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Abstract: In this paper, we study the normed linear spaces which are induced by Hausdorff distance. Barich proved the completeness

of Hausdorff metric space [3]. We extend his work for the completeness of the normed linear spaces called Banach spaces,

which are induced by Hausdorff distance and we proved convex Hausdorff metric space is Banach space.
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1. Introduction

Let’s turn the clock ahead to 1922 and given all brief discussion of the contribution of Eduard Helly, Hans Hahn and the great

Polish mathematician Banach. While Eduard Helly and Hans Hahn are important players in the story of Functional analysis,

making several important contributions to its early development it was Banach who gave the first complete treatment of

abstract normed vector space and its the word complete that must be emphasized! in his thesis [6]. Banach discussed

several important applications of theory of functionals in his own words. Ofcourse, most of us are familiar with the notion

of a Banach space, which was introduced in its fully glory that is in Banach thesis. We discuss the normed linear spaces

which are induced by Hausdorff distance and some of the basic concepts from Functional analysis. In a nutshell Functional

analysis is a study of normed vector spaces and bounded linear operators. Thus it merges the subjects of linear algebra with

the points set topology. The topologies that appears in Functional analysis will arise from Hausdorff metric space.

The geometry that follows from these consideration gives a specified approach to Banach space. Considering the above

concepts, we have presented a geometric setup that allows us to obtain structure for the existence of an Banach space.

Moreover, our geometric frame-work provides that generate a new setup that might be useful to determine conditions that

generate the study of functionals for which some interesting results concerning the existence. In this paper, we construct the

Hausdorff metric space, is to geometrize the Banach space completely. First Hausdorff distance has been considered, thus

by a specific distance, largest length is calculated & properties of this metric function are studied. Finally, convex Hausdorff

metric space are considered as complete normed linear space i.e., Banach space.
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2. Preliminaries

The concepts in this section should be familiar to anyone who has taken a course in real analysis. Therefore, we expect

the reader to be familiar with the following definitions when applied to the metric space (R, d), where d(x, y) = |x − y|.

However, with the exclusion of some examples, for the majority of this paper we will be working in a general metric space.

Thus our definitions will be given with respect to any metric space (X, d).

Definition 2.1. Metric space (X, d) consists of a set X and a function d : X × X → R that satisfies the following four

properties.

(1). d(x, y) ≥ 0 for all x, y ∈ X.

(2). d(x, y) = 0 if and only if x = y.

(3). d(x, y) = d(y, x) for all x, y ∈ X.

(4). d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

The function d, which gives the distance between two points in X, is called a metric.

Definition 2.2. Let v ∈ X and let r > 0. Open ball centered at v with radius r is defined by Bd(v, r) = {x ∈ X : d(x, v) < r}.

Definition 2.3. A set E ⊆ X is Bounded in (X, d) if there exist x ∈ X and M > 0 such that E ⊆ Bd(x,M).

Definition 2.4. A set K ⊆ X is Totally bounded if for each ε > 0 there is a finite subset {xi : 1 ≤ i ≤ n} of K such that

K ⊆
n⋃

i=2

Bd(xi, ε).

For the following definitions, let {xn} be a sequence in a metric space (X, d).

Definition 2.5. The sequence {xn} Converges to x ∈ X if for each ε > 0 there exists a positive integer N such that

d(xn, x) < ε, for all n ≥ N . We say {xn} converges if there exists a point x ∈ X such that {xn} converges to x.

Definition 2.6. The sequence {xn} is a Cauchy sequence if for each ε > 0 there exists a positive integer N such that

d(xn, xm) < ε for all m,n ≥ N .

Definition 2.7. A metric space (X, d) is Complete if every Cauchy sequence in (X, d) converges to a point in X.

Definition 2.8. A set K ⊆ X is Sequentially compact in (X, d) if each sequence in K has a subsequence that converges to

a point in K.

Definition 2.9. Norm ‖.‖ on a linear space X is a mapping X to R satisfying

(1). ‖x‖ ≥ 0 for all x ∈ X.

(2). ‖x‖ = 0 if and only if x = 0.

(3). ‖λx‖ = |λ|‖x‖ for all λ ∈ R and x ∈ X.

(4). (Triangle inequality) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X.

A normed linear space (X, ‖.‖) is a linear space X equipped with a norm ‖.‖.

Definition 2.10. A complete normed linear space is called a Banach space.
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Corollary 2.11 ([5]). Let {xn} and {yn} be sequences in a metric space (X, d). If {xn} converges to x and {yn} converges

to y, then {d(xn, yn)} converges to d(x, y).

