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Abstract: In this paper, authors introduce a 3 dimensional Pythagorean mean functional equation
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which relates the three classical Pythagorean mean and investigate its generalized Hyers-Ulam stability.

MSC: 39B52, 39B72, 39B82.

Keywords: Pythagorean Means, Arithmetic mean, Geometric mean and Harmonic mean, Generalized Hyers-Ulam stability.

c© JS Publication.

1. Introduction

The stability problem of functional equations originates from the basic question of S.M. Ulam [26] in 1940 The initial

clarification to Ulam’s query was given by D.H. Hyers [13]. He considered the case of approximately additive mappings.

Further between 1951 to 2007, T. Aoki [2], Th.M. Rassias [23], J.M.Rassias [21], P.Gavruta [10] and J.M.Rassias et.al., [25]

provided a generalized version of the theorem of Hyers which permitted the Cauchy difference to become unbounded. For

the past seven decades, the generalized Ulam stability for various functional equations have been extensively investigated

by numerous authors; one can refer to [3–5, 7, 9, 12, 14–19, 22, 24]. There is a legend that one day when Pythagoras (c.500

BCE) was passing a blacksmiths shop, he heard harmonious music ringing from the hammers. When he enquired, he was

told that the weights of the hammers were 6, 8, 9, and 12 pounds. These ratios produce a fundamental and its fourth,

fifth and octave. This was evidence that the elegance of mathematics is manifested in the harmony of nature. Returning to

music, these ratios are indeed a foundation of music as noted by Archytus of Tarentum(c.350 BCE): There are three means

in music: one is the arithmetic, the second is the geometric and the third is the sub contrary, which they call harmonic. The

arithmetic mean is when there are three terms showing successively the same excess: the second exceeds the third by the

same amount as the first exceeds the second. In this proportion, the ratio of the larger number is less, that of the smaller
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mumbers greater. The geometric mean is when the second is to the third as the first is to the second; in this, the greater

numbers have the same ratio as the smaller numbers. The sub contrary, which we call harmonic, is as follows: by whatever

part of itself the first term exceeds the second, the middle term exceeds the third by the same part of the third. In this

proportion, the ratio of the larger numbers is larger and of the lower numbers less [8].

Definition 1.1 (Pythagorean Means [6]). In Mathematics, the three classical Pythagorean means are the Arithmetic

Mean(A.M.), the Geometric Mean(G.M.), and the Harmonic Mean(H.M.). They are defined for N values by

(1). Arithmetic Mean (A.M.): Arithmetic mean is the total of all the items divided by their total number of items.

A.M. =
X1 +X2 + · · ·+XN

N
.

(2). Geometric Mean (G.M.): Geometric mean of N values is the N th root of the product of N values.

G.M. = N
√
X1 ·X2 · · ·XN .

(3). Harmonic Mean (H.M.): Harmonic mean is the reciprocal of the means of the reciprocals of the values.

H.M. =
N

1
X1

+ 1
X2

+ · · ·+ 1
XN

.

Lemma 1.2. For any two items a and b, we have G.M. =
√
A.M.×H.M.

Proof. Let a and b be two items. Then, we have

A.M. =
a+ b

2
, (1)

G.M. =
√
ab, (2)

H.M. =
2

1
a

+ 1
b

. (3)

From (1) and (3), we arrive

A.M.×H.M. =
a+ b

2
× 2

1
a

+ 1
b

=
a+ b

2
× 2

b+a
ab

=
a+ b

2
× 2ab

a+ b

= ab

= (G.M.)2.

Hence we derived our result.

2. Geometrical Interpretation of Functional Equation

Let O be the center and X,Y, Z be any point on the three perpendicular axises. Assume that OX = b, OY = a, OZ = c.
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From the Triangle XOY , Y OZ and XOZ, we have by Pythagoras Theorem

Y X2 = OY 2 +OX2 = a2 + b2 ⇒ Y X =
√

a2 + b2, (4)

ZY 2 = OY 2 +OZ2 = a2 + c2 ⇒ ZY =
√

a2 + c2, and (5)

XZ2 = OZ2 +OX2 = c2 + b2 ⇒ XZ =
√

c2 + b2. (6)

Adding (4), (5) and (6), we obtain

Y X + ZY +XZ =
√

a2 + b2 +
√

a2 + c2 +
√

c2 + b2. (7)

The above equation can be transformed into a radical reciprocal quadratic functional equation of the following form

f
(√

x2 + y2
)

+ f
(√

y2 + z2
)

+ f
(√

z2 + x2
)

=
f(x)f(y)

f(x) + f(y)
+

f(y)f(z)

f(y) + f(z)
+

f(z)f(x)

f(z) + f(x)
(8)

having solution

f(x) =
k

x2
(9)

for any constant k.

