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Abstract: The theory of equilibrium problems provides a unified, natural and general framework to study a wide class of problems,

which arise in finance, economics, network analysis, transportation and optimization. This theory has applications across

all disciplines of pure and applied sciences. Equilibrium problems include variational inequalities and related problems.
The aim of this paper is to provide a survey on the algorithms for equilibrium problems that have been studied by many

authors on Hadamard manifolds. This paper should be a useful reference for further research in the field of equilibrium

problems and Hadamard manifolds.
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1. Introduction

Hadamard manifold named after Jacques Hadamard, sometimes called a Carter-Hadmard manifold after Elie Cartan is a

Riemannian Manifold (M, g), that is complete and simply connected, and has everywhere non-positive sectional curvature

[16]. Riemannian manifolds constitute a broad and fruitful framework for the development of different fields. In the

last decades concepts and techniques which fit in Euclidean spaces have extended to this non-linear framework. Most of

the extended methods require the Riemannian manifold to have non-positive sectional curvature. This is an important

property which is enjoyed by a large class of Riemannian manifolds and it is strong enough to imply tight togological

restrictions and rigidity phenomena [21, 22]. Particularly, Hadamard manifolds, which are complete simply connected

finite-dimensional Riemannian manifolds of non-positive sectional curvature, have turned out to be a suitable setting for

diverse disciplines. Hadamard manifolds are examples of hyperbolic spaces and geodesic spaces, more precisely, a Busemain

non-positive curvature space [7, 15, 23, 25].

In 2012, M.A. Noor et al. [13] gave an iterative method for solving the equilibrium problem on Hadamard Manifolds using

the auxiliary principle technique. Recently, much attention has been given to study the variational inequalities, equalities,

equilibrium and related optimization problems on the Riemannian manifold and Hadamard manifold. This work is useful

for the development of various fields. Nemeth [26], Tang et al. [5], and Colao et al. [24] have considered the variational

inequalities and equilibrium problems on Hadamard manifolds. They have studied the existence of solutions of equilibrium

problems under some suitable conditions.
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Let M be a simply connected m-dimensional manifold. Given x ∈ M , the tangent space of M at x is denoted by TxM and

the tangent bundle of M by TM =
⋃
x∈M

TxM , which is naturally a manifold. A vector field A on M is a mapping of M into

TM which associates to each point x ∈M , a vector A(x) ∈ TxM . They assumed that M can be endowed with a Riemannian

metric to become a Riemannian manifold. They denoted by (·, ·) the scalar product on TxM with the associated norm | · |x,

where the subscript x will be omitted. Given a piecewise smooth curve γ : [a, b]→ M joining x to y (that is, γ(a) = x and

γ(b) = y) by using the metric, we can define the length of γ as L(γ) =
b∫
a

||γ′(t)||dt. Then for any x, y ∈M , the Riemannian

distance d(x, y), which includes the original topology on M, is defined by minimizing this length over the set of all such

curves joining x to y.

Let ∆ be the Levi-Civita connection with (M, 〈., .〉). Let γ be a smooth curve in M. A vector field A is said to be parallel

along γ if ∆γ′A = 0. If γ′ itself is parallel along γ, he said that γ is a geodesic and in this case |γ| is a constant. When

|γ′| = 1, γ is said to be normalized. A geodesic joining x to y in M is said to be minimal if its length equals d(x, y).

A Riemannian manifold is complete if for any x ∈ M , all geodesics emanating from x are defined for all t ∈ R. By the

Hopf-Rinow theorem, we know that if M is complete, then any pair of points in M can be joined by a minimal geodesic.

Moreover, (M, d) is a complete metric space, and bounded closed subsets are compact. Let M be complete. Then the

exponential map expx : TxM → M at x is defined by expx v = γv(1, x) for each v ∈ TxM , where γ(·) = γv(·, x) is the

geodesic starting at x with velocity v (i.e., γ(0) = x and γ′(0) = v). Then expx tv = γv(t, x) for each real number t.

2. Definitions and Notations

Definition 2.1 (Fixed Point). Let X be a non empty set and T : X → X be a mapping. The point x ∈ X is said to be a

fixed point of T if x remains invariant under T, i.e. Tx = x.

Example 2.2.

(1). A translation mapping has no fixed point i.e. Tx = x+ 1 for all x ∈ R.

