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Abstract

We study the perfect 2-colorings (also known as the equitable partitions into two parts) of the

shadow graphs and total graphs of cycle graphs. In particular, we determine all the admissible

parameter matrices of perfect 2-colorings of these graphs.
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1. Introduction

As a generalization of the concept of completely regular codes, given by Delsarte [14], perfect k-coloring

provides a bridge among algebraic combinatorics, graph theory (distance regular graphs), and coding

theory (perfect codes). Its connection to regular codes are discussed in a survey paper on completely

regular codes [12]. This concept of perfect k-coloring is also known as equitable partition [17].

Definition 1.1. A perfect k-coloring of a graph G(V, E) with matrix M = (mij)i,j∈{1,2,...,k} is a surjective

map C : V(G) → {1, 2, . . . , k} such that for each vertex v where C(v) = i, the number of adjacent

vertices with color j is equal to mij. Here, V(G) is the vertex set of G. The k × k matrix M is called the

parameter matrix.

This mapping or coloring of vertices of G with k colors forms a partition of the vertex set of G into k

parts P1, P2, . . . , Pk such that, for all i, j ∈ {1, 2, . . . , k}, every vertex in Pi is adjacent to the same number

of vertices, namely mij vertices, of Pj. In a perfect 2-colorings of graph G where the color 1 is yellow

(assigned to the vertices in P1), and the color 2 is red (assigned to the vertices in P2), the parameter

matrix is of the form

M =

m11 m12

m21 m22


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and has the following meaning: Every yellow vertex is adjacent to precisely m11 yellow vertices and m12 red

vertices. Similarly, every red vertex is adjacent to precisely m21 yellow vertices and m22 red vertices.

Definition 1.2. A parameter matrix M =

m11 m12

m21 m22

 is called admissible for a graph G whenever there

exists a perfect 2-coloring of G.

The perfect 2-colorings with given parameter matrix of some Johnson graphs, including J(6, 3) and

J(7, 3) [9], J(8, 3) and J(8, 4) [10] and, J(n, 3) where n is an odd number [16], are already determined.

Several constructions for perfect 2-colorings of J(2n, n) and J(2n, 3) are also presented in [10]. Perfect

2-colorings of the following graphs are also studied: the Platonic graphs [3] consisting of tetrahedral

graph, cubical graph, octahedral graph, dodecahedral graph, and icosahedral graph; cubic (3-regular)

graphs of order less than or equal to 10 [5]; transitive cubic graphs [8] which includes prism and

crossed prism graphs, Mobius ladders and chordal cycles; hypercube graphs [15]; quartic (4-regular)

graphs with order at most 8 [18]; toroidal grid graphs [23] or generalized prism graphs [2]; generalized

Petersen graph GP(n, 2) where n ≥ 5 [4], and GP(n, 3) [19]; infinite circulant graphs whose set of

distances constitutes the segment of naturals [1, n] [22]; grassmann graph of planes [13]; and hamming

graphs [11].

Perfect 3-colorings of the following graphs are investigated: Johnson Graph J(6, 3) [1], platonic graphs

[7], cubic graphs of order 10 [6], prism graphs and Mobius ladders [20], and 6-regular graphs of order

9 [21].

In this work, we consider finite, undirected and simple connected k-regular graph G. A graph G is

k-regular if each vertex has the same number of adjacent vertices; that is every vertex has the same

degree k. In particular, we determine the perfect 2-colorings of shadow graphs and total graphs of

cycles. These graphs are 4-regular graphs.

Definition 1.3. Let u be a vertex in graph G. The open neighbourhood set N(u) is the set of all vertices

adjacent to u in G.

Definition 1.4. The shadow graph D2(G) of G is obtained by taking two copies of G, namely G and G′,

and joining each vertex ui in G to the neighbours of corresponding vertex vi in G′.

Shown in Figure 1a is the shadow graph D2(C12), constructed from the cycle graph C12 with vertices

u1, u2, . . . , u12. Let v1, v2, . . . , v12, be the vertices of C′
12. In the construction of D2(C12), the new vertex

corresponding to u3 is v3. Since v3 is adjacent to v2 and v4 in C′
12, then u3 is also adjacent to v2 and u4

in D2(C12). The shadow graph D2(C12) is shown in Figure 1a.
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(a) (b)

Figure 1: The (a) shadow graph D2(C12) and (b) total graph T(C12)

Definition 1.5. The total graph T(G) of graph G is the graph whose vertex set is V(G)∪ E(G) and two vertices

are adjacent whenever they are either adjacent or incident in G.

As an example, refer to the the shadow graph T(C12) constructed from the cycle graph C12 shown in

Figure 1b.

