ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

On W_9 -Curvature Tensor of Generalized Sasakian-Space-Forms

Research Article

Shyam Kishor¹, Pushpendra Verma¹ and Puneet Kumar Gupt^{1*}

1 Department of Mathematics and Astronomy, University of Lucknow, Lucknow, Uttar Pradesh, India.

Abstract: The object of the present paper is to study generalized Sasakian-space-forms satisfying certain curvature conditions on

 W_9 – curvature tensor. In this paper, we study W_9 – semisymmetric, W_9 –flat, $\xi - W_9$ – flat, generalized Sasakian-space-

forms satisfying $I(\xi, X).S = 0$, $I(\xi, X).R = 0$, $I(\xi, X).P = 0$ and $I(\xi, X).\tilde{C} = 0$.

MSC: 53C25, 53D15.

 $\textbf{Keywords:} \ \ \text{Generalized Sasakian-space form}, \ W_9-\text{curvature tensor}, \ \text{Concircular curvature tensor}, \ \text{Ricci tensor}, \ \eta-\text{Einstein Manifold}, \ \text{Concircular curvature tensor}, \ \text{Concircular curvature tensor}, \ \text{Ricci tensor}, \ \eta-\text{Einstein Manifold}, \ \text{Concircular curvature tensor}, \ \text{Ricci tensor}, \ \eta-\text{Einstein Manifold}, \ \text{Concircular curvature tensor}, \ \text{Ricci tensor}, \ \eta-\text{Einstein Manifold}, \ \text{Concircular curvature tensor}, \ \text{Ricci tensor}, \ \eta-\text{Einstein Manifold}, \ \text{Concircular curvature tensor}, \ \text{Ricci tensor}, \ \eta-\text{Einstein Manifold}, \ \text{Concircular curvature tensor}, \ \text{Ricci tensor}, \ \eta-\text{Einstein Manifold}, \ \text{Concircular curvature tensor}, \ \text{Ricci tensor}, \ \eta-\text{Einstein Manifold}, \ \text{Concircular curvature tensor}, \ \text{Ricci tensor}, \ \eta-\text{Einstein Manifold}, \ \text{Einstein Manifold}, \ \text{Ricci tensor}, \ \eta-\text{Einstein Manifold}, \ \text{Einstein Manifold},$

© JS Publication.

1. Introduction

P. Alegre, D. Blair and A. Carriazo [9] introduced and studied generalized Sasakian-space-forms. In 2011, M.M. Tripathi and P. Gupta [7] introduced and studied τ – curvature tensor in semi-Riemannian manifolds. They studied some properties of τ – curvature tensor. They defined W_9 – curvature tensor of type (0,4) for (2n+1) –dimensional Riemannian manifold, as

$$W_9(X, Y, Z, U) = R(X, Y, Z, U) - \frac{1}{2n} \{ S(X, Y)g(Z, U) - g(Y, Z)S(X, U) \}$$
(1)

where R and S denote the Riemannian curvature tensor of type (0,4) defined by ${}^{\iota}R(X,Y,Z,U) = g(R(X,Y)Z,U)$ and the Ricci tensor of type (0,2) respectively. The curvature tensor defined by (1) is known as W_9- curvature tensor. A manifold whose W_9- curvature tensor vanishes at every point of the manifold is called W_9- flat manifold. They also define τ -conservative semi-Riemannian manifolds and give necessary and sufficient condition for semi-Riemannian manifolds to be τ - conservative. Given an almost contact metric manifold $M(\phi, \xi, \eta, g)$, we say that M is generalized Sasakian-space-form if there exist three functions f_1, f_2, f_3 on M such that the curvature tensor R is given by

$$R(X,Y)Z = f_1\{g(Y,Z)X - g(X,Z)Y\} + f_2\{g(X,\Phi Z)\Phi Y - g(Y,\Phi Z)\Phi X + 2g(X,\Phi Y)\Phi Z\}$$
$$+ f_3\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi\}$$
(2)

for any vector fields X, Y, Z on M. In such a case we denote the manifold as $M(f_1, f_2, f_3)$. In [8] the authors cited several examples of generalized Sasakian-space-forms. Alegre et al. [10] have given results on B.Y. Chen's inequality on submanifolds

^{*} E-mail: puneetmathslu@gmail.com

of generalized complex space-forms and generalized Sasakian-space-forms. Al. Ghefari et al. analyse the CR submanifolds of generalized Sasakian-space-forms [11, 12]. Sreenivasa. G.T. Venkatesha and Bagewadi C.S. [13] have studied some results on $(LCS)_{2n+1}$ —Manifolds. S. K. Yadav, P.K. Dwivedi and D. Suthar [14] studied $(LCS)_{2n+1}$ — Manifolds satisfying certain conditions on the concircular curvature tensor. De and Sarakar [15] have studied generalized Sasakian-space-forms regarding projective curvature tensor. Motivated by the above studies, in the present paper, we study flatness and symmetry property of generalized Sasakian-space-forms regarding W_9 -curvature tensor. The present paper is organized as follows:

In this paper, we study the W_9 -curvature tensor of generalized Sasakian-space-forms with certain conditions. In section 2, some preliminary results are recalled. In section 3, we study W_9 - semisymmetric generalized Sasakian-space-forms. Section 4 deals with $\xi - W_9$ flat generalized Sasakian-space-forms. Generalized Sasakian-space-forms satisfying I.S = 0 are studied in section 5. In section 6, W_9 - flat generalized Sasakian-space-forms are studied. Section 7 is devoted to study of generalized Sasakian-space-forms satisfying I.R = 0. In section 8, generalized Sasakian-space-forms satisfying I.P = 0. The last section contains generalized Sasakian-space-forms satisfying $I.\tilde{C} = 0$.

2. Preliminaries

An odd – dimensional differentiable manifold M^{2n+1} of differentiability class C^{r+1} , there exists a vector valued real linear function Φ , a 1-form η , associated vector field ξ and the Riemannian metric g satisfying

$$\Phi^{2}(X) = -X + \eta(X)\xi, \Phi(\xi) = 0$$
(3)

$$\eta(\xi) = 1, g(X, \xi) = \eta(X), \eta(\Phi X) = 0$$
(4)

$$g(\Phi X, \Phi Y) = g(X, Y) - \eta(X)\eta(Y) \tag{5}$$

for arbitary vector fields X and Y, then (M^{2n+1}, g) is said to be an almost contact metric manifod [4], and the structure (Φ, ξ, η, g) is called an almost contact metric structure to M^{2n+1} . In view of (3), (4) and (5), we have

$$g(\Phi X, Y) = -g(X, \Phi Y), g(\Phi X, X) = 0 \tag{6}$$

$$\nabla_X \eta(Y) = g(\nabla_X \xi, Y) \tag{7}$$

Again we know [9] that in a (2n+1) – dimensional generalized Sasakian-space-form, we have

$$R(X,Y)Z = f_1\{g(Y,Z)X - g(X,Z)Y\} + f_2\{g(X,\Phi Z)\Phi Y - g(Y,\Phi Z)\Phi X + 2g(X,\Phi Y)\Phi Z\}$$
$$+ f_3\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi\}$$
(8)

for any vector field X, Y, Z on M^{2n+1} , where R denotes the curvature tensor of M^{2n+1} and f_1, f_2, f_3 are smooth functions on the manifold. The Ricci tensor S and the scalar curvature r of the manifold of dimension (2n+1) are respectively, given by

$$S(X,Y) = (2nf_1 + 3f_2 - f_3)g(X,Y) - (3f_2 + (2n-1)f_3)\eta(X)\eta(Y)$$
(9)

$$QX = (2nf_1 + 3f_2 - f_3)X - (3f_2 + (2n - 1)f_3)\eta(X)\xi$$
(10)

$$r = 2n(2n+1)f_1 + 6nf_2 - 4nf_3 (11)$$

Also for a generalized Sasakian-space-forms, we have

$$R(X,Y)\xi = (f_1 - f_3)\{\eta(Y)X - \eta(X)Y\}$$
(12)

$$R(\xi, X)Y = -R(X, \xi)Y = (f_1 - f_3)\{g(X, Y)\xi - \eta(Y)X\}$$
(13)

$$\eta(R(X,Y)Z) = (f_1 - f_3)\{g(Y,Z)\eta(X) - g(X,Z)\eta(Y)\}$$
(14)

$$S(X,\xi) = 2n(f_1 - f_3)\eta(X)$$
(15)

$$Q\xi = 2n(f_1 - f_3)\xi\tag{16}$$

where Q is the Ricci Operator, i.e.

$$g(QX,Y) = S(X,Y) \tag{17}$$

For a (2n+1) – dimensional (n>1) Almost Contact Metric, the W_9 – curvature tensor I is given by

$$I(X,Y)Z = R(X,Y)Z - \frac{1}{2n} \{ S(X,Y)Z - g(Y,Z)QX \}$$
 (18)

