

International Journal of Mathematics And its Applications

# **On Mildly B-Normal Spaces and Some Functions**

**Research Article** 

### T. Kavitha<sup>1\*</sup>

1 Department of Mathematics, RVS College of Engineering and Technology, Dindigul, Tamil Nadu, India.

Abstract: In this paper, by using Bg-closed sets we obtain a characterization of mildly B-normal spaces and use it to improve the preservation theorems of mildly B-normal spaces.

**MSC:** 54A05, 54D10.

**Keywords:** Bg-closed sets, characterization of mildly B-normal spaces, mildly B-normal spaces. © JS Publication.

## 1. Introduction and Preliminaries

The notion of mildly normal spaces was introduced by Singal and Singal [14]. Palaniappan and Rao [12] have defined and investigated the notion of regular g-closed sets as a generalization of g-closed sets due to Levine [6]. In this paper, by using regular Bg-closed sets we obtain a characterization of mildly B-normal simply extended topological spaces. Throughout this paper,  $(X, \tau(B_X)), (Y, \sigma(B_Y))$  and  $(Z, \eta(B_Z))$  (briefly X, Y and Z) will denote simply extended topological

spaces.

**Definition 1.1.** A subset A of a topological space X is said to be

- (1). regular open [5] if A = int(cl(A));
- (2). regular g-closed (briefly rg-closed) [12] if  $cl(A) \subset U$  whenever  $A \subset U$  and U is a regular open set in X.
- (3). generalized closed (briefly g-closed) [6] if  $cl(A) \subset U$  whenever  $A \subset U$  and U is open in X.
- (4). rg-open (resp. g-open, regular closed) if the complement of A is rg-closed (resp. g-closed, regular open). The family of all regular open (resp. regular closed) sets of X is denoted by RO(X) (resp. RC(X)).

**Definition 1.2** ([15]). A topological space X is said to be mildly normal if for every pair of disjoint  $H, K \in RC(X)$ , there exist disjoint open sets U, V of X such that  $H \subset U$  and  $K \subset V$ .

**Definition 1.3** ([12]). A subset A of X is said to be quasi H-closed relative to X, if for every cover  $\{V_{\alpha} : \alpha \in \nabla\}$  of A by open sets of X, there exists a finite subset  $\nabla_0$  of  $\nabla$  such that  $A \subset \cup \{cl(V_{\alpha}) : \alpha \in \nabla_0\}$ .

<sup>\*</sup> E-mail: kavisakthi1983@gmail.com

**Definition 1.4** ([5]). A subset a of a space X is said to be  $\alpha$ -regular if for each point of  $x \in A$  and each open set U of X containing x, there exists an open set G of X such that  $x \in G \subset cl(G) \subset U$ .

**Definition 1.5** ([13]). A subset a of a topological space X is said to be  $\alpha$ -paracompact if every cover of A by open sets of X is defined by a cover of A which consists of open sets of X and is locally finite in X.

**Definition 1.6** ([14]). A topological space X is said to be mildly-normal if for every pair of disjoint  $H, K \in RC(X)$ , there exist disjoint open sets U, V of X such that  $H \subset U$  and  $K \subset V$ .

**Definition 1.7** ([10]). A function  $f : X \to Y$  is said to be almost g-continuous (resp. almost rg-continuous) if  $f^{-1}(R)$  is g-closed (resp. rg-closed) in X, for every  $R \in RC(Y)$ .

**Definition 1.8.** A function  $f: X \to Y$  is said to be

- (1). g-continuous [3] (resp. rg-continuous [12]) if  $f^{-1}(F)$  is g-closed (resp. rg-closed) in X for every closed set F of Y;
- (2). R-map [4], rc-continuous [4] or regular irresolute [12] (resp. almost continuous [14]) if  $f^{-1}(V) \in RO(X)$  (resp.  $\tau(X)$ ) for every  $V \in RO(Y)$ ;
- (3). completely continuous [1] or regular continuous [12] if  $f^{-1}(V) \in RO(X)$  for every open set V of Y.

**Definition 1.9** ([10]). A topological space X is said to be regular- $T_{1/2}$  if every rg-closed set of X is regular closed.

**Definition 1.10** ([12]). A function  $f: X \to Y$  is said to be rg-irresolute if  $f^{-1}(F)$  is rg-closed in X for every rg-closed set F of Y.

