Int. J. Math. And Appl., 11(2)(2023), 79-87
Available Online: http://ijmaa.in

The Generalized Repetitious Number Puzzle

John Rafael M. Antalan ${ }^{1}$ 用 Richard P. Tagle ${ }^{1}$
${ }^{1}$ Department of Mathematics and Physics, College of Science, Central Luzon State University (3120), Science City of Muñoz, Nueva Ecija, Philippines

Abstract

In this paper, we use simple divisibility property of integers to provide a generalization to the "Repetitious NumberPuzzle" found in The Second Scientific American Book of Mathematical Puzzles and Diversions by Martin Gardner. We also show that the solution to the generalized repetitious number puzzle provides a particular recreational application of the sequences A000533 and A261544 in The On-line Encyclopedia of Integer Sequences (OEIS).

Keywords: Repetitious number puzzle; generalized repetitious number puzzle; integer sequence. 2020 Mathematics Subject Classification: 00A08, 11A05.

1. Introduction

In [1], Martin Gardner presented the puzzle below:
"The Repetitious Number. An unusual parlor trick is performed as follows. Ask spectator A to jot down any three-digit number, and then to repeat the digits in the same order to make a six-digit number (e.g., 394 394). With your back turned so that you cannot see the number, ask A to pass the sheet of paper to spectator B, who is requested to divide the number by 7 .

Don't worry about the remainder, you tell him, because there won't be any. B is surprised to discover that you are right (e.g., 394394 divided by 7 is 56342). Without telling you the result, he passes it on to spectator C , who is told to divide it by 11 . Once again you state that there will be no remainder, and this also proves correct (56342 divided by 11 is 5 122). With your back still turned, and no knowledge whatever of the figures obtained by these computations, you direct a fourth spectator D, to divide the last result by 13. Again the division comes out even (5122 divided by 13 is 394). This final result is written on a slip of

[^0]paper which is folded and handed to you. Without opening it you pass it on to spectator A.

Open this, you tell him, and you will find your original three-digit number.
Prove that the trick cannot fail to work regardless of the digits chosen by the first spectator."

The puzzle was originally written by Yakov Perelman [2]. In this paper, we provide a generalization to this puzzle and show that the solution to the generalization provides a particular recreational application of the sequences A000533 and A261544 in the OEIS.

2. Preliminaries

2.1 The OEIS Sequence A000533 and A261544

The OEIS sequence A000533 [3] is the sequence defined by

$$
\begin{aligned}
& a(0)=1 \\
& a(n)=10^{n}+1, \quad n \geq 1 .
\end{aligned}
$$

Its first 15 terms are:
1, 11, 101, 1001, 10001, 100001, 1000001, 10000001, 100000001, 1000000001, 10000000001, 100000000001, $1000000000001,10000000000001,100000000000001$.

On the otherhand, the sequence A261544 [4] is the sequence defined by

$$
b(n)=\sum_{k=0}^{n} 1000^{k} .
$$

Its first 10 terms are:
1, 1001, 1001001, 1001001001, 1001001001001, 1001001001001001, 1001001001001001001, 1001001001001001001001, 1001001001001001001001001, 1001001001001001001001001001.

2.2 Some Definitions, Notations and Preliminary Results

Definition 2.1. Let $n=d_{1} d_{2} \ldots d_{k} d_{1} d_{2} \ldots d_{k} \ldots d_{1} d_{2} \ldots d_{k}$ be a positive repetitive integer. We say that the positive integer $g=d_{1} d_{2} \ldots d_{k}$ is a generator of n if g is a positive integer such that replicating g a finite number of times generates n.

Definition 2.2. Let $g=d_{1} d_{2} \ldots d_{k}$ be a generator of n. Then the length of g denoted by $l(g)$ is the number of digits in g.

Definition 2.3. Let $g=d_{1} d_{2} \ldots d_{k}$ be a generator of n. The replication number of g denoted by $r(g)$ is the number of replication performed in g in order to generate n.

Example 2.4. To illustrate the concepts being discussed, we consider some examples.
(i) Consider the positive repetitive integer $n_{1}=394394$ in the Repetitious Number Puzzle. The positive integer $g_{1}=394$ is a generator for n_{1} with length $l\left(g_{1}\right)=3$ and replication number $r\left(g_{1}\right)=2$.
(ii) The positive repetitive integer $n_{2}=111111$ is generated by $g_{2}=1$ with length $l\left(g_{2}\right)=1$ and replication number $r\left(g_{2}\right)=6$. The integers 11, 111, and 111111 are the other generators of n_{2}.
(iii) The positive integer $n_{3}=223344$ generates itself with length 6 and replication number 1 .