(2). The mapping T : R→ R defined by Tx = x
3
− 2 , x = −3, is unique fixed point.

(3). A mapping T : R→ R defined by Tx = x2 has two fixed points 0 and 1.

(4). A mapping T : R→ R defined by Tx = x has infinitely many fixed points i.e. every point of R is a point of R.

Definition 2.3 (Euclidean Space). Euclidean space is a finite dimensional real vector space Rn with an inner product (x, y),

x, y ∈ Rn, which is a suitable chosen (Cartesian) coordinate system

x = (x1, x2, . . ., xn)

y = (y1, y2, . . ., yn)

is given by the formula (x, y) =
n∑
i=1

xiyi.

Definition 2.4 (Manifold). Manifold is a topological space that is locally Euclidean.

Definition 2.5 (Riemannian Manifold). Riemannian manifold or Riemannian space (M, g) a real smooth manifold M

equipped with an inner product on the tangent space.

Definition 2.6 (Hadamard Manifold [13]). Hadamard manifold named after Jacques Hadamard sometimes called a Carten-

Hadamard manifold after Elie carter is a Riemannian manifold (M, g) that is complete and simply connected, and has

everywhere non-positive sectional curvature.
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Example 2.7.

(1). The real line R with its usual metric is a Hadamard manifold with constant sectional curvature equal to 0.

(2). Standard n-dimensional hyperbolic space Hn is a Hadamard manifold with constant sectional curvature equal to -1.

Definition 2.8 (Equilibrium Problem [13]). For a given bifunction F (·, ·) : K ×K → R, the problem of finding u ∈ K such

that

F (u, v) ≥ 0 ∀ v ∈ K, (1)

is called equilibrium problem on Hadamard manifolds.

Definition 2.9 (Firmly non expansive Mapping [24]). Given a mapping T : K → K defined on K ⊆ M , we say that T is

firmly non-expansive if for any x, y ∈ K, the function φ : [0, 1]→ [0,∞] defined by

φ(t) = d(γ1(t), γ2(t))

is non-increasing, where γ1 and γ2 denote the geodesics joining x to T(x) and y to T(y), respectively. Every firmly non

expansive mapping is non expansive, that is, for all x, y ∈ K

d(T (x), T (y)) ≤ d(x, y).

Definition 2.10 (Fejer Monotone Sequence [24]). Let X be a complete metric space and C ⊆ X be a non empty set. A

sequence {xn} ⊂ X is called Fejer montone w.r.t. C is

d(xn+1, y) ≤ d(xn, y) for all y ∈ C and n ≥ 1.

Definition 2.11 (Resolvent of bifunction [24]). Let F : K ×K → R. For any λ > 0, the resolvent of F is the set-valued

operator JFλ : M → 2K defined by

JFλ (x) =
{
z ∈ K|λF (z, y)−

〈
exp−1

z x, exp−1
z y

〉
≥ 0, ∀ y ∈ K

}
, ∀ x ∈M.

Definition 2.12 (Geodesic Convex Function [26]). A real valued function f : M → R defined on a geodesic convex set K is

said to be geodesic convex if and only if for 0 ≤ t ≤ 1

f(γ(t)) ≤ (1− t)f(γ(0)) + tf(γ(1)).

Definition 2.13 (KKM Mapping [10]). Let K ⊂M be a non empty closed geodesic convex set and G : K → 2k be a set-valued

mapping. We say that G is KKM mapping if for any {x1, . . . , xm} ⊂ K, we have C0({x1, x2, . . . , xm}) ⊂
m⋃
i=1

G(xi)

Definition 2.14 (Hemi continuous Function [20]). A function F : K → R is said to be hemi-continuous if for every geodesic

γ : [0, 1]→ K, whenever t→ 0, F (γ(t))→ F (γ(0)).

Definition 2.15 (Fixed Point Property [26]). A topological space T is of the fixed point property if every continuous function

f : T → T has a fixed point.
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Definition 2.16 (Variational inequality [26]). For a given single valued vector field T : M → TN . Consider the problem of

finding u ∈ K such that

〈Tu, exp−1
u v〉 ≥ 0 ∀ v ∈ K,

which is called the variational inequality.