**Definition 1.11.** A function  $f: X \to Y$  is said to be

- (1). regular closed [12] (resp. g-closed [8], rg-closed [10]) if f(F) is regular closed (resp. g-closed, rg-closed [10]) in Y for very closed set F of X;
- (2). rc-preserving [10] (resp. almost closed [14], almost g-closed [10], almost rg-closed [10]) if f(F) is regular closed (resp. closed, rg-closed) in Y for every  $F \in RC(X)$ .

Remark 1.12 ([11]). In among others, it is shown that a compact set of a regular space is rg-closed.

**Definition 1.13** ([7]). Levine in 1964 defined  $\tau(B) = \{O \cup (O \cap B) : O, O \in \tau\}$  and called it simple extension of  $\tau$  by B, where  $B \notin \tau$ . The sets in  $\tau(B)$  are called B-open sets. and the complement of B-open set is called B-closed.

**Definition 1.14** ([7]). Let S be a subset of a simply extended topological space X. Then

- (1). The B-closure of S, denoted by Bcl(S), is defined as  $\cap \{F : S \subseteq F \text{ and } F \text{ is } B\text{-closed}\}$ ;
- (2). The B-interior of S, denoted by Bint(S), is defined as  $\cup \{F : F \subseteq S \text{ and } F \text{ is } B\text{-open}\}$ .

**Definition 1.15.** A subset A of a simply extended topological space  $(X, \tau(B_X))$  is called Bg-closed set [2] if  $BCl(A) \subseteq U$ whenever  $A \subseteq U$  and U is open in X. The complement of Bg-closed set is called Bg-open set.

**Definition 1.16** ([9]). A function  $f : (X, \tau(B_X)) \to (Y, \sigma(B_Y))$  is called B-continuous if  $f^{-1}(V)$  is B-open in X, for every B-open set V of Y.

# 2. Regular Bg-closed Sets

**Definition 2.1.** A subset A is said to be regular B-open (resp. regular B-closed) if A = Bint(Bcl(A)) (resp. A = Bcl(Bint(A))). The family of regular B-open (resp. regular B-closed) sets of a simply extended topological space X is denoted by BRO(X) (resp. BRC(X)).

**Definition 2.2.** A subset A of a simply extended topological space X is said to be

- (1). regular Bg-closed (briefly rBg-closed) if  $Bcl(A) \subset U$  whenever  $A \subset U$  and  $U \in BRO(X)$ .
- (2). B-generalized closed (briefly Bg-closed) if  $Bcl(A) \subset U$  whenever  $A \subset U$  and U is B-open in X.
- (3). rBg-open (resp. Bg-open) if the complement of A is rBg-closed (resp.Bg-closed).

**Result 2.3.** We have the following implications for properties of subsets:

regular B-closed  $\Rightarrow B$ -closed  $\Rightarrow Bg$ -closed  $\Rightarrow rBg$ -closed.

where none of these implications is reversible as shown by Examples (below).

**Example 2.4.** Let  $X = \{a, b, c\}, \tau = \{X, \emptyset\}$  and  $B = \{b, c\}$  then  $\tau(B) = \{\phi, X, \{b, c\}\}$ . Then

- (1).  $\{a, b\}$  is Bg-closed but not B-closed.
- (2).  $\{b\}$  is Brg-closed but not Bg-closed.

**Example 2.5.** Let  $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, b\}\}$  and  $B = \{b\}$  then  $\tau(B) = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ . Then  $\{c\}$  is B-closed but not regular B-closed.

# 3. Characterization of Mildly B-normal Spaces

**Definition 3.1.** A simply extended topological space X is said to be mildly B-normal if for every pair of disjoint  $H, K \in BRC(X)$ , there exist disjoint B-open sets U, V of X such that  $H \subset U$  and  $K \subset V$ .

**Lemma 3.2.** A subset A of a simply extended topological space X is rBg-open if and only if  $F \subset Bint(A)$  whenever  $F \in BRC(X)$  and  $F \subset A$ .

