

International Journal of Mathematics And its Applications

Common Fixed Point of Three Contractive Type Mappings

Research Article

M. Sankara Narayanan^{1*}, M. Menaka² and M. Marudai²

1 Department of Mathematics, The Gandhigram Rural Institute-Deemed University, Gandhigram, Tamil Nadu, India.

 $2 \ \ {\rm Department \ of \ Mathematics, \ Bharathidasan \ University, \ Tiruchirappalli, \ Tamil \ Nadu, \ India.}$

Abstract: In this paper we prove common fixed point theorems for sequentially convergent Kannan and Chatterjea type mappings, which are generalization of many common fixed point theorems.

Keywords: Fixed point, Affine, Sequentially convergent, Compact. © JS Publication.

1. Introduction

This paper aims to prove unique common fixed point theorems for three contractive type mappings on a complete metric space which extends the theorems of [1] and [2] for single mapping and [3, 4, 7] results for two mappings. Let (X, d) be a complete metric space, $T: X \to X$ be continuous, injective and sequentially convergent mapping and let S_1, S_2 be self maps of X. The authors of [7], 2016 proved that, if T, S_1, S_2 satisfies $d(TS_1x, TS_2y) \leq \alpha(d(Tx, TS_1x) + d(Ty, TS_2y)) + \beta d(Tx, Ty)$, for all $x, y \in X$, where $\alpha > 0, \beta \geq 0$ such that $2\alpha + \beta < 1$ then S_1 and S_2 have a unique common fixed point. Also they proved, if T, S_1, S_2 satisfies $d(TS_1x, TS_2y) + d(Ty, TS_1x)) + \beta d(Tx, Ty)$, then S_1 and S_2 have a unique common fixed point. We establish the results for the existence of unique common fixed points for three contractive mappings T, S_1, S_2 by assuming that $d(Tx, S_1y) \leq d(x, y)$ (or) $d(Tx, S_2y) \leq d(x, y)$ for all $x, y \in X$. We also prove results showing the unique common fixed point for the self maps T, S_1, S_2 on a non-empty compact subset K of a metric space (X, d), by relaxing the condition of sequentially convergent on T. In a non-empty compact convex subset K of a Banach space X, we assume that T to be affine instead of sequentially convergent and $||Tx - S_1y|| \leq ||x - y||$ or $||Tx - S_2y|| \leq ||x - y||$ for all $x, y \in K$, for the common fixed point of T with S_1, S_2 .

2. Preliminaries

Definition 2.1 ([6]). Let (X, d) be a metric space. A mapping $T : X \to X$ is said to be sequentially convergent if for each sequence $\{y_n\}$ in X, the sequence $\{Ty_n\}$ converges $\Rightarrow \{y_n\}$ is convergent.

Definition 2.2. Let K be a non-empty subset of a Banach space X. A map $T : K \to K$ is said to be affine if $T((1-\lambda)x+\lambda y) = (1-\lambda)Tx + \lambda Ty$ for all $x, y \in K$ and $\lambda \in (0, 1)$.

E-mail: p.m.sankar81@gmail.com

Theorem 2.3 ([7]). Let (X, d) be a complete metric space, $T : X \to X$ be continuous, injective and sequentially convergent mapping and $S_1, S_2 : X \to X$. If there exist $\alpha > 0, \beta \ge 0$ such that $2\alpha + \beta < 1$ and

$$d(TS_1x, TS_2y) \le \alpha(d(Tx, TS_1x) + d(Ty, TS_2y)) + \beta d(Tx, Ty),$$

for all $x, y \in X$, then S_1 and S_2 have a unique common fixed point.

Theorem 2.4 ([7]). Let (X, d) be a complete metric space, $T : X \to X$ be continuous, injective and sequentially convergent mapping and $S_1, S_2 : X \to X$. If there exist $\alpha > 0, \beta \ge 0$ so that $2\alpha + \beta < 1$ and

$$d(TS_1x, TS_2y) \le \alpha(d(Tx, TS_2y) + d(Ty, TS_1x)) + \beta d(Tx, Ty),$$

for all $x, y \in X$, then S_1 and S_2 have a unique common fixed point.

3. Main Results

Since $\alpha > 0$ in Theorem 2.3, The following theorem is not the corollary of the Theorem 2.3.

Theorem 3.1. Let (X, d) be a complete metric space and let $T : X \to X$ be continuous, injective, sequentially convergent mapping. Let $S_1, S_2 : X \to X$ be self maps such that $d(TS_1x, TS_2y) \le ad(Tx, TS_1x) + bd(Ty, TS_2y) + cd(Tx, Ty)$, where $a, b, c \in [0, 1)$ with a + b + c < 1 and $d(Tx, S_1y) \le d(x, y)$ (or) $d(Tx, S_2y) \le d(x, y)$ for all $x, y \in X$, then T, S_1 and S_2 have a unique common fixed point.