Corollary 2.12 ([5]). If {zk} is a sequence in a metric space (X, d) with the property that d(zk, zk+1) <
1

2k
for all k, then

{zk} is a Cauchy sequence.

Lemma 2.13. Let (X, d) be a metric space and let A be a closed subset of X. If {an} converges to x and an ∈ A for all n,

then x ∈ A.

Proof. Suppose {an} is a sequence that converges to x and an ∈ A for all n. There are two cases to consider. If there

exists a positive integer n such that an = x, then it is clear x ∈ A. If there does not exist a positive integer n such that

an = x, then x is a limit point of A by Theorem 8.49 in [5]. Since A is closed, x ∈ A.

3. Construction of the Hausdorff Metric

We now define the Hausdorff metric on the set of all nonempty, compact subsets of a metric space. Let (X, d) be a complete

metric space and let κ be the collection of all nonempty compact subsets of X. Note that κ is closed under finite union and

nonempty intersection. For x ∈ X and A,B ∈ κ, define

r(x,B) = inf{d(x, b) : b ∈ B} and ρ(A,B) = sup{r(a,B) : a ∈ A}.

Note that r is nonnegative and exists by the completeness axiom, since d(a, b) ≥ 0 by the definition of a metric space. Since

r exists and is nonnegative, then both ρ(A,B) and ρ(B,A) exist and are nonnegative. In addition, we define the Hausdorff

distance between sets A and B in κ as

h(A,B) = max{ρ(A,B), ρ(B,A)}.

Before proving that h defines a metric on the set κ, let us consider a few examples to get a grasp on how these distances

work. Consider the following example of closed interval sets in (R, d), where d(x, y) = |x− y|.

Example 3.1. Let A = [0, 10] and let B = [12, 21]. We find that r(x,B) is going to be the infimum of the set of distances

from each a ∈ A to the closest point in B. As an example of one of these distances, consider a = 2. Then r(2, B) =

inf{d(2, b) : b ∈ B} = d(2, 12) = 10. We can note that for each a ∈ A, the closest point in B that gives the smallest distance

will always be b = 12. Therefore, we find that ρ(A, b) = sup{d(a, 12) : a ∈ A}. The point a = 0 in A maximizes this distance.

Therefore ρ(A,B) = d(0, 12) = |12− 0| = 12.

Similarly, we find that ρ(B,A) = sup{d(b, 10) : b ∈ B}, since the point a = 10 will give the smallest distance to any point

in B. The point b = 21 in B maximizes this distance, so we have ρ(B,A) = d(10, 21) = |10 − 21| = 11. It follows that

h(A,B) = max{ρ(A,B), ρ(B,A)} = 12.

Now that we have gained a knowledge on how r, ρ, and h work in a few special cases, we refer some basic properties of r

and ρ.

Theorem 3.2 ([3]). Let x ∈ X and let A,B,C ∈ κ.

(1). r(x,A) = 0 if and only if x ∈ A.

(2). ρ(A,B) = 0 if and only if A ⊆ B.

(3). There exists ax ∈ A such that r(x,A) = d(x, ax).
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(4). There exists a∗ ∈ A and b∗ ∈ B such that ρ(A,B) = d(a∗, b∗).

(5). If A ⊆ B, then r(x,B) ≤ r(x,A).

(6). If B ⊆ C, then ρ(A,C) ≤ ρ(A,B).

(7). ρ(A ∪B,C) = max{ρ(A,C), ρ(B,C)}.

(8). ρ(A,B) ≤ ρ(A,C) + ρ(C,B).

4. Hausdorff Metric Space

Normed linear space is a Hausdorff metric space equipped with the metric d(x, y) = ‖x − y‖. A metric in a linear space

defines a norm if it satisfies translational invariant (d(x− z, y − z) = d(x, y)) and homogeneity (d(λx, 0) = λd(x, 0)). Given

a complete metric space (X, d), we have now construction of new metric space (κ, h) from the nonempty, compact subsets

of X using the Hausdorff distance. The following theorem shows Hausdorff distance defines a metric on κ.

Theorem 4.1 ([3]). The set κ with the Hausdorff distance h define a metric space (κ, h).

Proof. To prove that (κ, h) is a metric space, we need to verify the following four properties.

(1). h(A,B) ≥ 0 for all A,B ∈ κ.

(2). h(A,B) = 0 if and only if A = B.

(3). h(A,B) = h(B,A) for all A,B ∈ κ.

(4). h(A,B) ≤ h(A,C) + h(C,B) for all A,B,C ∈ κ.

To prove the first property, since ρ(A,B) and ρ(B,A) are nonnegative, it follows that h(A,B) ≥ 0 for all A,B ∈ κ.