**Theorem 3.3.** The following are equivalent for a simply extended topological space X.

- (1). X is mildly B-normal;
- (2). for any disjoint  $H, K \in BRC(X)$ , there exist disjoint Bg-open sets U, V such that  $H \subset U$  and  $K \subset V$ ;
- (3). for any disjoint  $H, K \in BRC(X)$ , there exist disjoint rBg-open sets U, V such that  $H \subset U$  and  $K \subset V$ ;
- (4). for any disjoint  $H \in BRC(X)$  and any  $V \in BRO(X)$  containing H, there exists a rBg-open set U of X such that  $H \subset U \subset Bcl(U) \subset V$ .

*Proof.* It is obvious that (1) implies (2) and (2) implies (3).

(3)  $\Rightarrow$  (4) Let  $H \in BRC(X)$  and  $H \subset V \in BRO(X)$ . There exist disjoint rBg-open sets U, W such that  $H \subset U$  and  $X - V \subset W$ . By Lemma 3.2, we have  $X - V \subset Bint(W)$  and  $U \cap Bint(W) = \phi$ . Therefore, we obtain  $Bcl(U) \cap Bint(W) = \phi$  and hence  $H \subset U \subset Bcl(U) \subset X - Bint(W) \subset V$ .

 $(4) \Rightarrow (1)$  Let H, K be disjoint regular B-closed sets of X. Then  $H \subset X - K \in BRO(X)$  and there exists a rBg-open set G of X such that  $H \subset G \subset Bcl(G) \subset X - K$ . Put U = Bint(G) and V = X - Bcl(G). Then U and V are disjoint B-open sets of X such that  $H \subset U$  and  $K \subset V$ . Therefore, X is mildly B-normal.

### 4. Some Functions

**Definition 4.1.** A function  $f : X \to Y$  is said to be almost Bg-continuous (resp. almost rBg-continuous) if  $f^{-1}(R)$  is Bg-closed (resp. rBg-closed), for every  $R \in BRC(Y)$ .

**Definition 4.2.** A function  $f: X \to Y$  is said to be

(1). Bg-continuous (resp. rBg-continuous) if  $f^{-1}(F)$  is Bg-closed (resp. rBg-closed) for every B-closed set F of Y;

(2). BR-map (resp. almost B-continuous) if  $f^{-1}(V) \in BRO(X)$  (resp.  $\tau(B)(X)$ ) for every  $V \in BRO(Y)$ ;

(3). completely B-continuous if  $f^{-1}(V) \in BRO(X)$  for every B-open set V of Y.

From the definitions stated above, we obtain the following diagram:

| complete B-continuity | $\longrightarrow$ | BR-map                |
|-----------------------|-------------------|-----------------------|
| $\downarrow$          |                   | $\downarrow$          |
| B-continuity          | $\longrightarrow$ | almost B-continuity   |
| $\downarrow$          |                   | $\downarrow$          |
| Bg-continuity         | $\longrightarrow$ | almost Bg-continuity  |
| $\downarrow$          |                   | $\downarrow$          |
| rBg-continuity        | $\longrightarrow$ | almost rBg-continuity |

**Remark 4.3.** None of the implications in Diagram I is reversible as shown by the following Examples.

#### Example 4.4.

- (1). Let  $X = Y = \{a, b, c\}, \tau = \{\phi, X\}$  and  $B_X = \{a\}$  then  $\tau(B_X) = \{\phi, X, \{a\}\}$ . Let  $\sigma = \{\phi, Y\}$  and  $B_Y = \{a, b\}$  then  $\sigma(B_Y) = \{\phi, Y, \{a, b\}\}$ . Let  $f : (X, \tau(B_X)) \to (Y, \sigma(B_X))$  be an identity map. Then f is BR-map (resp. almost B-continuous) but not completely B-continuous (resp. B-continuous).
- (2). Let  $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{a\}\}$  and  $B_X = \{a, b\}$  then  $\tau(B_X) = \{\phi, X, \{a\}, \{a, b\}\}$ . Let  $\sigma = \{\phi, Y\}$  and  $B_Y = \{a\}$  then  $\sigma(B_Y) = \{\phi, Y, \{a\}\}$ . Let  $f : (X, \tau(B_X)) \to (Y, \sigma(B_X))$  be an identity map. Then f is almost Bg-continuous but not Bg-continuous.