The W_9- curvature tensor I in a generalized Sasakian-space-form satisfies

$$I(X,Y)\xi = (f_1 - f_3)(\eta(Y)X - \eta(X)Y) - \frac{1}{2n}\{(2nf_1 + 3f_2 - f_3)(g(X,Y)\xi - \eta(Y)X)\}$$
(19)

$$I(\xi, Y)\xi = (f_1 - f_3)\{\eta(Y)\xi - Y\}$$

$$I(X,\xi)\xi = \frac{1}{2n}(4nf_1 + 3f_2 - (2n+1)f_3)(X - \eta(X)\xi)$$
(20)

$$I(\xi, X)Y = (f_1 - f_3)\{2g(X, Y)\xi - \eta(X)Y - \eta(Y)X\}$$
(21)

$$I(\xi, X)\xi = (f_1 - f_3)\{\eta(X)\xi - X\}$$

Given an (2n+1)- dimensional Riemannian manifold (M,g), the Concircular curvature tensor \widetilde{C} is given by

$$\widetilde{C}(X,Y)Z = R(X,Y)Z - \frac{r}{2n(2n+1)} \{ g(Y,Z)X - g(X,Z)Y \}$$
(22)

$$\widetilde{C}(\xi, X)Y = [f_1 - f_3 - \frac{r}{2n(2n+1)}]\{g(X, Y)\xi - \eta(Y)X\}$$
(23)

and

$$\eta(\widetilde{C}(X,Y)Z) = \left[f_1 - f_3 - \frac{r}{2n(2n+1)}\right] \left\{g(Y,Z)\eta(X) - g(X,Z)\eta(Y)\right\} \tag{24}$$

and Projective curvature tensor is given by

$$P(X,Y)Z = R(X,Y)Z - \frac{1}{2n}[S(Y,Z)X - S(X,Z)Y]$$
(25)

and related term

$$\eta(P(X,Y)\xi) = 0 \tag{26}$$

$$\eta(P(X,\xi)Z) = \frac{1}{2n}S(X,Z) - (f_1 - f_3)g(X,Z)$$
(27)

$$\eta(P(\xi, Y)Z) = (f_1 - f_3)g(Y, Z) - \frac{1}{2n}S(Y, Z)$$
(28)

for any vector field X, Y, Z on M.

3. W_9 – Semisymmetric Generalized Sasakian-Space-Forms

Definition 3.1. A (2n+1)- dimensional (n > 1) generalized Sasakian-space-form is said to be W_9 - semisymmetric if it satisfies R.I = 0, where R is the Riemannian curvature tensor and I is the W_9 - curvature tensor of the space forms.

Theorem 3.2. A (2n+1)- dimensional (n > 1) generalized Sasakian-space-form is W_9- semisymmetric if and only if $f_1 = f_3$.

Proof. Let us suppose that the generalized Sasakian-space-form $M(f_1, f_2, f_3)$ is W_9 – semisymmetric, then we have

$$R(\xi, U)I(X, Y)\xi = 0 \tag{29}$$

The above equation can be written as

$$R(\xi, U)I(X, Y)\xi - I(R(\xi, U)X, Y)\xi - I(X, R(\xi, U)Y)\xi - I(X, Y)R(\xi, U)\xi = 0$$

$$\tag{30}$$

In view of (4), (12) and (13) the above equation reduces to

$$(f_1 - f_3)\{g(U, I(X, Y)\xi)\xi - \eta(I(X, Y)\xi)U - g(X, U)I(\xi, Y)\xi + \eta(X)I(U, Y)\xi - g(U, Y)I(X, \xi)\xi + I(X, U)\eta(Y)\xi - I(X, Y)\eta(U)\xi + I(X, Y)U\} = 0$$
(31)

In view of (18), (19) and (20) and taking the inner product of above equation with ξ , we get

$$(f_1 - f_3)\{g(U, I(X, Y)\xi) - \frac{1}{2n}(2nf_1 + 3f_2 - f_3)(-g(X, Y)\eta(U) + g(U, Y)\eta(X) + g(X, U)\eta(Y) - g(X, Y)\eta(U) + \eta(I(X, Y)U)\} = 0$$
(32)

On solving above equation, we get

$$\frac{1}{2n}(f_1 - f_3)\{(3f_2 + (2n-1)f_3)(g(Y,U)\eta(X) - \eta(X)\eta(Y)\eta(U))\} = 0$$
(33)

From the above equation, we have either $f_1 = f_3$ or

$$g(Y,U)\eta(X) - \eta(X)\eta(Y)\eta(U) = 0 \tag{34}$$

which is not possible in generalized Sasakian-space-form. Conversely, if $f_1 = f_3$, then from (13), $R(\xi, U) = 0$. Then obviously R.I = 0 is satisfied. This completes the proof.

4. $\xi - W_9$ Flat Generalized Sasakian-Space-Forms

Definition 4.1. A (2n+1)- dimensional (n > 1) generalized Sasakian-space-form is said to be W_9 - flat [5] if $I(X,Y)\xi = 0$ for all $X,Y \in TM$.

