Pair Sum Labeling of Splitting, Shadow and Middle Graphs of Path Graphs

Eduard C. Taganap ${ }^{1, *}$
${ }^{1}$ Department of Mathematics and Physics, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines

Abstract

Let G be a finite, undirected and simple graph with p vertices and q edges. A pair sum labeling of G is an injective map $f: V(G) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm p\}$ such that the induced edge function, f_{e} : $E(G) \rightarrow \mathbb{Z}-\{0\}$ defined by $f_{e}(u v)=f(u)+f(v)$ is one-to-one and $f_{e}(E(G))$ is either of the form $\left\{ \pm k_{1}, \pm k_{2}, \ldots, \pm k_{\frac{q}{2}}\right\}$ or $\left\{ \pm k_{1}, \pm k_{2}, \ldots, \pm k_{\frac{q-1}{2}}\right\} \cup\left\{k_{\frac{q+1}{2}}\right\}$ according as q is even or odd number. A graph with pair sum labeling will be referred to as a pair sum graph. Here, we show that the splitting graph, shadow graph, and middle graph of a path graph are pair sum graphs.

Keywords: pair sum graph; sum labeling; splitting graph; shadow graph; middle graph; path graph. 2020 Mathematics Subject Classification: 05C78.

1. Introduction

In graph theory, graph labeling remains to be an interest of study as it finds applications to the encryption and decryption process in cryptography (see $[3,10]$ and references therein). A graph labeling is an assignment of labels, usually represented by integers, to the vertices or edges (or both) of a graph, subject to certain conditions. In this work, we consider pair sum labeling of (p, q) graph G where G is finite, simple and undirected. We denote the vertex set and edge set of G as $V(G)$ and $E(G)$ respectively. In a (p, q) graph G, the number of elements of $V(G)$ and $E(G)$ are p and q, respectively. A pair sum labeling of G is an injective map $f: V(G) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm p\}$ such that the induced edge function, $f_{e}: E(G) \rightarrow \mathbb{Z}-\{0\}$ defined by $f_{e}(u v)=f(u)+f(v)$ is one-to-one and $f_{e}(E(G))$ is either of the form $\left\{ \pm k_{1}, \pm k_{2}, \ldots, \pm k_{\frac{q}{2}}\right\}$ or $\left\{ \pm k_{1}, \pm k_{2}, \ldots, \pm k_{\frac{q-1}{2}}\right\} \cup\left\{k_{\frac{q+1}{2}}\right\}$ according as q is even or odd number. A graph with a pair sum labeling is called pair sum graph.
Pair sum labeling had been introduced by Ponraj and Parthipan in [4]. They have also several works with Kala on this topic. In their series of work, they showed that the following are pair sum graphs:
(1). On 2010, in [4,6]: path P_{n}, cycle C_{n}, complete graph K_{n} for $n \leq 4$, star $K_{1, n}$, complete bipartite $K_{2, n}$, bistar $B_{m, n}$, subdivision graph $S\left(K_{1,2}\right)$ of $K_{1,2}$, and the combs $P_{n} \odot K_{1}$ and $P_{n} \odot\left(K_{1} \cup K_{1}\right)$, the union graphs $K_{1, m} \cup K_{1, n}, P_{m} \cup K_{1, n}, C_{m} \cup C_{m}$, the graph $m K_{n}$ obtained from the union of m copies of K_{n}