Proof. Let $x_0 \in X$, Define x_n by $x_{2n+1} = S_1 x_{2n}, x_{2n+2} = S_2 x_{2n+1}$ for n = 0, 1, 2, ...Let n be even.

$$d(Tx_n, Tx_{n+1}) = d(TS_2x_{n-1}, TS_1x_n)$$

$$\leq ad(Tx_{n-1}, TS_2x_{n-1}) + bd(Tx_n, TS_1x_n) + cd(Tx_{n-1}, Tx_n)$$

$$= ad(Tx_{n-1}, Tx_n) + bd(Tx_n, Tx_{n+1}) + cd(Tx_{n-1}, Tx_n)$$

$$d(Tx_n, Tx_{n+1}) \leq \frac{a+c}{1-b} \quad d(Tx_{n-1}, Tx_n)$$

Since a + b + c < 1, hence $\{Tx_n\}$ is a Cauchy sequence in X. Therefore $\{Tx_n\}$ is convergent in X. Since T is sequentially convergent, $\{x_n\}$ is convergent. (i.e) $\exists x \in X$ such that $x_n \to x$ as $n \to \infty$. Since T is continuous, $Tx_n \to Tx$ as $n \to \infty$. Now

$$\begin{aligned} d(Tx, TS_1x) &\leq d(Tx, Tx_{2n}) + d(Tx_{2n}, TS_1x) \\ &= d(Tx, Tx_{2n}) + d(TS_2x_{2n-1}, TS_1x) \\ &\leq d(Tx, Tx_{2n}) + ad(Tx_{2n-1}, TS_2x_{2n-1}) + bd(Tx, TS_1x) + cd(Tx_{2n-1}, Tx) \\ &= d(Tx, Tx_{2n}) + ad(Tx_{2n-1}, Tx_{2n}) + bd(Tx, TS_1x) + cd(Tx_{2n-1}, Tx) \\ &\to bd(Tx, TS_1x) \text{ as } n \to \infty. \end{aligned}$$

 \therefore $Tx = TS_1x$, Since T is injective, $x = S_1x$. Similarly $x = S_2x$. Hence $x = S_1x = S_2x$ and

$$d(x, Tx) \le d(x, x_{2n}) + d(x_{2n}, Tx)$$

= $d(x, x_{2n}) + d(S_2 x_{2n-1}, Tx)$
 $\le d(x, x_{2n}) + d(x_{2n-1}, x)$
 $\rightarrow 0 \text{ as } n \rightarrow \infty.$

 $\therefore Tx = x$. Hence T, S_1, S_2 have a common fixed point.

Uniqueness: Suppose $\exists y \in X$ such that $S_1y = S_2y = Ty = y$. Now

$$d(Tx, Ty) = d(TS_1x, TS_2y)$$

$$\leq ad(Tx, TS_1x) + bd(Ty, TS_2y) + cd(Tx, Ty)$$

$$= ad(Tx, Tx) + bd(Ty, Ty) + cd(Tx, Ty)$$

Since c < 1, Tx = Ty and hence x = y.

Corollary 3.2. Let (X, d) be a complete metric space and let $T : X \to X$ be continuous, injective, sequentially convergent mapping. Let $S_1, S_2 : X \to X$ be self maps such that $d(TS_1x, TS_2y) \le \alpha d(Tx, Ty)$, where $\alpha \in [0, 1)$ and $d(Tx, S_1y) \le d(x, y)$ (or) $d(Tx, S_2y) \le d(x, y)$ for all $x, y \in X$, then T, S_1 and S_2 have a unique common fixed point.

Proof. The proof of the corollary follows from the above theorem by putting a = b = 0 and $c = \alpha$.

Theorem 3.3. Let K be a non-empty compact subset of a metric space (X,d). Let $T : K \to K$ be continuous, injective mapping and let S_1, S_2 be self mappings of K. If there exist $a \in [0,1)$ and $b \ge 0$ such that $2a + b \le 1$ and $d(TS_1x, TS_2y) \le a[d(Tx, TS_1x) + d(Ty, TS_2y)] + bd(Tx, Ty)$, and $d(Tx, S_1y) \le d(x, y)$ (or) $d(Tx, S_2y) \le d(x, y)$ for all $x, y \in K$, then T, S_1 and S_2 have a common fixed point. Further if b < 1 then T, S_1 and S_2 have a unique common fixed point.