Definition 2.17 (Upper semi-continuous [26]). Given T : M → 2M and x0 ∈M , the mapping T is said to be

(1). Upper semi-continuous (USC), at x0 if for any open set V ⊆M satisfying T (x0) ⊆ V , there exists an open neighbourhood

U(x0) of x0 such that T (x) ⊆ V for any x ∈ U(x0).

(2). Upper Kuratowski semicontinuous (UKSC), at x0 if for any sequences {xk}, {uk} ⊂ M with each uk ∈ T (xk), the

relation lim
k→∞

xk = x0 and lim
k→∞

uk = u0 imply u0 ∈ T (x0).

3. Equilibrium Problems on Hadamard Manifolds

In this section, we present some algorithm for equilibrium problems on Hadamard manifolds proved by Vittorio Colao et al.

[24] , M.A. Noor et al. [13] using the auxiliary principle technique.

3.1. Existence of Equilibrium Points

An equilibrium theory in Euclidean spaces was first introduced by Ky Fan in [8, 9] and then developed by Brezis, Nirenboag

and Stampacchia [6] among others. In order to get an existence result for this equilibrium problem they provide following

analogues to KKM Lemma [1] in the setting of Hadamard manifolds.

Lemma 3.1. Let G : K → 2K be a mapping such that or each x ∈ K, G(x) is closed suppose that

(1). there exist x0 ∈ K such that G(x0) is compact

(2). ∀ x1, x2, . . . , xm ∈ K, C0({x1, . . . , xm}) ⊂
m⋃
i=1

G(xi).

Then
G⋂

x∈K
(x) 6= φ.

Theorem 3.2. Let F : K ×K → R be a bifunction such that

(1). for any x ∈ K, F (x, x) ≥ 0;

(2). for every x ∈ K, the set {y ∈ K;F (x, y) < 0} is convex

(3). for every y ∈ K, x→ F (x, y) is upper semicontinuous.

(4). there exist a compact set L ⊆M and a point y0 ∈ L ∩K such that F (x, yn) < 0, ∀ x ∈ K/L.

Then there exist a point x0 ∈ L ∩K satisfying F (x0, y) ≥ 0, ∀ y ∈ K.

By setting L = K in the previous theorem, the following corollary is obtained.

Corollary 3.3. Let K ⊆M be convex and compact and F : K ×K → R such that

(1). for any x ∈ K, F (x, x) ≥ 0;

(2). for every x ∈ K the set {y ∈ K : F (x, y) < 0} is convex
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(3). for every y ∈ K, x→ F (x, y) is upper semicontinuous.

Then there exist a point x0 ∈ K satisfying F (x0, y) ≥ 0, ∀ y ∈ K.

Example 3.4. Example of an equilibrium problem defined in a Euclidean space whose set K is not convex so it cannot be

solved by using the classical results known in vector spaces. However, if we rewrite the problem in a Riemannian manifold

then it turns out to satisfy the conditions required in the Corollary 3.3. Let

K = {(x, y, z) ∈ R3 : 0 ≤ x ≤ 1, y2 − z2 = −1, z ≥ 0}

and F : K ×K → R the bifunction defined by

F (x1, y1, z1, x2, y2, z2) = 4(x2 − x1) + (1− x1)((y22 + z22)− (y21 + z21))

Note that K is indeed not convex in R3. Given a natural number m ≥ 1. Let Em.1 denote the vector space Rm+1 endowed

with the symmetric bilinear form (which is called the Lorentz metric) defined by

(x, y) =

m∑
i=1

xiyi − xm+1ym+1, ∀ x = (xi), y = (yi) ∈ Rm+1

The hyperbolic m-spcae Hm is defined by

{x = (x1, . . . , xm+1) ∈ Em.1 : 〈x, x〉 = −1, xm+1 > 0},

that is upper sheet of the hyperboloid {x ∈ Em.1 : (x, x) = −1}. Note that xm+1 ≥ 1 for any x ∈ Hm, with equality if and

only if xi = 0 for all i = 1, . . . ,m. the metric of Hm is induced from the Lorentz metric (·, ·) and it will be denoted by

the same symbol. Then Hm is a Hadmard manifold sectional curvature -1 (c.f [15]). Furthermore, the normalized godesic

γ : R→ Hm starting from x ∈ Hm is given by γ(t) = (cosht)x+ (sinht)v, ∀ t ∈ R, where v ∈ TxHm is a unit vector.

