree 6 and therefore an edge of G can dominate atmost seven distinct

edges of G including itself. Hence the above set F is of minimum cardinality and therefore γ
′
(G) = 2dn−1

2
e.

For the sunlet graph Sn, we have the following results.

Theorem 2.7. For n = 3, γ
′
(Dsd{Sn, {2}}) = 2bn+1

2
c.

Proof. Consider two copies of Sn namely Sn itself and Sn
′. In the first copy Sn, let (v1)1, (v2)1, . . . , (vn)1 be the vertices

of the cycle, (v1)
′
1, (v2)

′
1, . . . , (vn)

′
1 be the pendant vertices, let the edges of the cycle be ei = ((v1)i, (v1)i+1), i = 1, 2, . . . , n

where computation is under modulo n and let the pendant edges be epi = ((vi)1, (vi)
′
1) where i = 1, 2, . . . , n. In the second

copy, let (v1)2, (v2)2, . . . , (vn)2 be the vertices of the cycle, (v1)
′
2, (v2)

′
2, . . . , (vn)

′
2 be the pendant vertices, let the edges

of the cycle be e
′
i = ((v2)

′
i, (v2)

′
i+1), i = 1, 2, . . . , n where computation is under modulo n and let the pendant edges be

e
′
pi = ((vi)

′
2, (vi)

′
2) where i = 1, 2, . . . , n. Let G = (Dsd{Sn, {2}}).

For n = 3, the set F = {e1, ep3 , e
′
1, e

′
p3} is a minimal edge dominating set with minimum cardinality and hence γ

′
(G) = 4.

Let n ≥ 4. Consider the set F = {e1, e3, e5, . . . , e2i+1, e
′
1, e

′
3, e

′
5, . . . , e

′
2i+1} Where 0 ≤ i ≤ bn−1

2
c.

This set F is a Minimal edge dominating set since for any edge ei ∈ F , F − {ei} is not an edge dominating set for N(ei) in

G. Hence any set containing edges less than that of F cannot be a dominating set of G. Further, 4
′
(G) = 12 which implies

that an edge of G can dominate atmost 13 distinct edges including itself. But the graph G is such that there are 6n edges

of degree 8 and 4n edges of degree 12. Hence atmost 4n distinct edges of G can dominate 13 distinct edges including itself

and each of the remaining edges can dominate less than 12 edges of G. Therefore, any set containing the edges less that

in F can not be an edge dominating set of G. This implies that the set F described above is of minimum cardinality and

therefore γ
′
(Dsd{Sn, {2}}) = 2bn+1

2
c.
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Theorem 2.8. For n = 3, γ
′
(Dsd{Sn, {3}}) = 2d 2n−1

2
e.

Proof. Let G=(Dsd{Sn, {3}}),The vertex set of G is as in Theorem 2.7. For n= 3, the set F = {ep1 , ep2 , ep3 , e
′
p1 , e

′
p2 , e

′
p3}

is a minimal edge dominating set with minimum cardinality and hence γ
′
(G) = 6.

For n= 4, the set F = {ep1 , ep2 , ep3 , ep4 , e
′
p1 , e

′
p2 , e

′
p3 , e

′
p4} is a minimal edge dominating set with minimum cardinality and

hence γ
′
(G) = 8. For n= 5, the set F = {ep1 , ep2 , ep3 , ep4 , ep5 , e

′
p1 , e

′
p2 , e

′
p3 , e

′
p4 , e

′
p5} is a minimal edge dominating set with

minimum cardinality and hence γ
′
(G) = 10. For n= 6, the set F = {ep1 , ep2 , ep3 , ep4 , ep5 , , ep6 , e

′
p1 , e

′
p2 , e

′
p3 , e

′
p4 , e

′
p5 , e

′
p6} is

a minimal edge dominating set with minimum cardinality and hence γ
′
(G) = 12.

Let n ≥ 7. Consider the set F ={ep1 , ep2 , ep3 ......, ei, e
′
p1 , e

′
p2 , e

′
p3 ....., e

′
i}.where 1 ≤ i ≤ n. This set F is a minimal edge

dominating set since for any edge ei ∈ F , F − {ei} is not an edge dominating set for N(ei) in G. Hence any set containing

edges less than that of F cannot be a dominating set of G. Further, 4
′
(G) = 12 which implies that an edge of G can

dominate atmost 13 distinct edges including itself. But the graph G is such that there are 2n edges of degree 8 , 6n edges

of degree 10 and 4n edges of degree 12. Hence atmost 4n distinct edges of G can dominate 13 distinct edges including itself

and each of the remaining edges can dominate less than 12 edges of G. Therefore, any set containing the edges less that

in F cannot be an edge dominating set of G. This implies that the set F described above is of minimum cardinality and

therefore γ
′
(Dsd{Sn, {3}}) = 2d 2n−1

2
e.
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