Proof. For each $n \in N$, let $x_{2n+1} = S_1 x_{2n}, x_{2n+2} = S_2 x_{2n+1}$. Then the sequence $\{x_n\} \subseteq K$. Since K is compact, $\{x_n\}$ has a subsequence $\{x_{n_k}\}$ such that $x_{n_k} \to x$ as $k \to \infty$. Therefore $Tx_{n_k} \to Tx$. Now

$$\begin{aligned} d(Tx, TS_1x) &\leq d(Tx, Tx_{2n_k}) + d(Tx_{2n_k}, TS_1x) \\ &= d(Tx, Tx_{2n_k}) + d(TS_2x_{2n_k-1}, TS_1x) \\ &\leq d(Tx, Tx_{2n_k}) + a[d(Tx_{2n_k-1}, TS_2x_{2n_k-1}) + d(Tx, TS_1x)] + bd(Tx_{2n_k-1}, Tx) \\ &= d(Tx, Tx_{2n_k}) + a[d(Tx_{2n_k-1}, Tx_{2n_k}) + d(Tx, TS_1x)] + bd(Tx_{2n_k-1}, Tx) \\ &\to ad(Tx, TS_1x) \text{ as } k \to \infty. \end{aligned}$$

 \therefore $Tx = TS_1x$, Since T is injective, $x = S_1x$. Similarly $x = S_2x$. Hence $x = S_1x = S_2x$.

$$d(x, Tx) \le d(x, x_{2n}) + d(x_{2n}, Tx)$$

= $d(x, x_{2n}) + d(S_2 x_{2n-1}, Tx)$
 $\le d(x, x_{2n}) + d(x_{2n-1}, x)$
 $\to 0 \text{ as } n \to \infty.$

 \therefore Tx = x. Hence T, S_1, S_2 have a common fixed point.

Uniqueness: Let y be an element in K such that $S_1y = S_2y = Ty = y$. Now

$$d(Tx, Ty) = d(TS_1x, TS_2y)$$

$$\leq a[d(Tx, TS_1x) + d(Ty, TS_2y)] + bd(Tx, Ty)$$

$$= a[d(Tx, Tx) + d(Ty, Ty)] + bd(Tx, Ty)$$

If b < 1, Tx = Ty and hence x = y.

Since $\alpha > 0$ in Theorem 2.4, The following theorem is not the corollary of the Theorem 2.4.

Theorem 3.4. Let (X, d) be a complete metric space and let $T : X \to X$ be continuous, injective, sequentially convergent mapping. Let $S_1, S_2 : X \to X$ be self maps such that $d(TS_1x, TS_2y) \le ad(Tx, TS_2y) + bd(Ty, TS_1x) + cd(Tx, Ty)$, where $a, b, c \in [0, 1)$ with 2a + b + c < 1 and $d(Tx, S_1y) \le d(x, y)$ (or) $d(Tx, S_2y) \le d(x, y)$ for all $x, y \in X$, then T, S_1 and S_2 have a unique common fixed point.

Proof. Let $x_0 \in X$, Define x_n by $x_{2n+1} = S_1 x_{2n}, x_{2n+2} = S_2 x_{2n+1}$ for n = 0, 1, 2, ... Let n be even.

$$d(Tx_n, Tx_{n+1}) = d(TS_2x_{n-1}, TS_1x_n)$$

$$\leq ad(Tx_{n-1}, TS_1x_n) + bd(Tx_n, TS_2x_{n-1}) + cd(Tx_{n-1}, Tx_n)$$

$$= ad(Tx_{n-1}, Tx_{n+1}) + bd(Tx_n, Tx_n) + cd(Tx_{n-1}, Tx_n)$$

$$\leq a[d(Tx_{n-1}, Tx_n) + d(Tx_n, Tx_{n+1})] + cd(Tx_{n-1}, Tx_n)$$

$$d(Tx_n, Tx_{n+1}) \leq \frac{a+c}{1-a} \quad d(Tx_{n-1}, Tx_n)$$

Since 2a + b + c < 1, hence $\{Tx_n\}$ is a Cauchy sequence in X. Therefore $\{Tx_n\}$ is convergent in X. Since T is sequentially convergent, $\{x_n\}$ is convergent. (i.e) $\exists x \in X$ such that $x_n \to x$ as $n \to \infty$. Since T is continuous, $Tx_n \to Tx$ as $n \to \infty$. Now

$$\begin{aligned} d(Tx, TS_1x) &\leq d(Tx, Tx_{2n}) + d(Tx_{2n}, TS_1x) \\ &= d(Tx, Tx_{2n}) + d(TS_2x_{2n-1}, TS_1x) \\ &\leq d(Tx, Tx_{2n}) + ad(Tx_{2n-1}, TS_1x) + bd(Tx, TS_2x_{2n-1}) + cd(Tx_{2n-1}, Tx) \\ &\to ad(Tx, TS_1x) \text{ as } n \to \infty. \end{aligned}$$

