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1. Introduction

P. Alegre, D. Blair and A. Carriazo [9] introduced and studied generalized Sasakian-space-forms. In 2011, M.M. Tripathi
and P. Gupta [7] introduced and studied 7— curvature tensor in semi -Riemannian manifolds. They studied some properties
of 7— curvature tensor. They defined Wy— curvature tensor of type (0,4) for (2n + 1)—dimensional Riemannian manifold,

as

Wo(X,Y,Z,U)=R(X,Y,Z,U) — i{S(X, Y)g(Z,U) —g(Y,Z)S(X,U)} (1)

where R and S denote the Riemannian curvature tensor of type (0,4) defined by ‘R(X,Y,Z,U) = g(R(X,Y)Z,U) and
the Ricci tensor of type (0,2) respectively. The curvature tensor defined by (1) is known as Wy— curvature tensor. A
manifold whose Wy— curvature tensor vanishes at every point of the manifold is called Wo— flat manifold. They also define
T—conservative semi-Riemannian manifolds and give necessary and sufficient condition for semi-Riemannian manifolds to be
7— conservative. Given an almost contact metric manifold M (¢, &, 7, g), we say that M is generalized Sasakian-space-form

if there exist three functions fi, f2, f3 on M such that the curvature tensor R is given by

R(X,Y)Z = fi{g(Y, Z2)X — g(X, 2)Y} + f2{g(X, 2Z)®Y — g(Y,PZ)PX + 29(X, Y )P Z}

+ f3{n(X)n(2)Y —n(Y)n(Z2)X + g(X, Z)n(Y)E — g(Y, Z)n(X)¢} (2)

for any vector fields X, Y, Z on M. In such a case we denote the manifold as M(f1, f2, f3). In [8] the authors cited several

examples of generalized Sasakian-space-forms. Alegre et al. [10] have given results on B.Y. Chen’s inequality on submanifolds
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of generalized complex space-forms and generalized Sasakian-space-forms. Al. Ghefari et al. analyse the CR submanifolds
of generalized Sasakian-space-forms [11,12]. Sreenivasa. G.T. Venkatesha and Bagewadi C.S. [13] have studied some results
on (LCS)2n+1—Manifolds. S. K. Yadav, P.K. Dwivedi and D. Suthar [14] studied (LC'S)2,+1— Manifolds satisfying certain
conditions on the concircular curvature tensor. De and Sarakar [15] have studied generalized Sasakian-space-forms regarding
projective curvature tensor. Motivated by the above studies, in the present paper, we study flatness and symmetry property
of generalized Sasakian-space-forms regarding Wy-curvature tensor. The present paper is organized as follows:

In this paper, we study the Wy—curvature tensor of generalized Sasakian-space-forms with certain conditions. In section 2,
some preliminary results are recalled. In section 3, we study Wy— semisymmetric generalized Sasakian-space-forms. Section
4 deals with £ — Wy flat generalized Sasakian-space-forms. Generalized Sasakian-space-forms satisfying 1.5 = 0 are studied
in section 5. In section 6, Wo— flat generalized Sasakian-space-forms are studied. Section 7 is devoted to study of generalized
Sasakian-space-forms satisfying I.R = 0. In section 8, generalized Sasakian-space-forms satisfying I.P = 0. The last section

contains generalized Sasakian-space-forms satisfying I C=0.

2. Preliminaries

An odd — dimensional differentiable manifold M?"*! of differentiability class C™ "', there exists a vector valued real linear

function ®, a 1-form 7, associated vector field £ and the Riemannian metric g satisfying

P*(X) = —X +n(X)&,0(£) =0 (3)
n(€) =1,9(X,€) =n(X),n(®X) =0 (4)
g(2X,®Y) = g(X,Y) = n(X)n(Y) (5)

for arbitary vector fields X and Y, then (M ntl g) is said to be an almost contact metric manifod [4], and the structure

(®,¢,1,9) is called an almost contact metric structure to M>"". In view of (3), (4) and (5), we have

g(2X,Y) = —g(X,2Y),g(®X,X)=0 (6)

Vxn(Y) =g(VxE,Y) (7)