2. Main Results

In this section we present our results on perfect 2-colorings of shadow graphs and total graphs of

cycles. We start with presenting existing results on when two parameter matrices result to equivalent

colorings under reassignment of colors.

Remark 2.1. [8] Two matrices of perfect 2-colorings are called equivalent whenever one can be obtained

from the other by a permutation of rows and columns corresponding to a reassignment of colors.

Given a 4-regular graph G, consider the parameter matrix M =

0 4

1 3

 that corresponds to a perfect

2-coloring of G. This matrix M means that every yellow vertex of G is adjacent to 4 red vertices, while

every red vertex of G is adjacent to 1 yellow vertex and 3 red vertices. Now, reassign yellow vertices

with color red, and vise versa. Then, every yellow vertex of G is adjacent to 3 yellow vertices and 1

red vertex, while every red vertex of G is adjacent to 4 yellow vertices. This reassignment of colors is

represented by the parameter matrix M′ =

3 1

4 0

, which can be obtained by a permutation of rows

and columns of M.

Now we determine all admissible parameter matrices of perfect 2-colorings of the shadow graphs and

total graphs of cycle graphs. Since the graphs are connected, then we cannot have m12 = 0 or m21 = 0

respectively. Otherwise, all adjacent vertices of a white (respectively red) vertex are assigned with color

white (respectively red).

Without loss of generality, we may assume that every matrix M admissible for some 4-regular graph

satisfies 1 ≤ m12 ≤ m21 ≤ 4. Naturally, m11 + m12 = 4 and m21 + m22 = 4.
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Lemma 2.2. Only the following ten matrices are the parameter matrices of a perfect 2-coloring of a 4-regular

graph.

M1 =

3 1

1 3

 M2 =

3 1

2 2

 M3 =

3 1

3 1

 M4 =

3 1

4 0

 M5 =

2 2

2 2



M6 =

2 2

3 1

 M7 =

2 2

4 0

 M8 =

1 3

3 1

 M9 =

1 3

4 0

 M10 =

0 4

4 0



Lemma 2.3. [8] Let

m11 m12

m21 m22

 be an admissible matrix for graph G then

• the ratio of the numbers of yellow and red vertices of G is
m21

m12
;

• the order of G, denoted by |G|, is divisible by
m12 + m21

gcd(m12, m21)
, where gcd(m12, m21) is the greatest

common divisor of m12 and m21.

Theorem 2.4. The admissible matrices of the shadow graph D2(Cn) of cycle graph Cn are exhausted

by the list:

(i) M1, M2, M4, M6, M8, M9 are not admissible for any n;

(ii) M3 is admissible for any n divisible by 4;

(iii) M5 is admissible for any n;

(iv) M7 is admissible for any n divisible by 3;

(v) M10 is admissible for any n divisible by 2.

Proof. (i) Consider vertex u1 ∈ V(D2(Cn)), and assign it with color 1 (yellow). The parameter matrix

M1 =

3 1

1 3

 suggests that 3 adjacent vertices of u1 be assigned with color 1 (yellow) and the remaining

adjacent vertex of u1 be assigned with color 2 (red). We name the red vertex as v2 (See Figure 2a). We

have N(u2) = N(v2) and C(u2) ̸= C(v2). We arrive at a contradiction to the parameter matrix M1 since

we cannot have the vertices in the neighbourhood of u2 and v2 be assigned with 3 yellow and 1 red,

and at the same time 1 yellow and 3 red.

The following cases are analogous to the proof above. We start with assigning eithwe color 1 (yellow)

or color 2 (red) to vertex u ∈ V(D2(Cn)). Then we assign colors to the adjacent vertices of u based on

the given parameter matrix, and we look for contradictions.

In the cases of M2 =

3 1

2 2

 and M4 =

3 1

4 0

, we consider vertex u1 and assign it with color yellow.

Since N(u2) = N(v2) and C(v2) ̸= C(u2) (Figure 2a) we arrive at a contradiction to the parameter
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matrix M2 and M4 respectively. For M6 =

2 2

3 1

 and M8 =

1 3

3 1

, consider vertex u1, and assign it

with color red. We have N(u2) = N(v2) and C(u2) ̸= C(v2) (Figure 2b). We arrive at a contradiction to

the parameter matrix M6 and M8.

(ii) The contrapositive of Lemma 2.3 suggests that if |V(D2(Cn))| = 2n is not divisible by 4, then

M3 =

3 1

3 1

, is not an admissible matrix for D2(Cn).