Since a < 1, $d(Tx, TS_1x) = 0$ implies $Tx = TS_1x$, $x = S_1x$, similarly $x = S_2x$ and

$$d(x, Tx) \le d(x, x_{2n}) + d(x_{2n}, Tx)$$

= $d(x, x_{2n}) + d(S_2 x_{2n-1}, Tx)$
 $\le d(x, x_{2n}) + d(x_{2n-1}, x)$
 $\to 0 \text{ as } n \to \infty.$

 \therefore Tx = x. Hence T, S_1, S_2 have a common fixed point.

Uniqueness: Suppose $\exists y \in X$ such that $S_1y = S_2y = Ty = y$. Now

$$d(Tx, Ty) = d(TS_1x, TS_2y)$$

$$\leq ad(Tx, TS_2y) + bd(Ty, TS_1x) + cd(Tx, Ty)$$

$$= ad(Tx, Ty) + bd(Ty, Tx) + cd(Tx, Ty)$$

Since a + b + c < 1, Tx = Ty and hence x = y.

Corollary 3.5. Let (X, d) be a complete metric space and let $T : X \to X$ be continuous, injective, sequentially convergent mapping. Let $S_1, S_2 : X \to X$ be self maps such that $d(TS_1x, TS_2y) \leq \alpha d(Tx, Ty)$, where $\alpha \in [0, 1)$ and $d(Tx, S_1y) \leq d(x, y)$ (or) $d(Tx, S_2y) \leq d(x, y)$ for all $x, y \in X$, then T, S_1 and S_2 have a unique common fixed point.

Proof. The proof of the corollary follows from the above theorem by putting a = b = 0 and $c = \alpha$.

Theorem 3.6. Let K be a non-empty compact subset of a metric space (X, d). Let $T : K \to K$ be continuous, injective mapping and let S_1, S_2 be self mappings of K. If there exist $a \in [0, 1)$ and $b \ge 0$ such that $2a + b \le 1$ and $d(TS_1x, TS_2y) \le a[d(Tx, TS_2y) + d(Ty, TS_1x)] + bd(Tx, Ty)$, and $d(Tx, S_1y) \le d(x, y)$ (or) $d(Tx, S_2y) \le d(x, y)$ for all $x, y \in K$, then T, S_1 and S_2 have a common fixed point. Further if 2a + b < 1 then T, S_1 and S_2 have a unique common fixed point.

Proof. For each $n \in N$, let $x_{2n+1} = S_1 x_{2n}, x_{2n+2} = S_2 x_{2n+1}$. Then the sequence $\{x_n\} \subseteq K$. Since K is compact, $\{x_n\}$ has a subsequence $\{x_{n_k}\}$ such that $x_{n_k} \to x$ as $k \to \infty$. Therefore $Tx_{n_k} \to Tx$. Now

$$\begin{aligned} d(Tx, TS_1x) &\leq d(Tx, Tx_{2n_k}) + d(Tx_{2n_k}, TS_1x) \\ &= d(Tx, Tx_{2n_k}) + d(TS_2x_{2n_k-1}, TS_1x) \\ &\leq d(Tx, Tx_{2n_k}) + a[d(Tx_{2n_k-1}, TS_1x) + d(Tx, TS_2x_{2n_k-1})] + bd(Tx_{2n_k-1}, Tx) \\ &= d(Tx, Tx_{2n_k}) + a[d(Tx_{2n_k-1}, TS_1x) + d(Tx, Tx_{2n_k})] + bd(Tx_{2n_k-1}, Tx) \\ &\to ad(Tx, TS_1x) \text{ as } k \to \infty. \end{aligned}$$

 \therefore $Tx = TS_1x$, Since T is injective, $x = S_1x$. Similarly $x = S_2x$. Hence $x = S_1x = S_2x$.

$$d(x, Tx) \le d(x, x_{2n+1}) + d(x_{2n+1}, Tx)$$

= $d(x, x_{2n+1}) + d(S_1 x_{2n}, Tx)$
 $\le d(x, x_{2n+1}) + d(x_{2n}, x)$
 $\rightarrow 0 \text{ as } n \rightarrow \infty.$

 \therefore Tx = x. Hence T, S_1, S_2 have a common fixed point.