Considering the set K immersed in the space M = R × H1 which is a Hadmard manifold for being the product space of

Hadmard manifolds (cf. [15]), it is readily seen that K is convex and compact on M. On the other hand, conditions (i) and

(iii) in Corollary 3.3 hold, and the fact that F is convex is the second variable. So Corollary 3.3 implies the existence of an

equilibrium point for F.

Theorem 3.5. Let K → TM be a continuous vector field and f : K → R a convex lower semicontinuous function. Assume

that the following condition holds: (C) There exists a compact set L ⊆M and a point y0 ∈ L ∩K such that

(Ax, exp−1
x y0) + f(y0)− f(x) < 0, ∀ x ∈ K\L.

Then MVIP(A, f) has a solution in L ∩K.

Corollary 3.6. Let A : K → TM be a continuous vector field and f : K → R a convex lower semicontinuous function. If

either

(1). K is compact, or

(2). there exists y0 ∈ K such that the coercivity condition〈
Ay0, exp−1

yv
x
〉

+
〈
Ax, exp−1

x y0
〉

d(y0, x)
→ −∞ as d(y0, x)→∞

holds, then MVIP (A, f) has a solution.
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Remark 3.7. By considering f the function constantly 0, it follows that Corollary 3.6 extended.

Lemma 3.8. Let D,K ⊆M be closed convex sets with D compact. Assume that ρ : D×K → R is upper semicontinuous in

the first variable and that for any x ∈ D and y ∈ K, −ρ(·, γ) and ρ(x, ·) are convex functions. If max
x∈D

ρ(x, y) ≥ 0, ∀ y ∈ K

then there exists x̂ ∈ D such that ρ(x̂, y) for any y ∈ K.

Theorem 3.9. Let K ⊆ M be a compact convex set and T : K → 2K and UKSC mapping. Assume that for any x ∈ K,

T (x) is closed and convex. Then there exists a fixed point of T.

Remark 3.10. The upper semicontinuity implies the upper Kuratowski semicontinuity, so the previous result remains true

assume that T is USC instead.

3.2. Approximation of Equilibrium Points

The approach that followed to approximate a solution of the equilibrium problem (for the bifunction F and the set K find

x ∈ K such that F (x, y) ≥ 0, ∀ y ∈ K) involves the resolvent of the bifunction F, which is firmly non-expansive mapping

whose fixed point set coincides with the equilibrium point set of F.

Proposition 3.11 ([2]). A mapping T : K → K is firmly nonexpansive iff for any x, y ∈ K

〈
exp−1

T (x) T (y), exp−1
T (x) x

〉
+
〈

exp−1
T (y) T (x), exp−1

T (y) y
〉
≤ 0

As in Banach spaces and the Hilbert Ball [20], the class of firmly nonexpansive mappings is characterized by the good

asymptotic behaviour of the sequence of Picard iterates {Tn(x)}. In order to prove the convergence of this sequence, the

following definition and results are necessary.

Lemma 3.12 ([4, 17]). Let X be a complete metric space. If {xn} ⊂ X is Fejer monotone with respect to a non empty set

C ⊆ X, then {xn} is bounded. Moreover, if a cluster x of {xn} belong to C, then {xn} converges to x.

Theorem 3.13. Let T : K → K be a firmly non expansive mapping such that its fixed point set Fix(T ) 6= φ. Then for each

x ∈ k the sequence of iterates {Tn(x)} converges to a fixed point of T.

3.3. Resolvents of Bifunction

The definition of the resolvent of a bifunction in the setting of a Hilbert space H appears implicitly in [3] and was first given

in [18]. In order to distinguish the resolvent of vector fields and the resolvent of bifunctions, denoted latter with an upper

index, JF . Given a bifunction F : K × K → R, where K ⊆ H is nonempty closed and convex, the resolvent of F is the

set-valued operator JF : H → 2K such that for any x ∈ H, JF (x) = {z ∈ K|(∀ y ∈ K)F (z, y) + 〈z − x, y − z〉 ≥ 0}. Under

some conditions on the bifunction F, JF can be proved to be well defined, single-valued and firmly nonexpansive, and its

fixed point set turns out to be the equilibrium point set of F.

The following definition extends the previous one to the setting of a Hadamard manifold M.