Note that as shown in Example 2.4, a generator is not unique. Moreover, for any positive integer n, we have n generates itself. Finally, if n is not repetitive, then its generator is unique. We now state a very important divisibility property whose proof is available in any standard number theory text such as [5] and [6].

Lemma 2.5. Let $a, d_{1}, d_{2}, \ldots, d_{n}$ be integers. If a| d_{j} for $j=1,2, \ldots, n$ then

$$
a \mid\left(d_{1} x_{1}+d_{2} x_{2}+\ldots+d_{n} x_{n}\right)
$$

for all integers $x_{1}, x_{2}, \ldots, x_{n}$.
By taking $x_{1}=x_{2}=\ldots=x_{n}=1$, we have a corollary that will be used extensively in the proof of main results.

Corollary 2.6. Let $a, d_{1}, d_{2}, \ldots, d_{n}$ be integers. If $a \mid d_{k}$ for $k=1,2, \ldots, n$ then

$$
a \mid\left(d_{1}+d_{2}+\ldots+d_{n}\right)
$$

We end this subsection by noting that if g generates n with replication number r, we write $n=g_{r}$.

2.3 Solution of the Repetitious Number Puzzle

The solution discussed in this subsection is due to the solution presented by Gardner [1].
Any three digit number takes the form $d_{1} d_{2} d_{3}$ where d_{1}, d_{2} and d_{3} are non-negative integers with bounds

$$
\begin{aligned}
& 0<d_{1} \leq 9 \\
& 0 \leq d_{2} \leq 9 \\
& 0 \leq d_{3} \leq 9 .
\end{aligned}
$$

Repeating the digits in the same order yields the six-digit integer $d_{1} d_{2} d_{3} d_{1} d_{2} d_{3}$. This integer can be factored into $1001 \times d_{1} d_{2} d_{3}$ as shown in the following computation

Thus, $d_{1} d_{2} d_{3}$ and 1001 divides $d_{1} d_{2} d_{3} d_{1} d_{2} d_{3}$ and that $d_{1} d_{2} d_{3} d_{1} d_{2} d_{3}=1001 \times d_{1} d_{2} d_{3}$. By the Fundamental Theorem of Arithmetic, 1001 can be expressed as a product of primes 7,11 and 13 . Hence 7,11 and 13 divides $d_{1} d_{2} d_{3} d_{1} d_{2} d_{3}$ and that

$$
d_{1} d_{2} d_{3} d_{1} d_{2} d_{3}=7 \times 11 \times 13 \times d_{1} d_{2} d_{3}
$$

Using the Division Algorithm, dividing the integer $d_{1} d_{2} d_{3} d_{1} d_{2} d_{3}$ by 7 gives the integer $11 \times 13 \times d_{1} d_{2} d_{3}$ with remainder 0 . Using the Division Algorithm again, dividing the integer $11 \times 13 \times d_{1} d_{2} d_{3}$ by 11 gives the integer $13 \times d_{1} d_{2} d_{3}$ with remainder 0 . A final application of Division Algorithm on dividing the integer $13 \times d_{1} d_{2} d_{3}$ by 13 gives the integer $d_{1} d_{2} d_{3}$ with remainder 0 .
Hence, dividing the six-digit repetitive number $d_{1} d_{2} d_{3} d_{1} d_{2} d_{3}$ in succession by the integers 7,11 and 13 returns the repetitive number into its generator $d_{1} d_{2} d_{3}$. This solves the puzzle.

Before we end this subsection, we note that the order of dividing the integer $d_{1} d_{2} d_{3} d_{1} d_{2} d_{3}$ by the integers 7,11 and 13 do not matter in the puzzle. For $d_{1} d_{2} d_{3} d_{1} d_{2} d_{3}$ can be written as

$$
\begin{gathered}
7 \times\left(11 \times 13 \times d_{1} d_{2} d_{3}\right), 7 \times\left(13 \times 11 \times d_{1} d_{2} d_{3}\right) 11 \times\left(7 \times 13 \times d_{1} d_{2} d_{3}\right), 11 \times\left(13 \times 7 \times d_{1} d_{2} d_{3}\right) \\
13 \times\left(7 \times 11 \times d_{1} d_{2} d_{3}\right) \text { and } 13 \times\left(11 \times 7 \times d_{1} d_{2} d_{3}\right)
\end{gathered}
$$

With all the needed definitions and results being stated, we are now ready to present our main results.