Uniqueness: Let y be an element in K such that $S_1y = S_2y = Ty = y$. Now

$$d(Tx, Ty) = d(TS_1x, TS_2y)$$

$$\leq a[d(Tx, TS_2y) + d(Ty, TS_1x)] + bd(Tx, Ty)$$

$$= a[d(Tx, Ty) + d(Ty, Tx)] + bd(Tx, Ty)$$

$$(1 - (2a + b))d(Tx, Ty) \leq 0$$

If 2a + b < 1, Tx = Ty and hence x = y.

Theorem 3.7. Let K be a non-empty compact convex subset of a Banach space X. Let $T : K \to K$ be continuous, injective, affine and S_1, S_2 be self mappings of K. If there exist $\alpha \in [0,1)$ such that $||TS_1x - TS_2y|| \le \alpha ||Tx - Ty||$ and $||Tx - S_1y|| \le ||x - y||$ or $||Tx - S_2y|| \le ||x - y||$ for all $x, y \in K$. Then T, S_1, S_2 have a common fixed point.

Proof. Let $x_0 \in K, \alpha_n \in (0, 1)$ such that $\alpha_n \to 1$, as $n \to \infty$. Define $S_{1n}, S_{2n} : K \to K$ by $S_{1n}(x) = (1 - \alpha_n)x_0 + \alpha_n S_{1x}, S_{2n}(x) = (1 - \alpha_n)x_0 + \alpha_n S_{1x}, S_{2n}(x) = (1 - \alpha_n)x_0 + \alpha_n S_{1x}, TS_{2n}(x) = (1 - \alpha_n)x_0 + \alpha_n S_{1n} + \alpha_n S_{2n}(x) = \alpha_n ||TS_{1n}x - TS_{2n}y|| = \alpha_n ||TS_{1n}x - TS_{2n}y|| \le \alpha_n \alpha ||Tx - Ty||$. Then by Corollary 3.2, S_{1n}, S_{2n} have a common fixed point. Let $S_{1n}(x_n) = S_{2n}(x_n) = x_n, \forall n$. Since X is compact, $\{x_n\}$ has a subsequence $\{x_{n_k}\}$ such that $x_{n_k} \to x$ as $k \to \infty$. Therefore $Tx_{n_k} \to Tx$. Now, $x_{n_k} = S_{1n_k}x_{n_k} = (1 - \alpha_{n_k})x_0 + \alpha_{n_k}S_1x_{n_k}, S_1x_{n_k} \to x$ as $k \to \infty$. Similarly $S_2x_{n_k} \to x$

$$||Tx - TS_1x|| \le ||Tx - TS_2x_{n_k}|| + ||TS_2x_{n_k} - TS_1x||$$

$$\le ||Tx - TS_2x_{n_k}|| + \alpha ||Tx_{n_k} - Tx||$$

$$\to 0 \text{ as } k \to \infty.$$

Hence $||Tx - TS_1x|| = 0$. Since T is injective, $x = S_1x$. Similarly $x = S_2x$. Now

$$||x - Tx|| \le ||x - S_1 x_{n_k}|| + ||S_1 x_{n_k} - Tx||$$

= $||x - S_1 x_{n_k}|| + ||x_{n_k} - x||$
 $\to 0 \text{ as } k \to \infty.$

Hence x = Tx. Thus T, S_1, S_2 have a common fixed point.

References

- [1] R.Kannan, Some results on fixed points, Bull. Calc. Math. Soc., 60(1)(1968), 71-77.
- [2] SK.Chatterjea, Fixed point theorems, C. R. Acad. Bulgare Sci., 25(6)(1972), 727-730.
- [3] S.Moradi and D.Alimohammadi, New extensions of kannan fixed on complete metric and generalized metric spaces, Int. Journal of Math. Analysis, 5(47)(2011), 2313-2320.
- [4] A.Malceski, S.Malceski, K.Anevska and R.Malceski, New extension of Kannan and Chatterjea fixed point theorems on complete metric spaces, British Journal of Mathematics and Computer Science, 17(1)(2016), 1-10.
- [5] PV.Korparde and BB.Waghmode, Kannan type mappings in Hilbert space, Scientist Phyl. Sciences, 3(1)(1991), 45-50.
- [6] A.Braneiari, A fixed point theorem of Banach-Caccippoli type on a class of generalized metric spaces, Publ. Math. Debrecen., 57(1-2) (2000), 45-48.
- [7] K.Anevska, R.Malceski, A.Malceski and S.Malceski, Common Fixed Points of Kannan and Chatterjea Types of Mappings in a Complete Metric Space, British Journal of Mathematics and Computer Science, 18(2)(2016), 1-11.