Theorem 4.2. A (2n+1)- dimensional (n > 1) generalized Sasakian-space-form is $\xi - W_9-$ flat if and only if it is $\eta-$ Einstein Manifold.

Proof. Let us consider that a generalized Sasakian-space-form is $\xi - W_9 - \text{flat}$, i.e. $I(X,Y)\xi = 0$. Then in view of (18), we have

$$R(X,Y)\xi = \frac{1}{2n} \{ S(X,Y)\xi - g(Y,\xi)QX \}$$
 (35)

$$R(X,Y)\xi = \frac{1}{2n} \{ S(X,Y)\xi - \eta(Y)QX \}$$
 (36)

By using (12) and (14) above equation becomes

$$\eta(Y)QX = (2nf_1 + 3f_2 - f_3)g(X,Y)\xi - (3f_2 + (2n-1)f_3)\eta(X)\eta(Y)\xi - 2n(f_1 - f_3)(\eta(Y)X - \eta(X)Y)$$
(37)

Putting $Y = \xi$ in above equation, we get

$$QX = 2n(f_1 - f_3)(2\eta(X)\xi - X)$$
(38)

Now, taking the inner product of the above equation with U, we get

$$S(X,U) = 2n(f_1 - f_3)\{g(X,U) - 2\eta(X)\eta(U)\}$$
(39)

which shows that generalised Sasakian-space-form is an η -Einstein Manifold. Conversely, suppose that (39) is satisfied. Then by virtue of (35) and (38), we get $I(X,Y)\xi=0$.

5. Generalized Sasakian-Space-Form Satisfying I.S = 0

Theorem 5.1. A (2n+1)-dimension (n > 1) generalised Sasakian-space-form satisfying I.S = 0 is an η -Einstein Manifold.

Proof. Let us consider generalised Sasakian-space-form M^{2n+1} satisfying $I(\xi, X).S = 0$. In this case, we can write $S(I(\xi, X)Y, Z) + S(Y, I(\xi, X)Z) = 0$ for any vector fields X, Y, Z on M. Substituting (21) in above equation, we obtain

$$2g(X,Y)S(\xi,Z) - \eta(X)S(Y,Z) - \eta(Y)S(X,Z) + 2S(Y,\xi)g(X,Z) - \eta(X)S(Y,Z) - \eta(Z)S(Y,X) = 0$$
(40)

For $Z = \xi$, the last equation is equivalent to

$$2.2n(f_1 - f_3)g(X,Y) - 2n(f_1 - f_3)\eta(X)\eta(Y) - S(Y,X) = 0$$
(41)

which implies that,

$$S(X,Y) = 2n(f_1 - f_3)\{2g(X,Y) - \eta(X)\eta(Y)\}\tag{42}$$

This proves our assertion. \Box

6. W_9 - flat Generalized Sasakian-space-forms

Theorem 6.1. A (2n+1) – dimensional (n > 1) generalized Sasakian-space-form is W_9 – flat if and only if $f_1 = \frac{3f_2}{(1-2n)} = f_3$.

Proof. For a (2n+1) – dimensional (n>1) W_9 – flat generalized Sasakian-space-forms, we have from (18)

$$R(X,Y)Z = \frac{1}{2n} \{ S(X,Y)Z - g(Y,Z)QX \}$$
 (43)

In view of (9) and (10), the above equation takes the form

$$R(X,Y)Z = \frac{1}{2n} \{ (2nf_1 + 3f_2 - f_3)(g(X,Y)Z - g(Y,Z)X) - (3f_2 + (2n-1)f_3)(\eta(X)\eta(Y)Z + g(Y,Z)\eta(X)\xi) \}$$
(44)

By virtue of (8) the above equation reduces to

$$f_{1}\{g(Y,Z)X - g(X,Z)Y\} + f_{2}\{g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X + 2g(X,\phi Y)\phi Z\}$$

$$+ f_{3}\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi\}$$

$$= \frac{1}{2n}\{(2nf_{1} + 3f_{2} - f_{3})(g(X,Y)Z - g(Y,Z)X) - (3f_{2} + (2n-1)f_{3})(\eta(X)\eta(Y)Z + g(Y,Z)\eta(X)\xi)\}$$
(45)

Now, replacing Z by ϕZ in the above equation, we obtain

$$f_1\{g(Y,\phi Z)X - g(X,\phi Z)Y\} + f_2\{g(X,\phi^2 Z)\phi Y - g(Y,\phi^2 Z)\phi X + 2g(X,\phi Y)\phi^2 Z\} + f_3\{g(X,\phi Z)\eta(Y)\xi - g(Y,\phi Z)\eta(X)\xi\}$$

$$= \frac{1}{2n}\{(2nf_1 + 3f_2 - f_3)(g(X,Y)\phi Z - g(Y,\phi Z)X) - (3f_2 + (2n-1)f_3)(\eta(X)\eta(Y)\phi Z + g(Y,\phi Z)\eta(X)\xi)\}$$
(46)