#### Example 4.5.

- (1). Let  $X = Y = \{a, b, c\}, \tau = \{\phi, X\}$  and  $B_X = \{a\}$  then  $\tau(B_X) = \{\phi, X, \{a\}\}$ . Let  $\sigma = \{\phi, Y\}$  and  $B_Y = \{a\}$  then  $\sigma(B_Y) = \{\phi, Y, \{a\}\}$ . Let  $f : (X, \tau(B_X)) \to (Y, \sigma(B_X))$  be an identity map. Then f is B-continuous but not completely B-continuous.
- (2). Let  $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{a, b\}\}$  and  $B_X = \{b\}$  then  $\tau(B_X) = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ . Let  $\sigma = \{\phi, Y, \{a\}, \{a, b\}\}$  and  $B_Y = \{b\}$  then  $\sigma(B_Y) = \{\phi, Y, \{a\}, \{b\}, \{a, b\}\}$ . Let  $f : (X, \tau(B_X)) \to (Y, \sigma(B_X))$  be an identity map. Then f is almost B-continuous but not BR-map.

**Example 4.6.** Let  $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{a\}\}$  and  $B_X = \{a, b\}$  then  $\tau(B_X) = \{\phi, X, \{a\}, \{a, b\}\}$ . Let  $\sigma = \{\phi, Y\}$  and  $B_Y = \{b\}$  then  $\sigma(B_Y) = \{\phi, Y, \{a\}, \{b\}, \{a, b\}\}$ . Let  $f : (X, \tau(B_X)) \to (Y, \sigma(B_X))$  be an identity map. Then f is Bg-continuous(resp. almost B-continuous) but not B-continuous(resp. almost Bg-continuous).

**Example 4.7.** Let  $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{a\}\}$  and  $B_X = \{a, b\}$  then  $\tau(B_X) = \{\phi, X, \{a\}, \{a, b\}\}$ . Let  $\sigma = \{\phi, Y, \{a\}\}$  and  $B_Y = \{b\}$  then  $\sigma(B_Y) = \{\phi, Y, \{a\}, \{a, c\}\}$ . Let  $f : (X, \tau(B_X)) \to (Y, \sigma(B_X))$  be an identity map. Then f is rBg-continuous but not Bg-continuous.

**Example 4.8.** Let  $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{a\}\}$  and  $B_X = \{c\}$  then  $\tau(B_X) = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}$ . Let  $\sigma = \{\phi, Y, \{a\}\}$  and  $B_Y = \{b\}$  then  $\sigma(B_Y) = \{\phi, Y, \{a\}, \{b\}, \{a, b\}\}$ . Let  $f : (X, \tau(B_X)) \to (Y, \sigma(B_X))$  be an identity map. Then f is almost rBg-continuous but neither almost Bg-continuous nor rBg-continuous.

**Definition 4.9.** A simply extended topological space X is said to be regular  $B-T_{1/2}$  if every rBg-closed set of X is regular B-closed.

**Proposition 4.10.** If a function  $f: X \to Y$  is rBg-continuous and X is regular B- $T_{1/2}$ , then f is completely B-continuous.

*Proof.* Let F be any B-closed set of Y. Since f is rBg-continuous,  $f^{-1}(F)$  is rBg-closed in X and hence  $f^{-1}(F) \in BRC(X)$ . Therefore, f is completely B-continuous.

**Definition 4.11.** A function  $f : X \to Y$  is said to be rBg-irresolute if  $f^{-1}(F)$  is rBg-closed in X for every rBg-closed set F of Y. Every rBg-irresolute function is rBg-continuous but not conversely as shown by the following Example.

**Example 4.12.** Let  $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{a\}\}$  and  $B_X = \{a, b\}$  then  $\tau(B_X) = \{\phi, X, \{a\}, \{a, b\}\}$ . Let  $\sigma = \{\phi, Y\}$  and  $B_Y = \{a\}$  then  $\sigma(B_Y) = \{\phi, Y, \{a\}\}$ . Let  $f : (X, \tau(B_X)) \to (Y, \sigma(B_X))$  be an identity map. Then f is B-continuous and Bg-continuous but not rBg-irresolute.

**Corollary 4.13.** If  $f: X \to Y$  is rBg-irresolute and X is regular B-T<sub>1/2</sub>, then f is BR-map.

**Definition 4.14.** A function  $f: X \to Y$  is said to be

- (1). regular B-closed (resp. Bg-closed, rBg-closed) if f(F) is regular B-closed (resp. Bg-closed, rBg-closed) in Y for every B-closed set F of X;
- (2). rBc-preserving (resp. almost B-closed, almost Bg-closed, almost rBg-closed) if f(F) is regular B-closed (resp. B-closed, Bg-closed, rBg-closed) in Y for every  $F \in BRC(X)$ .