[^0]for $n \leq 4$, ladder graph L_{n}, quadrilateral snake Q_{n} for odd integer n, triangular snake T_{n}, and the crown $C_{n} \odot K_{1}$.
(2). On 2011, in [5, 7]: some trees derive from stars and bistars, all the trees of order 9, the graph $G \cup m K_{1}$ where G is a pair sum graph, all pair sum graphs of order at most 5 .
(3). On 2012, in [8,9]: the graph $P_{n} \times P_{n}$ for even n, the graph $C_{n} \times P_{2}$ for even n, the graph $L_{n} \odot K_{1}$, the graph $\left[C_{m}, P_{n}\right]$ obtained from two copies of C_{m} connected by the path P_{n}, the graph G where $V(G)=V\left(C_{n}\right) \cup\{v\}$ and $E(G)=E\left(C_{n}\right) \cup\left\{u_{1} v, u_{3} v\right\}\left(V\left(C_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}\right)$, the graph G_{n} with vertex set $V\left(G_{n}\right)=V\left(C_{n}\right) \cup\left\{v_{i}: 1 \leq i \leq n\right.$ and $E\left(G_{n}\right)=E\left(C_{n}\right) \cup\left\{u_{i} v_{i}, u_{i(i+1)} \bmod n: 1 \leq i \leq n\right\}$, and the graph G_{n}^{*} with vertex set $V\left(G_{n}^{*}\right)=V\left(C_{n}\right) \cup\left\{v_{i}, w_{i}: 1 \leq i \leq n\right.$ and $E\left(G_{n}^{*}\right)=E\left(C_{n}\right) \cup$ $\left\{u_{i} v_{i}, u_{i} w_{i} v_{i} w_{i}: 1 \leq i \leq n\right\}$, the dragon graph $C_{n} @ P_{m}$ for even integer n, the graph $K_{n}^{c}+2 K_{2}$, the subdivision graph $S\left(L_{n}\right)$ of ladder graph L_{n} of order n, and the subdivision graphs $S\left(C_{n} K_{1}\right)$, $S\left(P_{n} K_{1}\right), S\left(T_{n}\right), S\left(Q_{n}\right)$.

These results were also documented in the survey on graph labeling in [1]. For standard terminology and notations we follow [2].

2. Preliminaries

Given a path graph P_{n} with vertices $u_{1}, u_{2}, \ldots, u_{n}$, many graphs can be constructed from it by applying certain graph operations. We focus our attention to the splitting graph, shadow graph, and middle graph of P_{n}.
Let u be a vertex in P_{n}. The open neighbourhood set $N(u)$ is the set of all vertices adjacent to u in P_{n}. The splitting graph $S^{\prime}\left(P_{n}\right)$ of graph P_{n} is obtained by adding a new vertex v corresponding to each vertex u of P_{n} such that $N(u)=N(v)$. Shown in Figure 1a is $S^{\prime}\left(P_{9}\right)$, constructed from path graph P_{9} with vertices $u_{1}, u_{2}, \ldots, u_{9}$. In the construction of $S^{\prime}\left(P_{9}\right)$, the new vertex corresponding to u_{5} is v_{5}. Since u_{5} is adjacent to u_{4} and u_{6} in P_{9}, v_{5} is also adjacent to u_{4} and u_{6} in $S^{\prime}\left(P_{9}\right)$.

(a)

(b)

(c)

Figure 1: The (a) splitting graph $S^{\prime}\left(P_{9}\right)$, (b) shadow graph $D_{2}\left(P_{9}\right)$, and (c) middle graph $M\left(P_{9}\right)$

The shadow graph $D_{2}\left(P_{n}\right)$ of P_{n} is obtained by taking two copies of P_{n}, namely P_{n} and P_{n}^{\prime}, and joining each vertex u_{i} in P_{n} to the neighbours of corresponding vertex v_{i} in P_{n}^{\prime}. The shadow graph $D_{2}\left(P_{9}\right)$ is shown in Figure 1 b where the vertices of P_{9}^{\prime} are named $v_{1}, v_{2}, \ldots, v_{9}$.
The middle graph $M\left(P_{n}\right)$ of P_{n} is the graph whose vertex set is $V\left(P_{n}\right) \cup E\left(P_{n}\right)$ and in which two vertices are adjacent whenever either they are adjacent edges of P_{n}, or one is a vertex of P_{n} and the other is an edge incident with it. The middle graph $M\left(P_{9}\right)$ in Figure 1 c is constructed from P_{9} with vertices $u_{1}, u_{2}, \ldots, u_{9}$.

3. Main Results

In this section, we provide pair sum labelings of splitting, shadow and middle graphs of a path graph. Examples of these labelings are shown in Figures 2, 3 and 4.