3. Results

3.1 Extension on the Length of Generator

In this subsection, we answer the question: Suppose, in the repetitious number puzzle, spectator A was asked to write down any k-digit positive integer. To what sequence of prime numbers does the resulting $2 k$-digit number be divided in order to return to the original k-digit number? The solution to the problem is given in the result below.

Theorem 3.1. Let $n=\left(d_{1} d_{2} \ldots d_{k}\right)_{2}$ be a repetitive number generated by $g=d_{1} d_{2} \ldots d_{k}$ of length k. Then the prime factors of $a(k)$ solves the extended repetitious number puzzle.

Proof. Given a repetitive number $n=\left(d_{1} d_{2} \ldots d_{k}\right)_{2}$, we express it as a sum of two positive integers both divisible by $g=d_{1} d_{2} \ldots d_{k}$. In particular n can be expressed as the sum

$$
\begin{array}{r}
d_{1} d_{2} \ldots d_{k} 00 \ldots 0 \\
+\quad d_{1} d_{2} \ldots d_{k} \\
\hline d_{1} d_{2} \ldots d_{k} d_{1} d_{2} \ldots d_{k} .
\end{array}
$$

Note that since $g \mid g$ and $g \mid d_{1} d_{2} \ldots d_{k} \underbrace{00 \ldots 0}_{\text {k-zeros }}$, by Corollary 2.6 we have

$$
g \mid(g+d_{1} d_{2} \ldots d_{k} \underbrace{00 \ldots 0}_{\text {k-zeros }}) .
$$

But $g+d_{1} d_{2} \ldots d_{k} \underbrace{00 \ldots 0}_{\text {k-zeros }}=n$. So, $g \mid n$.
After factoring out the common factor g in both summands we have

$$
\begin{aligned}
n & =g \times(1+1 \underbrace{00 \ldots 0}_{\text {k-zeros }}) \\
& =g \times(1 \underbrace{00 \ldots 0}_{k-1 \text {-zeros }} 1) \\
& =g \times a(k) .
\end{aligned}
$$

By the Fundamental Theorem of Arithmetic, $a(k)$ is either a prime or a product of primes. If $a(k)$ is prime, then the finite sequence of divisors to be divided to n to become g is $a(k)$ itself. If $a(k)$ is non-prime then the finite sequence of divisors to be divided to n to become g is the finite sequence whose terms are the prime divisors of $a(k)$.

Example 3.2. Suppose that spectator A wrote the number $g=451220125$. Duplicating g gives the number $n=451220125451220$ 125. Dividing n by the numbers 7,11,13,19 and 52579 , which are the prime divisors of $a(9)=1000000001$ gives the original number $g=451220125$.

3.2 Extension on the Number of Replication

In this subsection, we answer the question: Suppose that in the repetitious number puzzle spectator A was asked to write down any 3 -digit positive integer and replicate it r-times. To what sequence of divisors does the resulting $3 r$-digit number be divided in order to produce the original 3 -digit number? The solution to the problem is given in the next result.

Theorem 3.3. Let $n=\left(d_{1} d_{2} d_{3}\right)_{r}$ be a repetitive number generated by $g=d_{1} d_{2} d_{3}$ of length 3. Then the prime factors of $b(r-1)$ solves the extended repetitious number puzzle.

Proof. Given a repetitive number $n=\left(d_{1} d_{2} d_{3}\right)_{r}$, we express it as a sum of r positive integers both divisible by $g=d_{1} d_{2} d_{3}$. In particular n can be expressed as the sum

$$
n=d_{1} d_{2} d_{3}(0)_{3(r-1)}+d_{1} d_{2} d_{3}(0)_{3(r-2)}+\ldots+d_{1} d_{2} d_{3}(0)_{3(r-r)}
$$

Since $g \mid g$ and $g \mid d_{1} d_{2} d_{3}(0)_{3 j}$, for $j=1,2, \ldots r-1$, by Corollary 2.6, we have

$$
g \mid d_{1} d_{2} d_{3}(0)_{3(r-1)}+d_{1} d_{2} d_{3}(0)_{3(r-2)}+\ldots+d_{1} d_{2} d_{3}(0)_{3(r-r)} .
$$

So, $g \mid n$.
Factoring out the common factor g in all of the summands we have

$$
\begin{aligned}
n & =g \times\left(1(0)_{3(r-1)}+1(0)_{3(r-2)}+\ldots+1(0)_{3(r-r)}\right) \\
& =g \times b(r-1) .
\end{aligned}
$$

By the Fundamental Theorem of Arithmetic, $b(r-1)$ is either a prime or a product of primes. However, (except for the zeroth term) the terms of the sequence A261544 are all composite [7]. So the finite sequence of divisors to be divided to n in order to become g is the finite sequence whose terms are the prime divisors of $b(r-1)$.