Taking inner product of above equation with ξ , we get

$$f_1\{g(Y,\phi Z)\eta(X) - g(X,\phi Z)\eta(Y)\} + f_3\{g(X,\phi Z)\eta(Y) - g(Y,\phi Z)\eta(X)\}$$

$$= \frac{1}{2n}\{(2nf_1 + 3f_2 - f_3)(-g(Y,\phi Z)\eta(X)) - (3f_2 + (2n-1)f_3)g(Y,\phi Z)\eta(X)\}$$
(47)

Putting $X = \xi$ in above equation, we get

$$(4nf_1 + 6f_2 - 2f_3)q(Y, \phi Z) = 0 (48)$$

Since $g(Y, \phi Z) \neq 0$ in general, we obtain

$$4nf_1 + 6f_2 - 2f_3 = 0 (49)$$

Again replacing X by ϕX in equation (45), we get

$$f_1\{g(Y,Z)\phi X - g(\phi X,Z)Y\} + f_2\{g(\phi X,\phi Z)\phi Y - g(Y,\phi Z)\phi^2 X + 2g(\phi X,\phi Y)\phi Z\} + f_3\{-\eta(Y)\eta(Z)\phi X + g(\phi X,Z)\eta(Y)\xi\}$$

$$= \frac{1}{2n}\{(2nf_1 + 3f_2 - f_3)(g(\phi X,Y)Z - g(Y,Z)\phi X)\}$$
(50)

Taking inner product with ξ

$$f_1\{-g(\phi X, Z)\eta(Y)\} + f_3g(\phi X, Z)\eta(Y) = \frac{1}{2n}(2nf_1 + 3f_2 - f_3)g(\phi X, Y)\eta(Z)$$
(51)

putting $Y = \xi$, we get

$$(f_1 - f_3)g(\Phi X, Z) = 0 (52)$$

Since $g(\phi X, Z) \neq 0$ in general, we obtain

$$f_3 = f_1 \tag{53}$$

From equation (49) and (53), we get

$$f_1 = \frac{3f_2}{1 - 2n} = f_3 \tag{54}$$

Conversely, suppose that $f_1 = \frac{3f_2}{1-2n} = f_3$ satisfies in generalized Sasakian-space-form and then we have

$$S(X,Y) = 0, (55)$$

$$QX = 0 (56)$$

Also, in view of (18), we have

$$I(X,Y,Z,U) = {}^{\iota}R(X,Y,Z,U) \tag{57}$$

where I(X, Y, Z, U) = g(X, Y, Z, U) and R(X, Y, Z, U) = g(X, Y, Z, U). Putting $Y = Z = e_i$ in above equation and taking summation over $i, 1 \le i \le 2n + 1$, we get

$$\sum_{i=1}^{2n+1} I(X, e_i, e_i, U) = \sum_{i=1}^{2n+1} {}^{\iota}R(X, e_i, e_i, U) = S(X, U)$$
(58)

In view of (8) and (58), we have

$$I(X,Y,Z,U) = f_1\{g(Y,Z)g(X,U) - g(X,Z)g(Y,U)\} + f_2\{g(X,\phi Z)g(\phi Y,U) - g(Y,\phi Z)g(\phi X,U) + 2g(X,\phi Y)g(\phi Z,U)\}$$

$$+ f_3\{\eta(X)\eta(Z)g(Y,U) - \eta(Y)\eta(Z)g(X,U) + g(X,Z)\eta(Y)\eta(U) - g(Y,Z)\eta(X)\eta(U)\}$$
(59)

Now, putting $Y = Z = e_i$ in above equation and taking summation over $i, 1 \le i \le 2n + 1$, we get

$$\sum_{i=1}^{2n+1} I(X, e_i, e_i, U) = 2n f_1 g(X, U) + 3f_2 g(\phi X, \phi U) - f_3 \{ (2n+1)\eta(X)\eta(U) + g(X, U) \}$$
(60)

In view of (55), (56) and (58), we have

$$2nf_1g(X,U) + 3f_2g(\phi X,\phi U) - f_3\{(2n+1)\eta(X)\eta(U) + g(X,U)\} = 0$$
(61)

Putting $X = U = e_i$ in above equation and taking summation over $i, 1 \le i \le 2n + 1$, we get $f_1 = 0$. Then in view of (54), $f_2 = f_3 = 0$. Therefore, we obtain from (8)

$$R(X,Y)Z = 0 (62)$$

Hence in view of (55), (56) and (62), we have I(X,Y)Z=0. This completes the proof.