We consider the following assignment of colors:

For all i, C(ui) = 1 (yellow), and

C(vi) =


1 (red) if i ≡ 1, 2 (mod 4), 1 ≤ i ≤ n

2 (yellow) if i ≡ 3, 0 (mod 4), 1 ≤ i ≤ n

(See Figure 3a as an example). This holds when n is divisible by 4.

We have N(uj) = {uj−1, uj+1, vj−1, vj+1} = N(vj). Consider uj such that j ≡ 1, 0 (mod 4), then

C(uj−1) = C(uj+1) = C(vj−1) = 1 (yellow) and C(vj+1) = 2 (red). When we have uj such that j ≡ 2, 3

(mod 4), then C(uj−1) = C(uj+1) = C(vj+1) = 1 (yellow) and C(vj−1) = 2 (red). Now, consider vj

such that j ≡ 1, 0 (mod 4), then C(uj−1) = C(uj+1) = C(vj−1) = 1 (yellow) and C(vj+1) = 2 (red).

Finally, when vj such that j ≡ 2, 3 (mod 4), we have C(uj−1) = C(uj+1) = C(vj+1) = 1 (yellow) and

C(vj−1) = 2 (red). Thus, the mapping agrees with parameter matrix M3.

(iii) With M5 =

2 2

2 2

, we have the following assignment of colors: For all i, C(ui) = 1 (yellow),

C(vi) = 2 (red). (See Figure 3b). This holds for any positive integer n. It can be shown that this

mapping agrees with matrix M5.

(iv) By Lemma 2.3, matrix M7 =

2 2

4 0

, is not an admissible matrix for D2(Cn) when 2n is not

divisible by 3. We consider the following assignment of colors:

C(ui) = C(vi) =


1 (yellow) if i ̸≡ 0 (mod 3), 1 ≤ i ≤ n

2 (red) if i ≡ 0 (mod 3), 1 ≤ i ≤ n

(See Figure 3c as an example). This holds when n is divisible by 3. This mapping agrees with matrix

M7.

(v) With M10 =

0 4

4 0

, we consider the following assignment of colors:

C(ui) = C(vi) =


1 (yellow) if i ≡ 1 (mod 2), 1 ≤ i ≤ n

2 (red) if i ≡ 0 (mod 2), 1 ≤ i ≤ n
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In this case, the vertices in N(ui) = N(vi) and are assigned with the same color. (See Figure 3d). This

mapping, which agrees with matrix M10, holds when n is an even number. When n is odd, we arrive

at a contradiction to M10.

(a) (b)

Figure 2: Initial assignment of colors to the vertices of D2(Cn) resulting to non-perfect 2-colorings

(a) (b)

(c) (d)

Figure 3: Perfect 2-coloring of D2(C12) with parameter matrix (a)
[

3 1
3 1

]
(b)

[
2 2
2 2

]
(c)

[
2 2
4 0

]
(d)[

0 4
4 0

]
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Theorem 2.5. The admissible matrices of the total graph T(Cn) of cycle graph Cn are exhausted by the

list:

(i) M1, M2, M3, M9, M10 are not admissible for any n;

(ii) M4 is admissible for any n divisible by 5;

(iii) M5 is admissible for any n;

(iv) M6 is admissible for any n divisible by 5;

(v) M7 is admissible for any n divisible by 3;

(vi) M8 is admissible for any n divisible by 2.

Proof. (i) As in the proof of the previous theorem, we start with assigning either color 1 (yellow) or

color 2 (red) to vertex u ∈ V(T(Cn)). Then we assign colors to the adjacent vertices of u based on the

given parameter matrix, and we look for contradictions.

Consider u1 ∈ V(T(Cn)) and let C(u1) = 1 (yellow). Note that if w ∈ N(u1), then 2 ≤ |N(u1) ∩

N(w)| ≤ 3. In the case of M1 =

3 1

1 3

, there exist w ∈ N(u1) such that C(w) = 2 (red). But

since 2 ≤ |N(u1) ∩ N(w)| ≤ 3, then at least two vertices adjacent to w are colored yellow which is a

contradiction to parameter matrix M1. (See Figure 4a when w = u2).

For M2 =

3 1

2 2

, any vertex u colored red will have two adjacent vertices, say w and w′, assigned with

color yellow, and the remaining two vertices assigned with color red. Either w or w′ will be adjacent

to two red vertices which is a contradiction to matrix M2. (See Figure 4b as an example).

For M3 =

3 1

3 1

, any vertex u colored red will have three adjacent vertices, say w, w′ and w′′, assigned

with color yellow, and the remaining vertex assigned with color red. Either w, w′ or w′′ will be adjacent

to two red vertices which is a contradiction to matrix M3. (See Figure 4c as an example).