Theorem 3.1. The splitting graph $S^{\prime}\left(P_{n}\right)$ of path graph P_{n} is a pair sum graph.
Proof. Let P_{n} be a path with $V\left(P_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. Consider the splitting graph $S^{\prime}\left(P_{n}\right)$ of P_{n}. Suppose $V\left(S^{\prime}\left(P_{n}\right)\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(S^{\prime}\left(P_{n}\right)\right)=\left\{u_{a} u_{a+1}: 1 \leq a \leq n-1\right\} \cup$ $\left\{u_{b} v_{b+1}, v_{b+1} u_{b+2}: 1 \leq b \leq n-2\right\} \cup\left\{u_{n-1} v_{n}, v_{1} u_{2}\right\}$ (See Figure 1a).
When $n=1, S^{\prime}\left(P_{1}\right) \cong \bar{K}_{2}$ where \bar{K}_{2} is the empty graph on 2 vertices. When $n=2, S^{\prime}\left(P_{2}\right) \cong P_{4}$, path of order 4. Thus, for $n \in\{1,2\}, S^{\prime}\left(P_{n}\right)$ is a pair sum graph.
Let $n \geq 3$. We have two cases.
Case 1: Suppose $n \equiv 1(\bmod 2)$
Define the map $f: V\left(S^{\prime}\left(P_{n}\right)\right) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm 2 n\}$ as follows:

$$
f\left(u_{i}\right)=\left\{\begin{array}{ll}
1-2 i & \text { if } i \equiv 1 \quad(\bmod 2), 1 \leq i \leq n-2 \\
2 n+1-2 i & \text { if } i \equiv 0 \\
1 & \text { if } i=n
\end{array} \quad(\bmod 2), 2 \leq i \leq n-1\right.
$$

and

$$
f\left(v_{i}\right)= \begin{cases}-2 n+2 & \text { if } i=1 \\ 1-2 i & \text { if } i \equiv 0 \quad(\bmod 2), 2 \leq i \leq n-1 \\ 2 n+1-2 i & \text { if } i \equiv 1 \quad(\bmod 2), 3 \leq i \leq n-2 \\ -2 & \text { if } i=n\end{cases}
$$

Now,

$$
\begin{aligned}
f_{e}\left[E\left(S^{\prime}\left(P_{n}\right)\right)\right] & =\{2 n-4,2 n-8, \ldots, 2\} \cup\{-2,-6, \ldots, 8-2 n\} \cup\{4\} \\
& \cup\{-4,-12, \ldots, 8-4 n\} \cup\{4 n-8,4 n-16, \ldots, 12\} \cup\{1\} \\
& \cup\{-1\} \cup\{4 n-12,4 n-20, \ldots, 16,8\} \cup\{-8,-16,-24, \ldots,-4 n+12\} \cup\{4-2 n\} \\
f_{e}\left[E\left(S^{\prime}\left(P_{n}\right)\right)\right] & =\{ \pm 2, \pm 6, \ldots, \pm(2 n-4)\} \cup\{ \pm 8, \pm 16, \pm 24, \ldots, \pm(4 n-12)\} \\
& \cup\{ \pm 4, \pm 12, \ldots, \pm(4 n-8)\} \cup\{ \pm 1\}
\end{aligned}
$$

Thus f is a pair sum labeling of $S^{\prime}\left(P_{n}\right)$.
Case 2: Suppose $n \equiv 0(\bmod 2)$
Define the map $f: V\left(S^{\prime}\left(P_{n}\right)\right) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm 2 n\}$ as follows:

$$
f\left(u_{i}\right)= \begin{cases}-1-2 i & \text { if } i \equiv 1 \quad(\bmod 2), 1 \leq i \leq n-1 \\ 2 n+1-2 i & \text { if } i \equiv 0 \quad(\bmod 2), 2 \leq i \leq n-2 \\ n-2 & \text { if } i=n\end{cases}
$$

and

$$
f\left(v_{i}\right)= \begin{cases}2 n+1-2 i & \text { if } i \equiv 1 \quad(\bmod 2), 1 \leq i \leq n-1 \\ -1-2 i & \text { if } i \equiv 0 \quad(\bmod 2), 2 \leq i \leq n-2 \\ 2 n & \text { if } i=n\end{cases}
$$