3. General Solution of the Functional Equation (8)

In this section, motivated by the work of Roman Ger [11], we present the general solution of the Pyhagorean mean functional

equation in the simplest case and also we give the differentiable solution of (8). The following Theorem gives the solution

of (8) in the simplest case.

Theorem 3.1. The only nonzero solution of a function f : (0,∞)→ R, admitting a finite limit of the quotient f(x)
1
x2

at zero,

of the equation (8) is of the form k
x2 for all x, y ∈ (0,∞).

Proof. Proof. Put x = y = z = x (8), we obtain

3f
(√

2x
)

= 3
1

2f(x)
⇒ f

(√
2x
)

=
1

2f(x)
(10)

for all x ∈ (0,∞). The rest of the proof is similar to that of [20].

The following Theorem gives the differentiable solution of the Pythagorean mean functional equation (8).

Theorem 3.2. Let f : (0,∞) → R be continuously differentiable functions with nowhere vanishing derivatives f ′. Then

f yields a solution to the functional equation (8) if and only if there exists nonzero real constants k such that k
x2 for all

x, y ∈ (0,∞).
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Proof. Differentiate equation (8) with respect to x on both sides, we obtain

f ′
(√

x2 + y2
) x√

x2 + y2
+ f ′

(√
z2 + x2

) x√
z2 + x2

=
f ′(x)f2(y)

(f(x) + f(y))2
+

f2(z)f ′(x)

(f(z) + f(x))2
(11)

for all x, y, z ∈ (0,∞). Setting x = y = z = x in (8) and (11), we get

f
(√

2x
)

=
1

2f(x)
(12)

f ′
(√

2x
)

=
1

2
√

2
f ′(x) (13)

for all x ∈ (0,∞). Replacing y = z =
√

2x in (11) and using (12), (14), we arrive

f ′
(√

3x
)

=
1

3
√

3
f ′(x) (14)

for all x ∈ (0,∞). The rest of the proof is similar to that of [20].

4. Generalized Hyers-Ulam Stability of Equation (8)

Through out section, let E be a linear space and F be a Banach space. Define a difference operation Df(x, y, z) by

Df(x, y, z) = f
(√

x2 + y2
)

+ f
(√

y2 + z2
)

+ f
(√

z2 + x2
)
− f(x)f(y)

f(x) + f(y)
− f(y)f(z)

f(y) + f(z)
− f(z)f(x)

f(z) + f(x)

for all x, y, z ∈ E. Now, we investigate the generalized Hyers - Ulam stability of the functional equation (8) in Banach space

using direct method.

Theorem 4.1. If f : E → F be a function satisfying the functional inequality

‖Df(x, y, z)‖ ≤ A(x, y, z) (15)

where A : E3 → [0,∞) be a function such that

lim
m→∞

2mjA
(

2
mj
2 x, 2

mj
2 y, 2

mj
2

)
= 0 (16)

for all x, y, z ∈ E. Then there exists a unique radical reciprocal quadratic function Q : E → F satisfying the functional

equation (8) and the inequality

‖f(x)−Q(x)‖ ≤ 2

3

∞∑
i= i−j

2

2ijA
(

2
ij
2 x, 2

ij
2 x, 2

ij
2 x
)

(17)

for all x ∈ E, where j = ±1. The function Q(x) is defined as

Q(x) = lim
m→∞

2mjf
(

2
mj
2 x
)
, for all x ∈ E. (18)

Proof. Replacing (x, y, z) by (x, x, x) in (15), we get

∥∥∥∥3f
(√

2 x
)
− 3

(
f(x)

2

)∥∥∥∥ ≤ A(x, x, x) (19)
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for all x ∈ E. It follows from (19), we have