From the definitions stated above, we obtain the following diagram:

| regular B-closed | $\longrightarrow$ | rBc-preserving    |
|------------------|-------------------|-------------------|
| $\downarrow$     |                   | $\downarrow$      |
| B-closed         | $\longrightarrow$ | almost B-closed   |
| $\downarrow$     |                   | $\downarrow$      |
| Bg-closed        | $\longrightarrow$ | almost Bg-closed  |
| $\downarrow$     |                   | $\downarrow$      |
| rBg-closed       | $\longrightarrow$ | almost rBg-closed |

**Remark 4.15.** None of the implications in Diagram II is reversible.

**Example 4.16.** Let  $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{a\}\}$  and  $B_X = \{b\}$  then  $\tau(B_X) = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ . Let  $\sigma = \{\phi, Y, \{a\}\}$  and  $B_Y = \{b\}$  then  $\sigma(B_Y) = \{\phi, Y, \{a\}, \{b\}, \{a, b\}\}$ . Let  $f : (X, \tau(B_X)) \to (Y, \sigma(B_X))$  be an identity map. Then f is

(1). rBc-preserving but not regular B-closed.

(2). regular B-closed but not B-closed.

#### Example 4.17.

- (1). Let  $X = Y = \{a, b, c\}, \tau = \{\phi, X\}$  and  $B_X = \{a\}$  then  $\tau(B_X) = \{\phi, X, \{a\}\}$ . Let  $\sigma = \{\phi, Y\}$  and  $B_Y = \{a, b\}$  then  $\sigma(B_Y) = \{\phi, Y, \{a, b\}\}$ . Let  $f : (X, \tau(B_X)) \to (Y, \sigma(B_X))$  be an identity map. Then f is B-closed but not almost B-closed.
- (2). Let  $X = Y = \{a, b, c\}, \tau = \{\phi, X\}$  and  $B_X = \{b, c\}$  then  $\tau(B_X) = \{\phi, X, \{b, c\}\}$ . Let  $\sigma = \{\phi, Y\}$  and  $B_Y = \{a, b\}$  then  $\sigma(B_Y) = \{\phi, Y, \{a, b\}\}$ . Let  $f : (X, \tau(B_X)) \to (Y, \sigma(B_X))$  be an identity map. Then f is Bg-closed but not B-closed.
- (3). Let  $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{a\}\}$  and  $B_X = \{b\}$  then  $\tau(B_X) = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ . Let  $\sigma = \{\phi, Y, \{a\}, \{a, b\}, \{a, c\}\}$  and  $B_Y = \{b\}$  then  $\sigma(B_Y) = \{\phi, Y, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ . Let  $f : (X, \tau(B_X)) \to (Y, \sigma(B_X))$  be an identity map. Then f is almost B-closed but not rBc-preserving.
- (4). Let  $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{a\}\}$  and  $B_X = \{b\}$  then  $\tau(B_X) = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ . Let  $\sigma = \{\phi, Y, \{c\}, \{b, c\}\}$  and  $B_Y = \{b\}$  then  $\sigma(B_Y) = \{\phi, Y, \{b\}, \{c\}, \{b, c\}\}$ . Let  $f : (X, \tau(B_X)) \rightarrow (Y, \sigma(B_X))$  be an identity map. Then f is almost Bg-closed(resp. Bg-closed, Bg-closed) but not almost B-closed(resp. almost Bg-closed, rBg-closed).

**Proposition 4.18.** Let X and Y be simply extended topological spaces. Let  $f: X \to Y$  be a function. Then

- (1). if f is rBg-continuous rBc-preserving, then it is rBg-irresolute;
- (2). if f is an BR-map and rBg-closed, then f(A) is rBg-closed in Y for every rBg-closed set A of X.