Now,

$$
\begin{aligned}
f_{e}\left[E\left(S^{\prime}\left(P_{n}\right)\right)\right] & =\{2 n-6,2 n-10, \ldots, 2\} \cup\{-2,-6, \ldots, 6-2 n\} \cup\{-n-1\} \\
& \cup\{-8,-16,-24, \ldots,-4 n+8\} \cup\{1\} \cup\{4 n-8,4 n-16, \ldots, 16,8\} \\
& \cup\{4 n-4,4 n-12, \ldots, 12\} \cup\{n+1\} \cup\{-12,-20, \ldots,-4 n+4\} \\
f_{e}\left[E\left(S^{\prime}\left(P_{n}\right)\right)\right] & =\{ \pm 2, \pm 6, \ldots, \pm(2 n-6)\} \cup\{ \pm(n+1)\} \cup\{ \pm 8, \pm 16, \pm 24, \ldots, \pm(4 n-8)\} \\
& \cup\{ \pm 12, \pm 20, \ldots, \pm(4 n-4)\} \cup\{1\}
\end{aligned}
$$

Thus f is a pair sum labeling of $S^{\prime}\left(P_{n}\right)$.

(a)

(b)

Figure 2: (a) Pair sum labeling of $S^{\prime}\left(P_{9}\right)$, and (b) pair sum labeling of $S^{\prime}\left(P_{8}\right)$

Theorem 3.2. The shadow graph $D_{2}\left(P_{n}\right)$ of path graph P_{n} is a pair sum graph.
Proof. Let P_{n} be a path with $V\left(P_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. Consider the shadow graph $D_{2}\left(P_{n}\right)$ of P_{n}. Suppose $V\left(D_{2}\left(P_{n}\right)\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(D_{2}\left(P_{n}\right)\right)=\left\{u_{a} u_{a+1}, v_{a} v_{a+1}: 1 \leq a \leq n-\right.$ $1\} \cup\left\{u_{b} v_{b+1}, v_{b+1} u_{b+2}: 1 \leq b \leq n-2\right\} \cup\left\{u_{n-1} v_{n}, v_{1} u_{2}\right\}$ (See Figure 1b).
For $n \in\{1,2\}, D_{2}\left(P_{1}\right) \cong \bar{K}_{2}$ and $D_{2}\left(P_{2}\right) \cong C_{4}$, cycle of order 4. Thus, for $n \in\{1,2\}, D_{2}\left(P_{n}\right)$ is a pair sum graph. Let $n \geq 3$. We have two cases.

Case 1: Suppose $n \equiv 1(\bmod 2)$
Define the map $f: V\left(D_{2}\left(P_{n}\right)\right) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm 2 n\}$ as follows:

$$
f\left(u_{i}\right)= \begin{cases}\frac{3 n-1}{2}-\frac{i-1}{2} & \text { if } i \equiv 1 \quad(\bmod 2), 1 \leq i \leq n \\ -\frac{3 n+3}{2}-\frac{i-2}{2} & \text { if } i \equiv 0 \quad(\bmod 2), 2 \leq i \leq n-1\end{cases}
$$

and

$$
f\left(v_{i}\right)= \begin{cases}-n-\frac{i-1}{2} & \text { if } i \equiv 1 \quad(\bmod 2), 1 \leq i \leq n \\ 2 n-\frac{i-2}{2} & \text { if } i \equiv 0 \quad(\bmod 2), 2 \leq i \leq n-1\end{cases}
$$

Now,

$$
\begin{aligned}
f_{e}\left[E\left(D_{2}\left(P_{n}\right)\right)\right] & =\{-2,-3,-4 \ldots,-n\} \cup\{n, n-1,-n-2, \ldots, 2\} \\
& \cup\left\{\frac{7 n-1}{2}, \frac{7 n-5}{2}, \ldots, \frac{5 n+9}{2}, \frac{5 n+5}{2}\right\} \\
& \cup\left\{\frac{-5 n-5}{2}, \frac{-5 n-9}{2}, \ldots, \frac{5-7 n}{2}, \frac{1-7 n}{2}\right\} \\
& \cup\left\{\frac{-5 n-3}{2}, \frac{-5 n-7}{2}, \frac{-5 n-11}{2}, \ldots, \frac{-7 n+3}{2}\right\} \\
& \cup\left\{\frac{7 n-3}{2}, \frac{7 n-7}{2}, \ldots, \frac{5 n+7}{2}, \frac{5 n+3}{2}\right\}
\end{aligned}
$$