∥∥∥2f
(√

2 x
)
− f(x)

∥∥∥ ≤ 2

3
A(x, x, x) (20)

for all x ∈ E. Setting x by
√

2 x and multiply by 2 in (20), we arrive

∥∥∥22f
(

(
√

2)2 x
)
− 2f(

√
2 x)

∥∥∥ ≤ 4

3
A
(√

2 x,
√

2 x,
√

2 x
)

(21)

for all x ∈ E. With the use of triangle inequality it follows from (20) and (21), we obtain

∥∥∥22f
(

(
√

2)2 x
)
− f(x)

∥∥∥ ≤ 2

3

[
A(x, x, x) + 2A

(√
2 x,
√

2 x,
√

2 x
)]

(22)

for all x ∈ E. Generalizing, for any positive integer m, one can reach

∥∥∥2mf
(

2
m
2 x
)
− f(x)

∥∥∥ ≤ 2

3

m−1∑
i=0

2iA
(

2
i
2 x, 2

i
2 x, 2

i
2 x
)

(23)

for all x ∈ E. Thus the sequence {2mf
(

2
m
2 x
)
} is a Cauchy sequence F . Indeed, replacing x by 2

n
2 x and multiply by 2n in

(24) and using (16), we have

∥∥∥2m+nf
(

2
m+n

2 x
)
− 2nf(2

n
2 x)
∥∥∥ = 2n

∥∥∥2mf
(

2
m
2 · 2

n
2 x
)
− f(2

n
2 x)
∥∥∥

≤ 2

3

m−1∑
i=0

2i+nA
(

2
i+n
2 x, 2

i+n
2 x, 2

i+n
2 x

)
→ 0 as n → ∞ (24)

for all x ∈ E. Since F is complete, there exists a mapping Q(x) such that

Q(x) = lim
m→∞

2mf
(

2
m
2 x
)

for all x ∈ E. Replacing (x, y, z) by (2
m
2 x, 2

m
2 y, 2

m
2 z) in (15) and multiply by 2m, we arrive

2m

∥∥∥∥f (√2
m
2 (x2 + y2)

)
+ f

(√
2

m
2 (y2 + z2)

)
+ f

(√
2

m
2 (z2 + x2)

)
− f(2

m
2 x)f(2

m
2 y)

f(2
m
2 x) + f(2

m
2 y)
− f(2

m
2 y)f(2

m
2 z)

f(2
m
2 y) + f(2

m
2 z)
− f(2

m
2 z)f(2

m
2 x)

f(2
m
2 z) + f(2

m
2 x)

∥∥∥∥∥ ≤ 2mA(2
m
2 x, 2

m
2 y, 2

m
2 z)

for all x, y, z ∈ E. Letting m tends to infinity in the above inequality we see that Q(x) satisfies the radical reciprocal

functional equation (8) for all x, y, z ∈ E. To prove Q(x) is unique, let Q′(x) be another radical reciprocal quadratic

functional equation satisfying (8) and (17) such that Q(2
m
2 x) = 2mQ(x) and Q′(2

m
2 x) = 2mQ′(x) for all x ∈ E. Now,

∥∥Q(x)−Q′(x)
∥∥ =

1

2m

∥∥∥Q(2
m
2 x)−Q′(2

m
2 x)

∥∥∥
≤ 1

2m

{∥∥∥Q(2
m
2 x)− f(2

m
2 x)

∥∥∥+
∥∥∥f(2

m
2 x)−Q′(2

m
2 x)

∥∥∥}
≤ 4

3

∞∑
i=0

2iA
(

2
i+m

2 x, 2
i+m

2 x, 2
i+m

2 x
)

→ 0 as n → ∞
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for all x ∈ E. Thus Q(x) is unique. Hence theorem holds for j = 1. Setting x by x√
2

in (19), we get

∥∥∥∥3f (x)− 3

2
f

(
x√
2

)∥∥∥∥ ≤ A( x√
2
,
x√
2
,
x√
2

)
(25)

for all x ∈ E. It follows from (25), we have

∥∥∥∥f (x)− 1

2
f

(
x√
2

)∥∥∥∥ ≤ 1

3
A

(
x√
2
,
x√
2
,
x√
2

)
(26)

for all x ∈ E. Replacing x by x√
2

and divided by 1
2

in (26), we obtain

∥∥∥∥1

2
f

(
x√
2

)
− 1

22
f

(
x

(
√

2)2

)∥∥∥∥ ≤ 1

3 · 2A
(

x

(
√

2)2
,

x

(
√

2)2
,

x

(
√

2)2

)
(27)

for all x ∈ E. The rest of the proof is similar to that of case j = 1. Thus the theorem holds for j = −1. Hence the proof is

complete.