Definition 3.14. Let F : K ×K → R. For any λ > 0, the resolvent of F is the set-valued operator JFλ : M → 2K defined

by

JFλ (x) =
{
z ∈ K|λF (z, y)−

〈
exp−1

z x, exp−1
z y

〉
≥ 0, ∀ y ∈ K

}
, ∀ x ∈M.

Theorem 3.15. Let F : K ×K → R be a bifunction satisfying the following conditions:

(1). F is monotone, that is, for any (x, y) ∈ K ×K, F (x, y) + F (y, x) ≤ 0;
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(2). for each λ > 0, JFλ is properly defined, that is, the domain D(JFλ ) 6=6 0.

Then for any λ > 0,

(i). the resolvent JFλ is single-valued;

(ii). the resolvent JFλ is firmly nonexpansive;

(iii). the fixed point set of JFλ is the equilibrium point set of F, Fix(JFλ ) = EP (F );

(iv). if D(JFλ ) is closed and convex, the equilibrium point set EP (F ) is closed and convex.

Remark 3.16. The resolvent could be defined for a set-valued bifunction F : K × K → 2R as the set-valued function

JFλ : M → 2K such that

JFλ (x) =
{
z ∈ K|λu−

〈
exp−1

z x, exp−1
z y

〉
≥ 0, ∀ y ∈ K, ∀ u ∈ F (z, y)

}
,

for any λ > 0 and any x ∈M . Then, assuming that F monotone means that u+ v ≤ 0 for any u ∈ F (x, y), v ∈ F (y, x) and

x, y ∈ K, the previous theorem would remain true except for (iii) which needs F to be single-valued.

3.4. Auxiliary Principle Technique

Muhammad Aslam Noor and Khalida Inayat Noor [13] suggested and analyzed an iterative method for solving the equilibrium

problems on Hadamard manifolds using the auxiliary principle technique. They considered the convergence analysis of

condition.

Definition 3.17 (Tangent Space). Let M be a simply connected m-dimensional manifold. Given x ∈M , the tangent space

of M at x is denoted by TxM and can be defined as, In differential geometry, one can attach to every point x of a differentiable

manifold a tangent space, a real vector space that intuitively contains the possible “directions” at which one can tangentially

pass through x. The elements of the tangent space are called tangent vectors at x.

Lemma 3.18. Let x ∈ M . Then expx : TxM → M is a diffeomorphism, and for any two points x, y ∈ M , there exist a

unique normalized geodesic joining x to y, γx,y, which is minimal.

Lemma 3.19. Comparison theorem for triangles. Let ∆(x1, x2, x3) be a geodesic triangle. Denote for each i =

1, 2, 3 (mod 3), by γ1 : [0, li] → M the geodesic joining xi to xi+1 and αI = L(γ′i(0) − γ′l(i − 1)(li − 1)), the angle be-

tween the vectors γ′i(0) and −γ′i−1(li−1) and li = L(γi). Then

α1 + α2 + α3 ≤ π, l2i + l2i+1 − 2Li; li+1 cosαi+1 ≤ l2i−1

In terms of the distance and the exponential map, the above inequality can be rewritten as

d2(xi, xi+1) + d2(xi+1, xi+2)− 2(expxixi+1
, exp−1

xi=1
xi+2) ≤ d2(xi−1, x)

Since 〈
exp−1

xi+1
xi, exp−1

xi+1
xi+2

〉
= d(xi, xi+1)d(xi+1, xi+2) cosαi+1
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Lemma 3.20. Let ∆(x, y, z) be a geodesic triangle in a Hadamard manifold M. Then there exists x′, y′, z′ ∈ R2 such that

d(x, y) = ‖x′ − y′‖, d(y, z) = ‖y′ − z′‖, d(z, x) = ‖z′ − x′‖

The triangle ∆(x′, y′, z′) is called the comparison triangle of the geodesic triangle ∆(x, y, z), which is unique upto isometry

of M.

Lemma 3.21. Let M be a Hadamard manifold and f : M → R be convex. Then for any x ∈ M , the subdifferential ∂f(x)

of f at x is non-empty. That is, D(∂f) = M .