7. Generalized Sasakian-space-forms Satisfying I.R = 0

Theorem 7.1. A generalized Sasakian-space-form $M^{2n+1}(f_1, f_2, f_3)$ satisfies the condition $I(\xi, X).R = 0$ if and only if the functions f_1 and f_3 has the sectional curvature $(f_1 - f_3)$.

Proof. Let generalized Sasakian-space-form satisfying

$$I(\xi, X)R(Y, Z)U = 0 \tag{63}$$

This can be written as

$$I(\xi, X)R(Y, Z)U - R(I(\xi, X)Y, Z)U - R(Y, I(\xi, X)Z)U - R(Y, Z)I(\xi, X)U = 0$$
(64)

for any vector fields X, Y, Z, U on M. In view of (21), we obtain

$$I(\xi, X)R(Y, Z)U = (f_1 - f_3)\{2g(X, R(Y, Z)U)\xi - \eta(X)R(Y, Z)U - \eta(R(Y, Z)U)X\}$$
(65)

On the other hand, by direct calculations, we have

$$R(I(\xi, X)Y, Z)U = (f_1 - f_3)\{2g(X, Y)R(\xi, Z)U - \eta(X)R(Y, Z)U - \eta(Y)R(X, Z)U\}$$
(66)

$$R(Y, I(\xi, X)Z)U = (f_1 - f_3)\{2g(X, Z)R(Y, \xi)U - \eta(X)R(Y, Z)U - \eta(Z)R(Y, X)U\}$$
(67)

$$R(Y,Z)I(\xi,X)U = (f_1 - f_3)\{2g(X,U)R(Y,Z)\xi - \eta(X)R(Y,Z)U - \eta(U)R(Y,Z)X\}$$
(68)

Substituting (64), (65), (66) and (67) in (63), we get

$$(f_1 - f_3)\{2g(X, R(Y, Z)U)\xi - \eta(X)R(Y, Z)U - \eta(R(Y, Z)U)X - 2g(X, Y)R(\xi, Z)U + \eta(X)R(Y, Z)U + \eta(Y)R(X, Z)U - 2g(X, Z)R(Y, \xi)U + \eta(X)R(Y, Z)U + \eta(Z)R(Y, X)U - 2g(X, U)R(Y, Z)\xi + \eta(X)R(Y, Z)U + \eta(U)R(Y, Z)X = 0$$
 (69)

Taking inner product with ξ , above equation implies that

$$(f_1 - f_3)\{2g(X, R(Y, Z)U) - \eta(X)\eta(R(Y, Z)U) - 2g(X, Y)\eta(R(\xi, Z)U) + \eta(Y)\eta(R(X, Z)U) - 2g(X, Z)\eta(R(Y, \xi)U) + 2\eta(X)\eta(R(Y, Z)U) + \eta(Z)\eta(R(Y, X)U) - 2g(X, U)\eta(R(Y, Z)\xi) + \eta(U)\eta(R(Y, Z)X) = 0$$

$$(70)$$

In consequence of (8), (12), (13) and (14) the above equation takes the form

$$2g(X, R(Y, Z)U - 2(f_1 - f_3)(g(X, Y)g(Z, U) - g(X, Z)g(Y, U)) + (f_1 - f_3)(g(X, Y)\eta(Z)\eta(U) - g(X, Z)\eta(Y)\eta(U)) = 0$$

On solving, we get $2g(X, R(Y, Z)U) - (f_1 - f_3)(g(X, Y)g(Z, U) - g(X, Z)g(Y, U) = 0$, which say us $M^{2n+1}(f_1, f_2, f_3)$ has the sectional curvature $(f_1 - f_3)$.

8. Generalized Sasakian-space-forms satisfying I.P = 0

Theorem 8.1. A generalized Sasakian-space-form $M^{2n+1}(f_1, f_2, f_3)$ satisfies the condition $I(\xi, X).P = 0$ if and only if $M^{2n+1}(f_1, f_2, f_3)$ has the sectional curvature of the form $(f_1 - f_3)$.