Example 4.2. Let f : E → F be a mapping fulfilling the inequality ‖Df(x, y, z)‖ ≤ η, where η > 0 and for all x, y, z ∈ E.

Then there exists a unique radical reciprocal quadratic function satisfying the functional equation (8) and

‖f(x)−Q(x)‖ ≤
∣∣∣∣2η3

∣∣∣∣
for all x ∈ E.

Corollary 4.3. Let f : E → F be a mapping fulfilling the inequality ‖Df(x, y, z)‖ ≤ η(||x||a + ||y||a + ||z||a), where

η > 0, a > 0 and for all x, y, z ∈ E. Then there exists a unique radical reciprocal quadratic function satisfying the functional

equation (8) and

‖f(x)−Q(x)‖ ≤ 2η||x||a∣∣1− 2
a
2
+1
∣∣ , a 6= 2

for all x ∈ E.

Corollary 4.4. Let f : E → F be a mapping fulfilling the inequality ‖Df(x, y, z)‖ ≤ η(||x||a + ||y||b + ||z||c), where

η > 0, a, b, c > 0 and for all x, y, z ∈ E. Then there exists a unique radical reciprocal quadratic function satisfying the

functional equation (8) and

‖f(x)−Q(x)‖ ≤ 2η||x||a

3
∣∣1− 2

a
2
+1
∣∣ +

2η||x||b

3
∣∣∣1− 2

b
2
+1
∣∣∣ +

2η||x||c∣∣1− 2
c
2
+1
∣∣ , a, b, c 6= 2

for all x ∈ E.

Corollary 4.5. Let f : E → F be a mapping fulfilling the inequality ‖Df(x, y, z)‖ ≤ η||x||a||y||a||z||a, where η > 0, a > 0

and for all x, y, z ∈ E. Then there exists a unique radical reciprocal quadratic function satisfying the functional equation (8)

and

‖f(x)−Q(x)‖ ≤ 2η||x||3a

3
∣∣∣1− 2

3a
2

+1
∣∣∣ , 3a 6= 2

for all x ∈ E.
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Corollary 4.6. Let f : E → F be a mapping fulfilling the inequality ‖Df(x, y, z)‖ ≤ η||x||a||y||b||z||c, where η > 0, a, b, c > 0

and for all x, y, z ∈ E. Then there exists a unique radical reciprocal quadratic function satisfying the functional equation (8)

and

‖f(x)−Q(x)‖ ≤ 2η||x||a+b+c

3
∣∣∣1− 2

a+b+c
2

+1
∣∣∣ , a+ b+ c 6= 2

for all x ∈ E.

Corollary 4.7. Let f : E → F be a mapping fulfilling the inequality

‖Df(x, y, z)‖ ≤ η(||x||3a + ||y||3a + ||z||3a + ||x||a||y||a||z||a),

where η > 0, a > 0 and for all x, y, z ∈ E. Then there exists a unique radical reciprocal quadratic function satisfying the

functional equation (8) and

‖f(x)−Q(x)‖ ≤ 8η||x||3a

3
∣∣∣1− 2

3a
2

+1
∣∣∣ , 3a 6= 2

for all x ∈ E.

Corollary 4.8. Let f : E → F be a mapping fulfilling the inequality

‖Df(x, y, z)‖ ≤ η(||x||a+b+c + ||y||a+b+c + ||z||a+b+c + ||x||a||y||b||z||c),

where η > 0, a, b, c > 0 and for all x, y, z ∈ E. Then there exists a unique radical reciprocal quadratic function satisfying the

functional equation (8) and

‖f(x)−Q(x)‖ ≤ 8η||x||a+b+c

3
∣∣∣1− 2

a+b+c
2

+1
∣∣∣ , a+ b+ c 6= 2

for all x ∈ E.
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