3.5. Implicit Iterative Method

Noor et al. [14] used the auxiliary principle technique of Glawinski et al. [19] to analyze an implicit iterative method for

solving the equilibrium problem. For given u ∈ K satisfying equilibrium problem (1). Consider the problem of finding

w ∈ K such that

ρF (u, v) +
〈
exp−1

u w, exp−1
w v

〉
≥ 0, ∀ v ∈ K

which is called the auxiliary problem on Hadamard manifolds.

Algorithm 3.22. For a given u0, compute the approximate solution by the iterative scheme

ρF (un, v) +
〈

exp−1
un
un+1, exp−1

un+1
v
〉
≥ 0, ∀ v ∈ K

is called the explicit iterative method for solving the equilibrium problem on the Hadamard manifold.

Algorithm 3.23. For a given u0 ∈ K, compute the approximate solution un+1 by the iterative scheme

〈
ρTun + (exp−1

un
un+1), exp−1

un+1
v
〉
≥ 0,∀ v ∈ K

For M = Rn, Algorithm 3.23 reduces to

Algorithm 3.24. For a given u0 ∈ K, compute the approximate solution un+1 by the iterative scheme

〈ρTun + un+1 − unv − un+1〉 ≥ 0, ∀ v ∈ K

Theorem 3.25. Let F (·, ·) be a partially relaxed strongly monotone bifunction with a constant α > 0. Let un be the

approximate solution of the equilibrium problem (1) obtained from Algorithm 3.22, then

d2(un+1, u) ≤ d2(un, u)− (1− ρα)d2(un+1, un),

where u ∈ K is a solution of the equilibrium problem.

Glowinski et al. [19] suggested and analyzed an implicit iterative method for solving the equilibrium problem (1). For a

given u ∈ K satisfying (1), consider the problem of find w ∈ K such that

ρF (w, v) +
〈
exp−1

u w, exp−1
w v

〉
≥ 0, ∀ v ∈ K

which is called the auxiliary equibrium problem on Hadamard manifolds. They have shown that the convergence analysis

of this method requires only the pseudomonotonicy which is a weaker condition than monotonicity.
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Algorithm 3.26. For a given u0, compute the approximate solution by the iterative scheme

ρF (un=1, v) +
〈

exp−1
un
un+1, exp−1

un+1
v
〉
≥ 0, ∀ v ∈ K

is called the implicit (proximal point) iterative method for solving the equilibrium problem on the Hadmard manifold.

Algorithm 3.26 can be written in the following equivalent form.

Algorithm 3.27. For a given u0 ∈ K, find the approximate solution un+1 by the iterative scheme

ρF (un, v) +
〈
exp−1

un
yn, exp−1

y v
〉
≥ 0 ∀ v ∈ K

ρF (yn, v) +
〈

exp−1
y , exp−1

un+1
v
〉
≥ 0, ∀ v ∈ K

is a two-step iterative method for solving the equilibrium problems on Hadamard manifolds. This method can be viewed as

the extragradient method for solving the equilibrium problems.

If K is a convex set in Rn, then Algorithm 3.26 collapses to the following

Algorithm 3.28. For a given u0 ∈ K, find the approximate solution un+1 by the iterative scheme :

ρF (un+1, u) + (un+1 − un, v − un+1) ≥ 0, ∀ v ∈ K

which is known as the implict method for solving the equilibrium problem.

For the convergence analysis of Algorithm 3.27, see [11, 12]. If F (u, v) = (Tu, exp−1
u v), where T is a single valued vector

filed T : K → TM , then Algorithm 3.26 reduces to the following implicit method for solving the variational inequalities.

Algorithm 3.29. For a given u0 ∈ K, compute the approximate solution un+1 by the iterative scheme

〈
ρTun+1 + (exp−1

u , un+1), exp−1
un+1

v
〉
≥ 0, ∀ v ∈ K

Algorithm 3.29 is due according to Tang et al. [5] and M. A. Noor and K. I. Noor [13]. We can also rewrite Algorithm 3.29

in the following equivalent form.

Algorithm 3.30. For a given u0 ∈ K, computer the approximate solution un+1 by the iterative scheme

〈
ρTun + exp−1

un
yn, exp−1

y v
〉
≥ 0 ∀ v ∈ K,〈

ρTyn + exp−1
un+1

un, exp−1
un+1

v
〉
≥ 0, ∀ v ∈ K

which is the extragradient method for solving the variational inequalities on Hadmard manifolds and appears to be a new

one.