Example 3.4. Suppose that spectator A wrote the number $g=721$. Replicating $g 4$-times gives the number $n=721721721721$. Dividing n by the numbers $7,11,13,101,9$ 901, which are the prime divisors of $b(3)=$ 1001001 001, gives the original number $g=721$.

3.3 The Generalized Repetitious Number Puzzle

Finally, in this subsection, we answer the generalized repetitious number puzzle. In the generalized repetitious number puzzle, we allow spectator A to write down any k-digit number and replicate it r-times to generate the integer $n=g_{r}$ with $l(g)=k$. The answer to the generalization is given in the final result of this paper.

Theorem 3.5. Let $n=\left(d_{1} d_{2} \ldots d_{k}\right)_{r}$ be a repetitive number generated by $g=d_{1} d_{2} \ldots d_{k}$ of length k. Then the sequence of prime factors of the integer

$$
\left(1(0)_{k-1}\right)_{r-1} 1
$$

is a finite sequence such that n upon division by all the sequence terms becomes g.
Proof. Given a repetitive number $n=\left(d_{1} d_{2} \ldots d_{k}\right)_{r}$, we express it as a sum of r positive integers both divisible by $g=d_{1} d_{2} \ldots d_{k}$. In particular n can be expressed as the sum

$$
n=d_{1} d_{2} \ldots d_{k}(0)_{k(r-1)}+d_{1} d_{2} \ldots d_{k}(0)_{k(r-2)}+\ldots+d_{1} d_{2} \ldots d_{k}(0)_{k(r-r)} .
$$

Since $g \mid g$ and $g \mid d_{1} d_{2} \ldots d_{k}(0)_{k j}$, for $j=1,2, \ldots r-1$, by Corollary 2.6, we have

$$
g \mid d_{1} d_{2} \ldots d_{k}(0)_{k(r-1)}+d_{1} d_{2} \ldots d_{k}(0)_{k(r-2)}+\ldots+d_{1} d_{2} \ldots d_{k}(0)_{k(r-r)} .
$$

So, $g \mid n$.
Factoring out the common factor g in all of the summands we have

$$
n=g \times\left(1(0)_{k(r-1)}+1(0)_{k(r-2)}+\ldots+1(0)_{k(r-r)}\right)
$$

$$
=g \times\left(1(0)_{k-1}\right)_{r-1} 1
$$

By the Fundamental Theorem of Arithmetic, $\left(1(0)_{k-1}\right)_{r-1} 1$ is either a prime or a product of primes. If $\left(1(0)_{k-1}\right)_{r-1} 1$ is prime, then the finite sequence of divisors to be divided to n to become g is $\left(1(0)_{k-1}\right)_{r-1} 1$ itself. If $\left(1(0)_{k-1}\right)_{r-1} 1$ is non-prime then the finite sequence of divisors to be divided to n to become g is the finite sequence whose terms are the prime divisors of $\left(1(0)_{k-1}\right)_{r-1} 1$.

Theorem 3.5 proves the validity of a Grade 7 teacher's clever way in verifying if his students correctly performed a series of division.

Example 3.6. A Relay Involving Division of Large Numbers. Sir DELTA is a grade 7 mathematics teacher in the Philippines. To test the proficiency of his students on performing division of large numbers, he grouped his students such that each group is consist of 10 members.

He then instructed the first student which we name S1 to write down in a $1 / 4$ sheet of paper any 4 -digit positive integer (say 2 019) and replicate it 8 - times to get a 32-digit number (20 192019201920192019201920192 019). Then he asked S1 to give the paper containing the 32-digit number to S2. S2 then was asked to divide the 32-digit number by 17 and write down the answer (1 187765 835407070118776583540 707) in another $1 / 4$ sheet of paper. After S2 was done writing the answer in a $1 / 4$ sheet of paper, Sir Delta asked S2 to give the paper to S3.