#### Proof.

- (1). Let A be any rBg-closed set of Y and U ∈ BRO(X) containing f<sup>-1</sup>(A). Put V = Y − f(X − U), then we have A ⊂ V,
  f<sup>-1</sup>(V) ⊂ U and V ∈ BRO(Y) since f is rBc-preserving. Hence we obtain Bcl(A) ⊂ V and hence f<sup>-1</sup>(Bcl(A)) ⊂ U.
  By the rBg-continuity of f, we have Bcl(f<sup>-1</sup>(A)) ⊂ Bcl(f<sup>-1</sup>(Bcl(A))) ⊂ U. This shows that f<sup>-1</sup>(A) is rBg-closed in X. Therefore, f is rBg-irresolute.
- (2). Let A be any rBg-closed set of X and  $V \in BRO(X)$  containing f(A). Since f is an BR-map,  $f^{-1}(V) \in BRO(X)$  and  $A \subset f^{-1}(V)$ . Therefore, we have  $Bcl(A) \subset f^{-1}(V)$  and hence  $f(Bcl(A)) \subset V$ . Since f is rBg-closed, f(Bcl(A)) is rBg-closed in Y and hence we obtain  $Bcl(f(A)) \subset Bcl(f(Bcl(A))) \subset U$ . This shows that f(A) is rBg-closed in Y.  $\Box$

**Corollary 4.19.** Let X and Y be simply extended topological spaces. Let  $f: X \to Y$  be a function. Then

- (1). if f is B-continuous regular B-closed,  $f^{-1}(A)$  is rBg-closed in X for every rBg-closed set A of Y;
- (2). if f is BR-map and B-closed, f(A) is rBg-closed in Y for every rBg-closed set A if X.

**Proposition 4.20.** Let X and Y be simply extended topological spaces. A surjection  $f : X \to Y$  is almost rBg-closed (resp. almost Bg-closed) if and only if for each subset S of Y and each  $U \in BRO(X)$  containing  $f^{-1}(S)$  there exists an rBg-open (resp. Bg-open) set V of Y such that  $S \subset V$  and  $f^{-1}(V) \subset U$ .

*Proof.* We prove only the first case, the proof of the second being entirely analogous. Necessity : Suppose that f is almost rBg-closed. Let S be a subset of Y and  $U \in BRO(X)$  containing  $f^{-1}(S)$ . Put V=Y-f(X-U), then V is an rBg-open set of Y such that  $S \subset V$  and  $f^{-1}(V) \subset U$ . Sufficiency : Let F be any regular B-closed set of X. Then  $f^{-1}(Y-f(F)) \subset X - F$  and  $X - F \in BRO(X)$ . There exists an rBg-open set V of Y such that  $Y - f(F) \subset V$  and  $f^{-1}(V) \subset X - F$ . Therefore, we have  $f(F) \supset Y - V$  and  $F \subset f^{-1}(Y - V)$ . Hence, we obtain f(F)=Y - V and f(F) is rBg-closed in Y. This shows that f is almost rBg-closed.

# 5. Preservation Theorems

In this section we investigate preservation theorems concerning mildly B-normal spaces

**Theorem 5.1.** Let X and Y be simply extended topological spaces. If  $f : X \to Y$  is an almost rBg-continuous rBc-preserving (resp. almost B-closed) injection and Y is mildly B-normal (resp. B-normal), then X is mildly B-normal.

*Proof.* Let A and C be any disjoint regular B-closed sets of X. Since f is an rBc-preserving (resp. almost B-closed) injection, f(A) and f(C) are disjoint regular B-closed (resp. B-closed) sets of Y. By the mild B-normality (resp. B-normality) of Y, there exist disjoint B-open sets U and V of Y such that  $f(A) \subset U$  and  $f(C) \subset V$ . Now, put G = Bint(Bcl(U)) and H = Bint(Bcl(V)), then G and H are disjoint regular B-open sets such that  $f(A) \subset G$  and  $f(C) \subset H$ . Since f is almost rBg-continuous,  $f^{-1}(G)$  and  $f^{-1}(H)$  are disjoint rBg-open sets containing A and C, respectively. It follows from Theorem 3.3 that X is mildly B-normal.

**Theorem 5.2.** Let X and Y be simply extended topological spaces. If  $f : X \to Y$  is a completely B-continuous amlost Bg-closed surjection and X is mildly B-normal, then Y is B-normal.