In a similar way, one can obtain several iterative methods for solving the variational inequalities on the Hadmard manifold.

We now consider the convergence analysis of Algorithm 3.26 and this is the motivation of this next result.

Theorem 3.31. Let F (·, ·) be a pseudomonotone bifunction. Let un be the approximate solution of the equilibrium problem

obtained from Algorithm 3.26, then

d2(un+1, u) + d2(un+1, un) ≤ d2(un, u)

where u ∈ K is a solution of the equilibrium problem (1).
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Theorem 3.32. Let u ∈ K be solution of (1) and let un+1 be the approximate solution obtained from Algorithm 3.26, then

lim
n→∞

un+1 = u.

In the next section, we study the existence of solutions of mixed equilibrium problems on Hadamard manifolds. S. Jena et

al. [20] introduced the implicit and explicit algorithms to solve these problems. They showed that the sequence generated

by both implicit and explicit algorithms converges to a solution of mixed equilibrium problems, whenever it exists, under

reasonable assumptions.

3.6. Existence of Solutions of Mixed Equilibrium Problems

Colao et al. [24] studied existence of solutions of equilibrium problems under monotonicity assumptions on Hadamard

manifolds.

Definition 3.33 (Mixed Equilibrium Problem). Let ψ : K → R be a mapping and F : K×K → R be a bifunction satisfying

the property F (x, x) = 0 for all x ∈ K. Then the problem is to find x̄ ∈ K such that

F (x̄, y) + ψ(y)− ψ(x̄) ≥ 0 ∀ y ∈ K (2)

is called mixed equilibrium problem. Calao et al. [4] called a bifunction F to be monotone on K if for any x, y ∈ K, we have

F (x, y) + F (y, x) ≤ 0. A bifunction F is said to be pseudomonotone with respect to the function ψ if

F (x, y) + ψ(y)− ψ(x) ≥ 0

⇒ F (y, x) + ψ(x)− ψ(y) ≤ 0

Lemma 3.34. Let F : K ×K → R be hemicontinuous in the first argument and for fixed x ∈ K the mapping z → F (x, z)

be geodesic convex. Also assume that the map ψ : K → R is geodesic convex and the bifunction F is pseudomonotone with

respect to ψ. Then x̄ ∈ K is a solution of the mixed equilibrium problem (2) if and only if F (y, x̄) + ψ(x̄)− ψ(y) ≤ 0 for all

y ∈ K.

Theorem 3.35. Let K be a bounded subset of M and F : K ×K → R be hemicontinuous in the first argument. Suppose

for fixed x ∈ K, the mapping z → F (x, z) and ψ : K → R are geodesic convex, lower semicontinuous. Also assume that the

bifunction F is pseudomonotone with respect to ψ. Then the mixed equilibrium problem (2) has a solution.

Theorem 3.36. Let K be an unbounded subset of M and F : K×K → R be hemicontinuous in the first argument. Suppose

for fixed x ∈ K, the mapping z → F (x, z) and ψ : K → R are geodesic convex, lower semicontinuous. Also assume that the

bifunction F is pseudomonotone with respect to ψ. If there exists a point x0 ∈ K, such that F (x, x0) + ψ(x0) − ψ(x) < 0,

whenever d(0, x)→ +∞, x ∈ K holds, then the mixed equilibrium problem (2) has a solution.

Now we present some Implicit methods for solving mixed equilibrium problem:

Algorithm 3.37. At stage n, given xn ∈ K, ρ > 0, compute xn+1 ∈ K as a solution of the following iterative scheme.

F (xn+i,y) +
1

ρ

〈
exp−1

xn
xn+1, exp−1

xn+1
y
〉

+ ψ(y)− ψ(xn+1) ≥ 0 ∀ y ∈ K (3)

(i). When ψ ≡ 0, the Algorithm 3.37 reduces to the following implicit iterative algorithm.
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Algorithm 3.38. At stage n, given xn ∈ K, ρ > 0, compute xn+1 ∈ K, such that

F (xn+1, y) +
1

ρ

〈
exp−1

xn
xn+1, exp−1

xn+1
y
〉
≥ 0 ∀ y ∈ K

This is the implicit algorithm for the equilibrium problems introduced by Noor et al. [11].

(ii). If K is convex set in Rn, then Algorithm 3.37 reduces into the following algorithm [11, 12].