For the second property, suppose A = B. Therefore A ⊆ B and B ⊆ A . By Property (2) of Theorem 2.4 we find that

ρ(A,B) and ρ(B,A) = 0, and thus h(A,B) = 0. Now suppose h(A,B) = 0. This implies ρ(A,B) = ρ(B,A) = 0. By

property (2) of Theorem 3.2, we see that A ⊆ B and B ⊆ A and it follows that A = B.

The third property can be proved from the symmetry of the definition since

h(A,B) = max{ρ(A,B), ρ(B,A)}

= max{ρ(B,A), ρ(A,B)}

= h(B,A).

The final property follows from the definition of ρ and h and from property (8) of Theorem 3.2. We find that

ρ(A,B) ≤ ρ(A,C) + ρ(C,B)

Similarly,

ρ(B,A) ≤ ρ(B,C) + ρ(C,A)

Therefore, h(A,B) = max{ρ(A,B), ρ(B,A)} ≤ h(A,C) + h(C,B).
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Therefore we know that h defines a metric on κ. Hence it defines Hausdorff metric space (κ, h). In the next section, we will

look at example of what this metric space might look like, and then one may proceed to prove if the metric space (X, d) is

complete, then the metric space (κ, h) which is induced by Hausdorff distance is also complete.

Example 4.2. Let (R, d0) be the complete metric space, where d0 is the discrete metric,

d0(x, y) =

 0, when x = y.

1, when x 6= y.

Since κ is the set of all nonempty, compact subsets of (R, d0), we find that κ is the set of all nonempty finite subsets of R.

The infinite sets are not in κ because they are not totally bounded and are thus not compact. Furthermore, we may notice

that

r(x,B) = inf{d0(x, b) : b ∈ B} = d0(x, y) =

 0, when x ∈ B.

1, when x /∈ B.

Therefore,

ρ(A,B) = sup{r(a,B) : a ∈ A} =

 0, when a ∈ B.

1, when a /∈ B.

So it follows that

h(A,B) =

 0, when A = B.

1, when A 6= B.

Therefore we have a metric space with the set κ of the discrete subsets of R with the Hausdorff metric as the discrete

metric. It is easy to verify that our newly created space is not totally bounded. However, we know all discrete metric spaces

are complete, so (κ, h) is complete. Therefore, the space (κ, h) of finite sets with the discrete metric is an example of our

Hausdorff induced metric space (κ, h).

To illustrate our notion of completeness, now briefly consider a sequence of nonempty compact sets that converges to the

unit circle in R2. This is an example a converging Cauchy sequence in the Hausdorff induced metric space that converges to

a set also in the space.

5. Proving that the Hausdorff Metric Space (κ, h) is Complete

As previously stated, to be a complete metric space, every Cauchy sequence in (κ, h) must converge to a point in κ. Therefore,

in order to prove that the metric space (κ, h) is complete, we will choose an arbitrary Cauchy sequence {An} in κ and show

that it converges to some A ∈ κ. Define A to be the set of all points x ∈ X such that there is a sequence {xn} that converges

to x and satisfies xn ∈ An for all n. We will eventually show that the set A is an appropriate candidate. However, we must

begin with some important theorems regarding A. Given a set A ∈ κ and a positive number ε, we define the set A + ε by

{x ∈ X : r(x,A) ≤ ε}. We need to show that this set is closed for all possible choices of A and ε. To do this, we will begin

by choosing an arbitrary limit point of the set, A+ ε, and then showing that it is contained in the set.

Proposition 5.1. A+ ε is closed for all possible choices of A ∈ κ and ε > 0.

However, the following theorem gives us an alternative way of proving convergence.

Theorem 5.2 ([3]). Suppose that A,B ∈ κ and that ε > 0. Then h(A,B) ≤ ε if and only if A ⊆ B + ε and B ⊆ A+ ε.
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Extension Lemma: Let {An} be a Cauchy sequence in κ and let {nk} be an increasing sequence of positive integers. If

{xnk} is a Cauchy sequence in X for which xnk ∈ Ank for all k, then there exists a Cauchy sequence {yn} in X such that

yn ∈ An for all n and ynk = xnk for all k.

The following lemma makes use of the extension lemma to guarantee that A is closed and nonempty. We will need this fact

in proving that A is in κ, since we must show that A is a nonempty, compact subset of κ. This lemma gives us that A is

closed and nonempty. Since closed and totally bounded sets are compact, it remains to show that A is totally bounded.