Thus, f is a pair sum labeling of $D_{2}\left(P_{n}\right)$.
Case 2: Suppose $n \equiv 0(\bmod 2)$
Define the map $f: V\left(D_{2}\left(P_{n}\right)\right) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm 2 n\}$ as follows:

$$
f\left(u_{i}\right)= \begin{cases}n-\frac{i-1}{2} & \text { if } i \equiv 1 \quad(\bmod 2), 1 \leq i \leq n-1 \\ -2 n+3\left(\frac{i-2}{2}\right) & \text { if } i \equiv 0 \quad(\bmod 2), 2 \leq i \leq n\end{cases}
$$

and

$$
f\left(v_{i}\right)= \begin{cases}-n+\frac{i-1}{2} & \text { if } i \equiv 1 \quad(\bmod 2), 1 \leq i \leq n-1 \\ 2 n-3\left(\frac{i-2}{2}\right) & \text { if } i \equiv 0 \quad(\bmod 2), 2 \leq i \leq n\end{cases}
$$

We have

$$
\begin{aligned}
f_{e}\left[E\left(D_{2}\left(P_{n}\right)\right)\right] & =\{-n,-n+2,-n+4 \ldots,-2\} \cup\{-n-1,-n+1,-n+3 \ldots,-5\} \\
& \cup\{n, n-2, n-4 \ldots, 2\} \cup\{n+1, n-1, n-3 \ldots, 5\} \\
& \cup\{3 n, 3 n-4,3 n-8 \ldots, n+4\} \cup\{-3 n+1,-3 n+5, \ldots,-n-7\} \\
& \cup\{-3 n,-3 n+4,-3 n+8 \ldots,-n-4\} \cup\{3 n-1,3 n-5, \ldots, n+7\}
\end{aligned}
$$

Thus f is a pair sum labeling of $D_{2}\left(P_{n}\right)$.

(a)

(b)

Figure 3: (a) Pair sum labeling of $D_{2}\left(P_{9}\right)$, and (b) pair sum labeling of $D_{2}\left(P_{8}\right)$

Theorem 3.3. The middle graph $M\left(P_{n}\right)$ of path graph P_{n} is a pair sum graph.
Proof. Let P_{n} be a path with $V\left(P_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. Consider the middle graph $D_{2}\left(P_{n}\right)$ of P_{n}. Suppose $V\left(D_{2}\left(P_{n}\right)\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ and $E\left(D_{2}\left(P_{n}\right)\right)=\left\{v_{a} v_{a+1}: 1 \leq a \leq n-2\right\} \cup$ $\left\{u_{b} v_{b}, v_{b} u_{b+1}: 1 \leq b \leq n-1\right\}$ (See Figure 1c).
When $n=1, M\left(P_{1}\right) \cong \bar{K}_{1}$, the empty graph on 1 vertex. When $n=2, M\left(P_{2}\right) \cong P_{3}$, path of order 3 . Thus, for $n \in\{1,2\}, M\left(P_{n}\right)$ is a pair sum graph. When $n=3, M\left(P_{2}\right)$ is a simple graph with 5 vertices. In [7], Theorem 3.18, that $M\left(P_{2}\right)$ is a pair sum graph. Let $n \geq 4$, we have the following cases.
Case 1: Suppose $n \equiv 0(\bmod 2)$
Define the map $f: V\left(M\left(P_{n}\right)\right) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm(2 n-1)\}$ as follows:

$$
f\left(u_{i}\right)= \begin{cases}\frac{-3 n}{2} & \text { if } i=1 \\ -5-n+2 i & \text { if } 2 \leq i \leq \frac{n-2}{2} \\ 3 & \text { if } i=\frac{n}{2} \\ -5 & \text { if } i=\frac{n+2}{2} \\ 3-n+2 i & \text { if } \frac{n+4}{2} \leq i \leq n-1 \\ \frac{3 n}{2} & \text { if } i=n\end{cases}
$$

and

$$
f\left(v_{i}\right)= \begin{cases}1 & \text { if } i=\frac{n}{2} \\ 2 i-n & \text { if } 1 \leq i \leq n-1, i \neq \frac{n}{2}\end{cases}
$$