*Proof.* Let A and C be any disjoint B-closed sets of Y. Then  $f^{-1}(A)$  and  $f^{-1}(C)$  are disjoint regular B-closed sets of X. Since X is mildly B-normal, there exist disjoint B-open sets U and V such that  $f^{-1}(A) \subset U$  and  $f^{-1}(C) \subset V$ . Let G = Bint(Bcl(U)) and H = Bint(Bcl(V)), then G and H are disjoint regular B-open sets such that  $f^{-1}(A) \subset G$  and  $f^{-1}(C) \subset H$ . By Proposition 4.20, there exists Bg-open sets K and L of Y such that  $A \subset K$ ,  $C \subset L$ ,  $f^{-1}(K) \subset G$  and  $f^{-1}(L) \subset H$ . Since G and H are disjoint, so are K and L. Since K and L are Bg-open, we obtain  $A \subset Bint(K)$ ,  $C \subset Bint(L)$  and  $Bint(K) \cap Bint(L) = \phi$ . This shows that Y is B-normal.

**Corollary 5.3.** Let X and Y be simply extended topological spaces. If  $f : X \to Y$  is a completely B-continuous B-closed surjection and X is mildly B-normal, then Y is B-normal.

**Theorem 5.4.** Let X and Y be simply extended topological spaces. Let  $f : X \to Y$  be an BR-map (resp. almost B-continuous) and almost rBg-closed surjection. If X is mildly B-normal (resp. B-normal), then Y is mildly B-normal.

*Proof.* Let A and C be any disjoint regular B-closed sets of Y. Then  $f^{-1}(A)$  and  $f^{-1}(C)$  are disjoint regular B-closed (resp. B-closed) sets of X. Since X is mildly B-normal (resp. B-normal), there exist disjoint B-open sets U and V of X such that  $f^{-1}(A) \subset U$  and  $f^{-1}(C) \subset V$ . Put G = Bint(Bcl(U)) and H = Bint(Bcl(V)), then G and H are disjoint regular B-open sets of X such that  $f^{-1}(A) \subset G$  and  $f^{-1}(C) \subset H$ . By Proposition 4.20, there exists rBg-open sets K and L of Y such that  $A \subset K$ ,  $C \subset L$ ,  $f^{-1}(K) \subset G$  and  $f^{-1}(L) \subset H$ . Since G and H are disjoint, so are K and L. It follows from Theorem 3.3 that Y is mildly B-normal.

**Corollary 5.5.** Let X and Y be simply extended topological spaces. If  $f : X \to Y$  is an almost B-continuous amlost B-closed surjection and X is B-normal, then Y is mildly B-normal.

#### References

- [1] S.P.Arya and R.Gupta, On strongly continuous mappings, Kynngpook Math. J., 14(1974), 131-143.
- K.Balachandran, P.Sundaram and H.Maki, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Univ. Ser.A. Math., 12(1991), 5-13.
- [3] M.Caldas, On g-closed sets and g-continuous mappings, Kyungpook Math. J., 33(1993), 205-209.
- [4] D.Carnahan, Some Properties Related to Compactness in Topological Spaces, Ph.D Thesis, Univ. of Arkansas, (1973).
- [5] D.S.Jankovic, A note on mappings of extremally disconnected spaces, Acta Math. Hungar., 46(1985), 83-92.
- [6] N.Levine, Generalized closed sets in topology, Rend. Circ. MAt. Palermo, 19(2)(1970), 89-96.
- [7] N.Levine, Simple extension of topologies, Amer. Math. Monthly, 71(1964), 22-25.
- [8] S.R.Malghan, Generalized closed maps, J. Karnatak Univ. Sci, 27(1982), 82-88.
- [9] M.Murugalingam, O.Ravi and S.Nagarani, New generalized continuous functions, International Journal of Mathematics And its Applications, 3(3B)(2015), 5562.
- [10] T.Noiri, A note on mildly normal spaces, Kyungpook Math. J., 13(1973), 225-228.
- [11] T.Noiri, Super continuity and some strong forms of continuity, Indian J. Pure Appl. Math., 15(1984), 241-250.
- [12] N.Palaniappan and K.C.Rao, Regular generalized closed sets, Kyungpook Math. J, 33(1993), 211-219.
- [13] M.K.Singal and S.P.Arya, On almost-regular spaces, Glasnik Mat, 4(24)(1969), 89-99.
- [14] M.K.Singal and A.R.Singal, Almost-continuous mappings, Yokohama Math. J, 16(1968), 63-73.
- [15] M.K.Singal and A.R.Singal, Mildly normal spaces, Kyungpook Math. J, 16(1973), 27-31.