Lemma 5.3 ([5]). Let {An} be a sequence in κ and let A be the set of all points x ∈ X such that there is a sequence {xn}

that converges to x and satisfies xn ∈ An for all n. If {An} is a Cauchy sequence, then the set A is closed and nonempty.

With the previous lemma, to prove A ∈ κ, it only remains to show that A is totally bounded. The following lemma will

allow us to do so.

Lemma 5.4 ([5]). Let {Dn} be a sequence of totally bounded sets in X and let A be any subset of X. If for each ε > 0,

there exists a positive integer N such that A ⊆ DN + ε, then A is totally bounded.

It gives the foundation to prove complete metric space (X, d), we constructed the metric space (κ, h) from the nonempty

compact subsets of X using the Hausdorff metric. After examining important theorems and results, we can now state that

Theorem 5.5 ([3]). If (X, d) is complete, then (κ, h) is complete.

Proof. Let {An} be a Cauchy sequence in κ, and define A to be the set of all points x ∈ X such that there is a sequence

{xn} that converges to x and satisfies xn ∈ An for all n. We must prove that A ∈ κ and {An} converges to A.

By Lemma 5.3, the set A is closed and nonempty. Let ε > 0. Since {An} is Cauchy sequence then there exists a positive

integer N such that h(An, Am) < ε for all m,n ≥ N. Am ⊆ An + ε for all m > n ≥ N. Let a ∈ A, then we want to show

a ∈ An + ε. Fix n ≥ N, by definition of the set A, there exists a sequence {xi} such that xi ∈ Ai for all i and {xi} converges

to a. By Proposition 5.1 we know that An + ε is closed. Since xi ∈ An + ε for each i, then it follows that a ∈ An + ε. This

shows that A ⊆ An + ε. By lemma 5.4, the set A is totally bounded. Additionally, we know A is complete, since it is a closed

subset of a complete metric space. Since A is nonempty, complete and totally bounded, then A is compact and thus A ∈ κ.

Let ε > 0, to show that {An} converges to A ∈ κ, we need to show that there exists a positive integer N such that

h(An, A) < ε for all n ≥ N. To do this, we know that A ⊆ An + ε and An ⊆ A+ ε. From the first part of our proof, we know

there exists N such that A ⊆ An + ε for all n ≥ N .

To prove An ⊆ A+ε let ε > 0. Since {An} is a Cauchy sequence, we can choose a positive integer N such that h(Am, An) <
ε

2

for all m,n ≥ N. Since {An} is a Cauchy sequence in κ, there exists a strictly increasing sequence {ni} of positive integers

such that n1 > N and such that h(Am, An) < ε2−i−1 for all m,n > ni. We can use property (3) of Theorem 3.2 to get the

following:

Since An ⊆ An1 +
ε

2
, ∃ xn1 ∈ An1 3 d(y, xn1) ≤ ε

2
,

since An1 ⊆ An2 +
ε

4
, ∃ xn2 ∈ An2 3 d(xn1 , xn2) ≤ ε

4
,

since An2 ⊆ An3 +
ε

8
, ∃ xn3 ∈ An3 3 d(xn2 , xn3) ≤ ε

8
, · · · ,

by continuing this process we are able to obtain a sequence {xni} such that for all positive integers i then xni ∈ Ani and

d(xni , xni+1) ≤ ε2−i−1. By corollary 2.12, we find xni is a Cauchy sequence, so by the extension lemma the limit of the

sequence a is in A. Additionally we find that

d(y, xni) ≤ d(y, xn1) + d(xn1 , xn2) + d(xn2 , xn3) + · · ·+ d(xni−1 , xni) ≤
ε

2
+
ε

4
+
ε

8
+ · · ·+ ε

2i
< ε.
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Since d(y, xni) ≤ ε for all i, it follows that d(y, a) ≤ ε and therefore y ∈ A+ ε. Thus we know that there exists N such that

An ⊆ A+ ε, so it follows that h(An, A) < ε for all n ≥ N and thus {An} converges to A ∈ κ. Therefore, if (X, d) is complete,

then (κ, h) is complete.

6. Convex Hausdorff Metric Space as a Banach Space

Banach spaces are less special than Hilbert spaces but still sufficiently simple that their fundamental property can be

explained readily several standard results which are true in greater generality have simpler and more transparent proofs

in this setting. The Banach-Steinhaus uniform boundedness theorem and the Open Mapping Theorem are significantly

more substantial than the first result here, since they invoke the Baire Category Theorem. Then Hahn Banach Theorem is

non-trivial but does not use completeness.

