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1. Introduction

In 1947 W.N. Bailey [1] established the following result. If

βn =

n∑
r=0

αrUn−rVn+r (1)

and γn =

n∑
r=0

δrUr−nVr+n =

n∑
r=0

δr+nUrVr+2n (2)

Then under suitable convergence conditions
n∑
r=0

αnγn =

n∑
r=0

βnδn (3)

Where αr, δr, Ur and Vr are any functions of r only, such that the series γr exists.

Making use of [3], Bailey developed a technique to obtain various transformation formulae for ordinary and q-series which

play an important role in the number theory and transformation theory of hypergeometric series. Recently Singh [2], has

obtained many transformation formulae for q-series by using baileys transformation and certain known results due to Verma

and Jain [3]. In present paper, we have made to establish certain transformation formulae for q-hypergeometric series by

using Baileys transformation and some known summation formulae due to Verma and Jain [3] and also by Verma [5].

2. Notation and Definitions

A generalized basic hypergeometric function in defined by L. J. Stater [4]; and Exton [6]; also by Srivastava and Karlson [7]

is as under.

rφs

 a1, a2, . . . , ar; q; z
b1, b2, . . . , bs; qi

 =

∞∑
n=0

qi(
m
2 ) (a1)n(a2)n . . . (ar)nZ

n

(b1)n(b2)n . . . (bs)n(q)n
(4)
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Valid for |z| < 1 provided no zeroes appears in denominator. Here a1, a2, a3, . . . , ar and b1, b2, . . . , bs and Z are assumed to

be complex numbers. The shifted factorial in defined by

(a; q)n =

 1, if n = 0

(1− a)(1− aq) . . . (1− aqn− 1), if n = 1, 2, . . .

 (5)

And for real or complex q, |q| < 1, we have

(a; q)∞ =

∞∑
n=0

(1− aqn)

and (a; q)∞ =
(a; q)∞

(aqα; q)∞
(6)

and

AφB

 (a); q; z

(b); i

 =

∞∑
n=0

qin(n−1)/2

A∏
J=1

(aJ ; q)nZ
n

B∏
J=1

(bJ ; q)n(q; q)n

(7)

in the special case when i = 0 the first member of (7) will be written simply as

AφB

 (a); q; z

(b)


We shall use the following known results to establish our transformations.

2φ1

 a, b; q; c/ab
c

 =
(c/a; q)∞(c/b; q)∞
(c/ab; q)∞(c; q)∞

Slater [4]; (8)

2φ1

 a, b; q; c/ab
cq

 =
(cq/a; q)∞(cq/b; q)∞
(cq; q)∞(cq/ab; q)∞

×
{
ab(1 + c)− (a+ b)c

ab− c

}
Verma [5]; (9)

4φ3

 a, q√a,−q√a; q − qn+1/2

√
a,−
√
a, aqn

 =

{
(a; q)n(q

√
a; q)n(−q−1/2; q)n

2(
√
a;
√
q)2n(−

√
a; q)n

}
+

{
(a; q)n(−q

√
a; q)n(−q−1/2; q)n

2(−
√
a;
√
q)2n(

√
a; q)n

}
Verma [3]; (10)

3φ2

 a, q√a, q−n; q;−qn
√
a, aqn

 =
1

2

{
(a; q)n(−1; q)n(q

√
a; q)n

(
√
a;
√
q)2n(−

√
aq; q)n

}
+

{
(a; q)n(−1; q)n

(a; q2)n

}
Verma [3]; (11)

3. Main Results

(i). Let us suppose

Un =
1

(q; q)n
, Vn =

1

(a; q)n
, αn =

(a, q
√
a; q)n

(q,
√
a; q)n(q)n

and δn = (b, c; q)
( a
bc

)n
in (1) and (2), we get

βn =

[
1

2

{
(−1; q)n(q

√
a; q)n√

a;
√
q)2n(−

√
aq; q)n(q; q)n

+
(−1; q)n

(a; q2)n(q; q)n

}]
by using (10)

and γn =

(
a
b
, a
c
; q
)
∞(

a, a
bc

; q
)
∞

(b, c; q)n(
a
b
, a
c
; q
)
n

( a
bc

)n
by using (8)
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Now putting these values of αn, βn, γn and δn in (3), we get the transformation.

4φ3

 a, q√a, b, c; q; abc√
a, a

b
, a
c
; q

 =

(
a, a

bc
; q
)
∞(

a
b
, a
c
; q
)
∞

×

1

2
4φ3

 b, c,−1, q
√
a; q; a

bc

√
a,
√
aq,−

√
aq

 +
1

2
3φ2

 b, c,−1; q; a
bc

√
a,−
√
a




(ii). Choosing

Un =
1

(q; q)n
, Vn =

1

(a; q)n
, αn =

(a, q
√
a; q)n

(q,
√
a; q)n

qn
(n+1)

2

and δn = (b, c; q)
( a
bc

)n
in (1) and (2), we get

βn =

[
1

2

{
(−1; q)n(q

√
a; q)n√

a;
√
q)2n(−

√
aq; q)n(q; q)n

+
(−1; q)n

(a; q2)n(q; q)n

}]
by using (11)

and γn =

(
a
b
, a
c
; q
)
∞(

a, a
bc

; q
)
∞

(b, c; q)n(
a
b
, a
c
; q
)
n

(
a

bcq

)n
× bcq (aq2n−1)− aqn(b+ c)

bcq − a by using (9)

Now putting these values of αn, βn, γn, νn and δn in (3), we get the transformation.

(
a
c
, a
b
; q
)
∞(

a, a
bc

; q
)
∞

∞∑
n=0

(a, q
√
a, b, c; q)n

(q,
√
a, a

b
, a
c
, q; q)n

( a
bc

)n
qn(n−3) × bcq (1 + aq2n−1)− aqn(b+ c)

bcq − a

=
1

2
4φ3

 b, c,−1, q
√
a; q; a

bcq

√
a,
√
aq,−

√
aq

+
1

2
3φ2

 b, c,−1; q; a
bcq

√
a,−
√
a


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