Denote by A_{n} the answer of student n. Suppose that the process continues with the following given

$$
\begin{gathered}
\text { S3 performs } A_{2} \div 73 \\
\text { S4 performs } A_{3} \div 137 \\
\text { S5 performs } A_{4} \div 353 \\
\text { S6 performs } A_{5} \div 449 \\
\text { S7 performs } A_{6} \div 641 \\
\text { S8 performs } A_{7} \div 1409 \\
\text { S9 performs } A_{8} \div 69857 \\
\text { S10 performs } A_{9} \div 5882353
\end{gathered}
$$

Sir DELTA then asked S10 to give his/her answer to him.
If Sir DELTA wants to determine whether his students performed their assigned division problem correctly or not, show that it is enough for him to ask S1: "Is this your 4-digit number?"
Given below are the correct answers for the assigned sequence of divisions generated using Wolfram Alpha [8].
$20192019201920192019201920192019 \div 17=1187765835407070118776583540707$

```
118764707070 000 011876470707 \div353=336443929376770571888019
3 3 6 4 4 3 9 2 9 3 7 6 7 7 0 5 7 1 8 8 8 0 1 9 \div 4 4 9 = 7 4 9 3 1 8 3 2 8 2 3 3 3 4 2 0 3 0 9 3 1
749318328233342030931\div641=1168983351378068691
1168983351378068 691\div1409=829654614178 899
829654614178 899\div69 857 = 11876470707
11876470707\div5882353=2 019.
```


4. Concluding Remarks

In this paper, we were able to generalize the repetitious number puzzle. The generalization allows spectator A to write down any k-digit number and replicate it r number of times resulting to a new number n. In order for the resulting number to return to the original k-digit number, we must divide n by the prime factors of the number $\left(1(0)_{k-1}\right)_{r-1} 1$. We call the number $\left(1(0)_{k-1}\right)_{r-1} 1$ the (l, r) codivisor of the k-digit number i.e. the generator. The name (l, r) co-divisor number is based from the idea that the number $\left(1(0)_{k-1}\right)_{r-1} 1$ is dependent to the length (l) of the generator and its replication number (r).

The concept of (l, r) co-divisor number allows us to view the sequence A000533 and the sequence A261544 in the OEIS as a particular member of a family of sequence which we call (l, r) co-divisor sequences. In particular, if we let $s(k, r)=\left(1(0)_{k-1}\right)_{r-1} 1$ we have

$$
s(k, 2)=a(k), k=1,2,3, \ldots
$$

where $a(k)$ is the $k^{\text {th }}$ term of the sequence A000533. We also have

$$
s(3, r)=b(r-1), r=1,2,3, \ldots .
$$

where $b(r-1)$ is the $(r-1)^{s t}$ term of the sequence A261544.
Finally, we recommend further studies on the (l, r) co-divisor number and sequences.

Acknowledgements

The creation of this article would not be possible without the suggestion of the authors colleague Mr. Melchor A. Cupatan. The first author would also like to express his gratitude to Ms. Josephine Joy Tolentino-Antalan of Philippine Science High School Central Luzon Campus for her valuable comments that led to the improvement of the manuscript. The authors also thank the Central Luzon State University for their support and encouragement throughout the conduct of this research. Finally, the authors would like to thank the various referees for their valuable comments and suggestions that
helped improve the content of the paper.

References

[1] M. Gardner, The Second Scientific American Book of Mathematical Puzzles and Diversions, The University of Chicago Press, Chicago, (1987).
[2] Y. Perelman, Figures for Fun: Stories and Conundrums, Foreign Language Publishing House, Moscow, (1957).
[3] N. J. A. Sloane, Sequence A000533 in The On-Line Encyclopedia of Integer Sequences.
[4] I. Gutkovskiy, Sequence A261544 in The On-Line Encyclopedia of Integer Sequences, (2015).
[5] D. M. Burton, Elementary Number Theory Seventh Edition, Mc Graw-Hill, New York, (2011).
[6] K. H. Rosen, Elementary Number Theory and its Applications Sixth Edition, Addison-Wesley, Boston, (2011).
[7] M. Gardiner, The Mathematical Olympiad Handbook: An Introduction to Problem Solving Based on the First 32 British Mathematical Olympiads 1965-1996, Oxford University Press, England, (1997).
[8] Wolfram Alpha, Wolfram Alpha LLC. (2020).

[^0]: *Corresponding author (jrantalan@clsu.edu.ph)