We have

$$
\begin{aligned}
f_{e}\left[E\left(M\left(P_{n}\right)\right)\right] & =\{6-2 n, 10-2 n, 14-2 n, \ldots,-6\} \cup\{-1,3\} \cup\{6,10,14, \ldots, 2 n-6\} \\
& \cup\left\{2-\frac{5 n}{2}\right\} \cup\{3-2 n, 7-2 n, 11-2 n, \ldots,-9\} \cup\{4,-3\} \cup\{11,15,19 \ldots, 2 n-1\} \\
& \cup\{1-2 n, 5-2 n, 9-2 n \ldots,-11\} \cup\{1,-4\} \cup\{9,13,17, \ldots, 2 n-3\} \cup\left\{\frac{5 n}{2}-2\right\} \\
f_{e}\left[E\left(M\left(P_{n}\right)\right)\right] & =\{ \pm 1, \pm 3, \pm 4\} \cup\{ \pm 6, \pm 10, \pm 14, \ldots, \pm(2 n-6)\} \cup\{ \pm 9, \pm 13, \pm 17, \ldots, \pm(2 n-3)\}
\end{aligned}
$$

$$
\cup\{ \pm 11, \pm 15, \pm 19 \ldots, \pm(2 n-1)\} \cup\left\{ \pm\left(\frac{5 n}{2}-2\right)\right\}
$$

Thus f is a pair sum labeling of $M\left(P_{n}\right)$.
Case 2: Suppose $n \equiv 1(\bmod 4)$
Define the map $f: V\left(M\left(P_{n}\right)\right) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm(2 n-1)\}$ as follows:

$$
f\left(u_{i}\right)= \begin{cases}2 n-5 & \text { if } i=1 \\ 2 i-2 & \text { if } 2 \leq i \leq \frac{n-1}{2} \\ -2 n+5 & \text { if } i=\frac{n+1}{2} \\ n+1-2 i & \text { if } \frac{n+3}{2} \leq i \leq n-1 \\ -n & \text { if } i=n\end{cases}
$$

and

$$
f\left(v_{i}\right)= \begin{cases}2 i-1 & \text { if } 1 \leq i \leq \frac{n-1}{2} \\ n-2 i & \text { if } \frac{n+1}{2} \leq i \leq n-1\end{cases}
$$

We have

$$
\begin{aligned}
f_{e}\left[E\left(M\left(P_{n}\right)\right)\right] & =\{4,8,12, \ldots, 2 n-6\} \cup\{n-3\} \cup\{-4,-8,-12 \ldots,-2 n+6\} \\
& \cup\{2 n-4\} \cup\{5,9,13 \ldots, 2 n-5\} \cup\{-2 n+4\} \cup\{-5,-9,-13 \ldots,-2 n+5\} \cup\{-2 n+2\} \\
& \cup\{3,7,11 \ldots, 2 n-7\} \cup\{-n+3\} \cup\{-3,-7,-11 \ldots,-2 n+7\} \\
f_{e}\left[E\left(M\left(P_{n}\right)\right)\right] & =\{ \pm 3, \pm 7, \pm 11 \ldots, \pm(2 n-7)\} \cup\{ \pm 4, \pm 8, \pm 12, \ldots, \pm(2 n-6)\} \\
& \cup\{ \pm 5, \pm 9, \pm 13 \ldots, \pm(2 n-5)\} \cup\{ \pm(n-3)\} \cup\{ \pm(2 n-4)\} \cup\{-2 n+2\}
\end{aligned}
$$

Thus f is a pair sum labeling of $M\left(P_{n}\right)$.