Algorithm 3.39. At stage n, given xn ∈ K, ρ > 0, compute xn+1 ∈ K, as a solution of the iterative scheme

F (xn+1, y) +
1

ρ
〈xn+1 − xn, y − xn+1〉+ ψ(y)− ψ(n+ 1) ≥ 0, ∀ y ∈ K

(iii). If we take F (x, y) = 〈Vx, exp−1
x y〉, then Algorithm 3.37 reduces to the following.

Algorithm 3.40. At stage n, given xn ∈ K, ρ > 0, compute xn+1 ∈ K, as a solution of the iterative scheme

〈
ρV xn+1 + exp−1

xn
xn+1, exp−1

xn+1
y
〉

+ ψ(y)− ψ(xn+1) ≥ 0, ∀ y ∈ K,

which is an algorithm for solving mixed variational inequalities studied by Noor et al. [13].

(iv). When ψ ≡ 0, the Algorithm 3.40 reduces to the following implicit iterative algorithm for solving variational inequalities.

Algorithm 3.41. At stage n, given xn ∈ K, ρ > 0, compute xn+1 ∈ K, as a solution of the iterative scheme

〈
ρV xn+1 + exp−1

xn
xn+1, exp−1

xn
y
〉
≥ 0, ∀ y ∈ K

Theorem 3.42. Let F : K×K → R be pseudomonotone with respect to the function ψ and continuous in the first argument

and SOL(MEP ) 6= φ. Suppose that the sequence {xn} generated by (3) is well defined and ψ : K → R is continuous. Then

{xn} converges to a solution of the mixed equilibrium problem (2).

Some Explicit methods for solving mixed equilibrium problem:

Definition 3.43. The bifunction F is said to be partially relaxed pseudomonotone with respect to the function ψ if there

exist α > 0 such that ∀ x, y, z ∈ K.

F (x, y) + ψ(y)− ψ(x) ≥ 0⇒ F (z, x) + ψ(x)− ψ(z) ≤ αd2(y, z)

If we take z = y, then F reduces to a pseudomonotone function.

Algorithm 3.44. At stage n, given xn ∈ K, ρ > 0, compute xn+1 ∈ K, as a solution of the iterative scheme

F (xn, y) +
1

ρ

〈
exp−1

xn
xn+1, exp−1

xn+1
y
〉

+ ψ(y)− ψ(xn) ≥ 0 ∀ y ∈ K (4)

Some particular cases of Algorithm 3.44 are given as follows:

(i). When ψ ≡ 0, the Algorithm 3.44 reduces to the following explicit iterative algorithm for equilibrium problems.

Algorithm 3.45. At stage n, given xn ∈ K, ρ > 0, compute xn+1 ∈ K, such that

F (xn, y) +
1

ρ

〈
exp−1

xn+1
, exp−1

xn+1
y
〉
≥ 0 ∀ y ∈ K.
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Algorithm 3.46. At stage n, given xn ∈ K, ρ > 0, compute xn+1 ∈ K, as a solution of the iterative scheme

F (xn, y) +
1

ρ
< xn+1 − xn, y − xn+1 > +ψ(y)− ψ(xn+1) ≥ 0 ∀ y ∈ K.

Algorithm 3.47. At stage n, given xn ∈ k, ρ > 0 compute xn+1 ∈ K as a solution of the iterative scheme

〈
ρV xn + exp−1

xn
, exp−1

xn+1
y
〉

+ ψ(y)− ψ(xn+1) ≥ 0, ∀ y ∈ K.

Algorithm 3.48. At stage n, given xn ∈ K, ρ > 0, compute xn+1 ∈ K, as a solution of the iterative scheme

〈
ρV xn + exp−1

xn+1
, exp−1

xn+1
y
〉
≥ 0, ∀ y ∈ K.

Algorithm 3.49. Let F : K ×K → R be a partially relaxed pseudomonotone bifunction with respect to the function ψ with

a constant α > 0, and continuous in the first argument. Suppose that the sequence {xn} generated by (4) is well defined,

ψ : K → R is continuous and SOL(MEP ) 6= φ. Then

d2(xn+1, x) ≤ d2(xn, x)− (1− 2ρα)d2(xn+1, xn)

If in addition ρ < 1
2a

, then {xn} converges to a solution of the mixed equilibrium problem (2).
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