Finally as made clear in work of Gelfand and Grothendieck and of many others, many subtler sorts of topological vector

spaces are expressible as limit of Banach space, making clear that Banach spaces play an even more central role than would

be apparent from many conventional elementary function analysis text. But, just to be on the safer side Banach introduced

the axioms for vector space X (these were known at the time, but were apparently not considered well-known) and assumes

that the spaces X carries a norm. Banach space named after great mathematician of twentieth century Banach and Banach

space theory is presented in a broad mathematical context, using tools from such areas as set theory, topology, algebra,

probability theory and logic. Equal emphasis is given to both spaces and operators. The standard notations of distance

between two Banach spaces is the Banach measure distance and is given by d(x, y) = ‖x− y‖.

In the year 1972, A.L. Brown has studied on the subspaces of Banach space[1]. Later N.J. Kalton and M.I. Ostorski worked

on distance between two Banach space in 1997[4]. Russ Gordon, worked for real analysis[5]. Katie Barich, worked on

Hausdorff distance[3]. Here, we considered the Hausdorff distance, for given normed linear space, Hausdorff metric space

gives the completeness property which gives Banach structure.

Since, Barich proved the completeness of Hausdorff metric space i.e., X is complete[3]. Consider ‖.‖ : X → R be a normed

function. In the first instance, let A and B be two nonempty sets in X. By definition, h(A,B) = max{ρ(A,B), ρ(B,A)}, but

ρ(A,B) = sup{r(x,B) : ∀x ∈ A}; where r(x,B) = inf{‖x− b‖ : ∀ b ∈ B} then, we have ‖x− b‖ ≥ 0. Hence, h(A,B) ≥ 0.

In the second instance, we have ρ(A,B) = sup{r(x,B) : ∀x ∈ A}; where r(x,B) = inf{‖x − b‖ : ∀ b ∈ B} then, we have

‖x − b‖ = 0 ⇒ x = b: x and b are the arbitrary elements then every element of A is element of B. ⇒ A ⊆ B. Similarly,

B ⊆ A. Then we have A = B.

Conversely, If A = B, ‖x− b‖ = 0 ∀x ∈ A & b ∈ B :

We have r(x,B) = inf{‖x−b‖ : ∀ b ∈ B} = 0 ⇒ ρ(A,B) = sup{r(x,B) : ∀x ∈ A} = 0; Then we have h(A,B) = 0. Hence

h(A,B) = 0 iff A = B. The third instance we have triangular inequality. By definition, h(A,B) = max{ρ(A,B), ρ(B,A)},

but ρ(A,B) = sup{r(x,B) : ∀x ∈ A}, where

r(x, b) = inf{‖x− b‖ : ∀x ∈ A, b ∈ B}

≤ inf{‖x− a+ a− b‖ : ∀ a ∈ C, b ∈ B}

≤ inf{‖x− a‖ : ∀x ∈ A, a ∈ C}+ inf {‖a− b‖ : ∀ a ∈ C, b ∈ B }

≤ r(x, a) + r(a, b)

⇒ ρ(A,B) ≤ ρ(A,C) + ρ(C,B)

Hence, h(A,B) ≤ h(A,C) + h(C,B).
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In the last instance, we get h(αA,αB) = |α| inf {‖x− b‖ : ∀ x ∈ A, b ∈ B} = |α|h(A,B). Hence we state that.

Theorem 6.1. Let X be convex Hausdorff metric space. If X is normed linear space then it is Banach.

7. Conclusion

Before proceeding, we would like to have a short digression. During the last several decades, there have been several distance

functions that have been proposed purporting to capture the collective/topological properties of systems of many degrees

of freedom. One motivation for the formulation of such distance functions, such as the Hausdorff distance is to determine

the topological properties(mainly Geometric structure) of systems with long-range interactions. From the Felix Hausdorff

viewpoint, this distance clearly gives the images/structures in this category. Assuming that such distance functions may

prove to be applicable to a path-integral formulation of aspects of semi-classical or even quantum gravity, the arguments

of the present work will still hold without any major modifications. The minor modification needed in case, such distance

functions are pertinent, is to use in Banach spaces whose structure has been determined. One could possibly use the Hausdorff

distance subject to appropriate structure of space-time, for such a purpose. A second minor, for our purposes, modification

may be to substitute some other measure in the place of the often used metric measure. Beyond these points, we expect the

above analysis (Theorem 6.1). Hausdorff distance, that defines a metric on the space of all nonempty, compact subsets of

the convex metric space. The main object of this paper is to measure greatest distance that we called as Hausdorff distance

between complete normed linear spaces i.e., Banach spaces. Only the construction of Banach space has been considered in

this paper, but this simple technique can also be tackled straightforwardly by other constructions like Hilbert space. This

task is left to the reader.
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