Figure 4: (a) Pair sum labeling of $M\left(P_{8}\right)$, (b) pair sum labeling of $M\left(P_{9}\right)$, and (c) pair sum labeling of $M\left(P_{11}\right)$

Case 3: Suppose $n \equiv 3(\bmod 4)$
Define the map $f: V\left(M\left(P_{n}\right)\right) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm(2 n-1)\}$ as follows:

$$
f\left(u_{i}\right)= \begin{cases}1 & \text { if } i=1 \\ -2 n+2 i & \text { if } 2 \leq i \leq \frac{n-1}{2} \\ 3 & \text { if } i=\frac{n+1}{2} \\ 3 n-1-2 i & \text { if } \frac{n+3}{2} \leq i \leq n-1 \\ n-4 & \text { if } i=n\end{cases}
$$

and

$$
f\left(v_{i}\right)= \begin{cases}-2 n+1+2 i & \text { if } 1 \leq i \leq \frac{n-1}{2} \\ 3 n-2-2 i & \text { if } \frac{n+1}{2} \leq i \leq n-1\end{cases}
$$

We have

$$
\begin{aligned}
f_{e}\left[E\left(M\left(P_{n}\right)\right)\right] & =\{8-4 n, 12-4 n, 16-4 n, \ldots,-2 n-2\} \cup\{n-3\} \\
& \cup\{4 n-8,4 n-12,4 n-16, \ldots, 2 n+2\} \\
& \cup\{4-2 n\} \cup\{9-4 n, 13-4 n, 17-4 n, \ldots,-2 n-1\} \cup\{2 n\} \\
& \cup\{4 n-9,4 n-13,4 n-17 \ldots, 2 n+1\} \cup\{7-4 n, 11-4 n, 15-4 n \ldots,-2 n-3\} \\
& \cup\{3-n\} \cup\{4 n-7,4 n-11,4 n-15, \ldots, 2 n+3\} \cup\{2 n-4\} \\
f_{e}\left[E\left(M\left(P_{n}\right)\right)\right] & =\{ \pm(n-3), \pm(2 n-4)\} \cup\{ \pm(4 n-8), \pm(4 n-12), \pm(4 n-16), \ldots, \pm(2 n+2)\} \\
& \cup\{ \pm(4 n-9), \pm(4 n-13), \pm(4 n-17) \ldots, \pm(2 n+1)\} \\
& \cup\{ \pm(4 n-7), \pm(4 n-11), \pm(4 n-15), \ldots, \pm(2 n+3)\} \cup\{2 n\}
\end{aligned}
$$

Thus, f is a pair sum labeling of $M\left(P_{n}\right)$.

References

[1] A. J. Gallian, A dynamic survey of graph labeling, Electronic Journal of Combinatorics, 1(2018), \#DS6.
[2] J. L. Gross, J. Yellen and M. Anderson, Graph theory and its applications, Chapman and Hall/CRC, (2018).
[3] A. Krishnaa, Inner magic and inner antimagic graphs in cryptography, Journal of Discrete Mathematical Sciences and Cryptography, 22(6)(2019), 1057-1066.
[4] R. Ponraj and J. V. X. Parthipan, Pair sum labeling of graphs, J. Indian Acad. Math., 32(2)(2010), 587-595.
[5] R. Ponraj and J. V. X. Parthipan, Further results on pair sum labeling of trees, Appl. Math., 2(10)(2011), 1270-1278.
[6] R. Ponraj, J. V. X Parthipan and R. Kala,Some results on pair sum labeling of graphs, Int. J. Mathematical Combin., 4(2010), 53-61.
[7] R. Ponraj, J. V. X. Parthipan and R. Kala, A note on pair sum graphs, J. Scientific Research, 3(2)(2011), 321-329.
[8] R. Ponraj, J. V. X. Parthipan and R. Kala, Further results on pair sum graphs, Appl. Math., 3(3)(2012), 267-275.
[9] R. Ponraj, J. V. X. Parthipan and R. Kala, Some new families of pair sum graphs, J. Math. Comput. Sci., 2(3)(2012), 747-758.
[10] I. W. Sudarsana, S. A. Suryanto, D. Lusianti and N. P. A. P. S. Putri, An application of super mean and magic graphs labeling on cryptography system, Journal of Physics: Conference Series, 1763(1)(2021), 012052.

[^0]: *Corresponding author (eduardtaganap@clsu.edu.ph)