Proof. The condition $I(\xi, X)P = 0$ implies that

$$(I(\xi, X)P)(Y, Z, U) = I(\xi, X)P(Y, Z)U - P(I(\xi, X)Y, Z)U - P(Y, I(\xi, X)Z)U - P(Y, Z)I(\xi, X)U = 0$$
(71)

for any vector fields X, Y, Z on M. In view of (10), we obtain from (27)

$$\eta(P(X,Y)Z) = 0 \tag{72}$$

Since,

$$I(\xi, X)P(Y, Z)U = (f_1 - f_3)\{2g(X, P(Y, Z)U)\xi - \eta(X)P(Y, Z)U\}$$
(73)

$$P(I(\xi, X)Y, Z)U = (f_1 - f_3)\{2g(X, Y)P(\xi, Z)U - \eta(X)P(Y, Z)U\} - \eta(Y)P(X, Z)U\}$$
(74)

$$P(Y, I(\xi, X)Z)U = (f_1 - f_3)\{2g(X, Z)P(Y, \xi)U - \eta(X)P(Y, Z)U - \eta(Z)P(Y, X)U\}$$
(75)

Finally, we conclude that

$$P(Y,Z)I(\xi,X)U = (f_1 - f_3)\{2g(X,U)P(Y,Z)\xi - \eta(X)P(Y,Z)U - \eta(U)P(Y,Z)X\}$$
(76)

So, substituting (73), (74), (75) and (76) in (63), we deduce that

$$(f_1 - f_3)\{2g(X, P(Y, Z)U)\xi - \eta(X)P(Y, Z)U - 2g(X, Y)P(\xi, Z)U + \eta(X)P(Y, Z)U) + \eta(Y)P(X, Z)U - 2g(X, Z)P(Y, \xi)U + \eta(X)P(Y, Z)U + \eta(Z)P(Y, X)U - 2g(X, U)P(Y, Z)\xi + \eta(X)P(Y, Z)U + \eta(U)P(Y, Z)X\} = 0$$

$$(77)$$

Taking inner product with ξ , we get

$$(f_1 - f_3)\{g(X, R(Y, Z)U) - (f_1 - f_3)(g(X, Y)g(Z, U) - g(X, Z)g(Y, U))\} = 0$$

which say us $M^{2n+1}(f_1, f_2, f_3)$ has the sectional curvature $(f_1 - f_3)$.

9. Generalized Sasakian-space-forms Satisfying $I.\widetilde{C} = 0$

Theorem 9.1. A generalized Sasakian-space-forms $M^{2n+1}(f_1, f_2, f_3)$ satisfies the condition $I(\xi, X).\widetilde{C} = 0$ if and only if either the scalar curvature τ of $M^{2n+1}(f_1, f_2, f_3)$ is $\tau = 8n(2n+1)(f_1 - f_3)$ or a real space form with the sectional curvature $(f_1 - f_3)$.

Proof. The condition $I(\xi, X).\widetilde{C} = 0$ implies that

$$(I(\xi, X)\widetilde{C})(Y, Z, U) = I(\xi, X)\widetilde{C}(Y, Z)U - \widetilde{C}(I(\xi, X)Y, Z)U - \widetilde{C}(Y, I(\xi, X)Z)U - \widetilde{C}(Y, Z)I(\xi, X)U = 0$$

$$(78)$$

for any vector fields X, Y, Z and U on M. From (22) and (23), we can easily to see that

$$I(\xi, X)\widetilde{C}(Y, Z)U = (f_1 - f_3)\{2g(X, \widetilde{C}(Y, Z)U)\xi - \eta(X)\widetilde{C}(Y, Z)U - \eta(\widetilde{C}(Y, Z)U)X\}$$

$$(79)$$

$$\widetilde{C}(I(\xi, X)Y, Z)U = (f_1 - f_3)\{2g(X, Y)\widetilde{C}(\xi, Z)U - \eta(X)\widetilde{C}(Y, Z)U - \eta(Y)\widetilde{C}(X, Z)U\}$$
(80)

$$\widetilde{C}(Y, I(\xi, X)Z)U = (f_1 - f_3)\{2g(X, Z)\widetilde{C}(Y, \xi)U - \eta(X)\widetilde{C}(Y, Z)U - \eta(Z)\widetilde{C}(Y, X)U\}$$
(81)

and

$$\widetilde{C}(Y,Z)I(\xi,X)U = (f_1 - f_3)\{2g(X,U)\widetilde{C}(Y,Z)\xi - \eta(X)\widetilde{C}(Y,Z)U - \eta(U)\widetilde{C}(Y,Z)X\}$$
(82)

Thus, substituting (79), (80), (81) and (82) in (78) and after from necessary abbreviations, (78) takes from

$$(f_1 - f_3)\{2g(X, \widetilde{C}(Y, Z)U)\xi - \eta(X)\widetilde{C}(Y, Z)U - \eta(\widetilde{C}(Y, Z)U)X - 2g(X, Y)\widetilde{C}(\xi, Z)U + \eta(X)\widetilde{C}(Y, Z)U + \eta(Y)\widetilde{C}(X, Z)U - 2g(X, Z)\widetilde{C}(Y, \xi)U + \eta(X)\widetilde{C}(Y, Z)U + \eta(Z)\widetilde{C}(Y, X)U - 2g(X, U)\widetilde{C}(Y, Z)\xi + \eta(X)\widetilde{C}(Y, Z)U + \eta(U)\widetilde{C}(Y, Z)X\} = 0$$
(83)