For M9 =

1 3

4 0

, any vertex u colored yellow will have an adjacent vertex assigned with color yellow,

and the remaining three vertex assigned with color red. There exist w ∈ N(u) with C(w) = 2 (red) that

is adjacent to w′ ∈ N(u) with C(w′) = 2; a contradiction to matrix M9. (See Figure 4d as an example).

For M10 =

0 4

4 0

, any vertex u colored yellow will have adjacent vertices assigned with color red.

Hence, any w ∈ N(u), C(w) = 2 (red) is adjacent to w′ ∈ N(u) with C(w′) = 2; a contradiction to

matrix M10. (See Figure 4e as an example).
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(a) (b)

(c) (d)

Figure 4: Initial assignment of colors to the vertices of T(Cn) resulting to non-perfect 2-colorings

(ii) The contrapositive of Lemma 2.3 suggests that if |V(T(Cn))| = 2n is not divisible by 5, then

M4 =

3 1

4 0

, is not an admissible matrix for T(Cn).

We now consider the following assignment of colors:

C(ui) =


1 (yellow) if i ≡ 0, 1, 3, 4 (mod 5), 1 ≤ i ≤ n

2 (red) if i ≡ 2 (mod 5), 1 ≤ i ≤ n

C(vi) =


1 (yellow) if i ≡ 0, 1, 2, 3 (mod 5), 1 ≤ i ≤ n

2 (red) if i ≡ 4 (mod 5), 1 ≤ i ≤ n

This coloring, which agrees with matrix M4, holds when n is divisible by 5. See Figure 5a for example.
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(a) (b)

(c) (d)

(e)

Figure 5: Perfect 2-coloring of T(C10) or T(C12) with parameter matrix (a)
[

3 1
4 0

]
(b)

[
2 2
2 2

]
(c)

[
2 2
3 1

]
(d)

[
2 2
4 0

]
(e)

[
1 3
3 1

]

(iii) For M5 =

2 2

2 2

, consider the following assignment of colors: C(ui) = 1 (yellow), C(vi) = 2 (red).

(See Figure 5b). This coloring agrees with matrix M5 and holds for any positive integer n.

(iv) By Lemma 2.3, matrix M6 =

2 2

3 1

, is not an admissible matrix for T(Cn) when 2n is not divisible

by 5.
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We now consider the following assignment of colors:

C(ui) =


1 (yellow) if i ≡ 1, 2, 4 (mod 5), 1 ≤ i ≤ n

2 (red) if i ≡ 0, 3 (mod 5), 1 ≤ i ≤ n

C(vi) =


1 (yellow) if i ≡ 1, 3, 4 (mod 5), 1 ≤ i ≤ n

2 (red) if i ≡ 0, 2 (mod 5), 1 ≤ i ≤ n

This coloring, which agrees with matrix M6, holds when n is divisible by 5 .See Figure 5c) for example.

(v) By Lemma 2.3, matrix M7 =

2 2

4 0

, is not an admissible matrix for T(Cn) when 2n is not divisible

by 3.

We now consider the following assignment of colors:

C(ui) =


1 (yellow) if i ≡ 1, 2, (mod 3), 1 ≤ i ≤ n

2 (red) if i ≡ 0 (mod 3), 1 ≤ i ≤ n

C(vi) =


1 (yellow) if i ≡ 0, 2 (mod 3), 1 ≤ i ≤ n

2 (red) if i ≡ 1 (mod 3), 1 ≤ i ≤ n

This coloring, which agrees with matrix M7, holds when n is divisible by 3 .See Figure 5d) for example.

(vi) For M8 =

1 3

3 1

, consider the following assignment of colors:

C(ui) =


1 (yellow) if i ≡ 1 (mod 2), 1 ≤ i ≤ n

2 (red) if i ≡ 0 (mod 2), 1 ≤ i ≤ n

C(vi) =


1 (yellow) if i ≡ 0 (mod 2), 1 ≤ i ≤ n

2 (red) if i ≡ 1 (mod 2), 1 ≤ i ≤ n

(See Figure 5e). This coloring agrees with matrix M8, and holds for any n is an even number. When n

is odd, we arrive at a contradiction to M8.

3. Summary

In this paper, we have determined all perfect 2-colorings of shadow graphs and total graphs of cycle

graphs. Note that a total graph T(Cn) of cycle Cn is an antiprism graph, graph corresponding to the

skeleton of antiprisms. The 4-regular graphs of order 2n are clasess of quartic graphs which adds to

the literature of determining perfect 2-colorings of quartic graphs discussed in [18].
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