Taking inner product with ξ and solving

$$(f_1 - f_3)\{2g(X, R(Y, Z)U) + (f_1 - f_3)(g(Z, U)g(X, Y) - g(Y, U)g(X, Z)) + \left(f_1 - f_3 - \frac{\tau}{2n(2n+1)}\right)(2g(Z, U)\eta(X)\eta(Y) - 2g(Y, U)\eta(X)\eta(Z) + g(X, Y)\eta(Z)\eta(U) - g(X, Z)\eta(Y)\eta(U))\} = 0$$
(84)

Now putting $U = \xi$ in the above equation, we get

$$(f_1 - f_3)(4(f_1 - f_3) - \frac{\tau}{2n(2n+1)})\{g(X,Y)\eta(Z) - g(X,Z)\eta(Y)\} = 0$$

Above equation tells us that $M^{2n+1}(f_1, f_2, f_3)$ has the scalar curvature $\tau = 8n(2n+1)(f_1 - f_3)$.

Conversely, if $M^{2n+1}(f_1, f_2, f_3)$ is either real space form with sectional curvature $(f_1 - f_3)$ or it has the scalar curvature $\tau = 8n(2n+1)(f_1 - f_3)$. This completes the proof.

References

- [1] A.Sarkar and U.C.De, Some curvature properties of generalized Sasakian-space-forms, Lobachevskii Journal of Mathematics, 33(1)(2012), 22-27.
- [2] C.Özgür and M.M.Tripathi, On P-Sasakian manifolds satisfying certain conditions on concircular curvature tensor, Turk. J. Math., 31(2007), 171-179.
- [3] C.Özgür, Hypersurfaces satisfying some curvature conditions in the semi-Euclidean space, Chaos Solutions and Fractals, 39(5)(2009), 2457-2464.
- [4] D.E.Blair, Contact Manifolds in a Riemannian Geometry, vol. 509 of Lecture Notes in Mathematics, Springer, Berlin, Germany, (1976), 1-16.
- [5] G.Zhen, J.L.Cabrerizo, L.M.Fernandez and M.Frenandez, On ξ conformally flat contact metric manifolds, Indian Journal of Pure and Applied Mathematics, 28(6)(1997), 725-734.
- [6] J.L.Cabrerizo, L.M.Fernandez and M.Frenandez and Z.Guo, The structure of a class of K-contact manifolds, Acta Mathematica Hungarica, 82(4)(1999), 331-340.
- [7] M.M.Tripathi and P.Gupta, τ curvature tensor on a semi-reimannian manifold, J. Adv. Math. Studies, 4(1)(2011), 117-129.
- [8] P.Alegre and A.Cariazo, Structures on generalized Sasakian-space-forms, Differential Geom. and its application, 26(2008), 656-666.
- [9] P.Alegre, D.E.Blair and A.Carriazo, Generalized Sasakian-space-forms, Israel Journal of Mathematics, 141(2004), 157-183.
- [10] P.Alegre and A.Cariazo, Y.H.Kim and D.W.Yoon, B.Y. Chen's inequality for submanifolds of generalized space forms, Indian Journal of Pure and Applied Mathematics, 38(3)(2007), 185-201.
- [11] R.Al-Ghefari, F.R.Al-Solamy and M.H.Shahid, CR- submanifolds of generalized Sasakian-space-forms, JP Journal of Geometry and Topology, 6(2)(2006), 151-166.
- [12] R.Al-Ghefari, F.R.Al-Solamy and M.H.Shahid, Contact CR-warped product submanifolds in genralized Sasakian-spaceforms, Balkan Journal of Geometry and its Applications, 11(2)(2006), 1-10.
- [13] Sreenivasa, G.T. Venkatesha and C.S. Bagewadi, Some results on $(LCS)_{2n+1}$ —Manifolds, Bulletin of Mathematical Analysis and Applications, 1(3)(2009), 64-70.
- [14] S.K.Yadav, P.K.Dwivedi and D.Suthar, On $(LCS)_{2n+1}$ Manifolds satisfying certain conditions on the concircular curvature tensor, Thai Journal of Mathematics, 9(3)(2011), 697-603.
- [15] U.C.De and A.Sarkar, On the projective curvature tensor of generalized Sasakian-space-forms, Quaestiones Mathematicae, 33(2)(2010), 245-252.
- [16] Z.Guo, Conformally symmetric K- contact manifolds, Chinese Quarterly Journal of Mathematics, 7(1)(1992), 5-10.