Again we know [9] that in a (2n + 1)— dimensional generalized Sasakian-space-form, we have

R(X,Y)Z = fi{g(Y, Z2)X — g(X, 2)Y} + fo{g(X,22)PY — g(Y,PZ)PX + 29(X,PY)PZ}

+ f3{n(X)m(2)Y = n(Y)n(Z2)X + g(X, Z)n(Y)§ — g(Y, Z)n(X)E} (8)
for any vector field X,Y,Z on M?"*! where R denotes the curvature tensor of M>"*1 and fi, fo, f3 are smooth functions

on the manifold. The Ricci tensor S and the scalar curvature r of the manifold of dimension (2n + 1) are respectively, given

by

S(X,Y) = (2nf1 +3f2 — f3)9(X,Y) — (3f2 + (2n — 1) fa)n(X)n(Y) (9)
QX = (2nfi+3f2— f3)X = (3f2 + (2n — 1) fs)n(X)€ (10)
r=2n2n+1)fi +6nfo —4dnfs (11)
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Also for a generalized Sasakian-space-forms, we have

R(X,Y)E = (fr = f3){n(Y)X —n(X)Y}
R(&,X)Y = —R(X, Y = (fi — fs){g(X,Y)§ —n(Y)X}
N(R(X,Y)Z) = (fr = f3){9(Y, Z)n(X) — 9(X, Z)n(Y)}
S(X,8) = 2n(f1 — fa)n(X)

Q¢ =2n(f1 — f3)¢
where @ is the Ricci Operator, i.e.
9(RQX,Y) = S(X,Y)

For a (2n + 1)— dimensional (n > 1) Almost Contact Metric, the Wy— curvature tensor I is given by
1
I(X,Y)Z = R(X,Y)Z — 5 {S(X,Y)Z — ¢(Y, 2)QX}
The Wo— curvature tensor I in a generalized Sasakian-space-form satisfies

I(X,Y)6 = (fi = F)0V)X = n(X)Y) = oo{(@nfi +3fz — fo) (g(X, V)€ —n(¥) X))
IEY)E = (i~ fo) (V)€ ~ V)
I(X, )6 = 5-(4nfi +3f2 = (204 1) fs)(X = n(X)8)

1€, X)Y = (fi = f5){29(X, Y)E = n(X)Y —n(Y)X}

1€, X)€ = (fr = fa){n(X)§ — X}

Given an (2n + 1)— dimensional Riemannian manifold (M, g), the Concircular curvature tensor C is given by

~ T

C(X,Y)Z = R(X,Y)Z — T T

C&X)Y =1 = fs = 5o MoK Y)E = n(V) X}

{9V, 2)X —g(X,2)Y}

and

WX Y)2) = [fi = fa = 5

In@n 1 W9 2mX) = g(X, Z)n(Y)}

and Projective curvature tensor is given by

P(X,Y)Z = R(X,Y)Z — %[S(K Z)X — S(X, Z)Y]

and related term

n(P(X,Y)§) =0
1

W(P(X,6)7) = 5-5(X,2) - (fi ~ fs)o(X, 2)
W(P(EY)Z) = (f1 ~ fo)g(V, Z) — 5-8(¥, )

for any vector field X,Y, Z on M.

(17)

(24)

(25)
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3. Wy— Semisymmetric Generalized Sasakian-Space-Forms

Definition 3.1. A (2n + 1)— dimensional (n > 1) generalized Sasakian-space-form is said to be Wo— semisymmetric if it

satisfies R.I = 0, where R is the Riemannian curvature tensor and I is the Wo— curvature tensor of the space forms.

Theorem 3.2. A (2n + 1)— dimensional (n > 1) generalized Sasakian-space-form is Wo— semisymmetric if and only if

fi=fs.

Proof. Let us suppose that the generalized Sasakian-space-form M (f1, f2, f3) is Wo— semisymmetric, then we have
R(§U)I(X,Y)§ =0 (29)
The above equation can be written as
R(§ U)X, Y)E = I(R(E, U)X, Y)E — I(X, R(§,U)Y)E — I(X,Y)R(§,U)E = 0 (30)
In view of (4), (12) and (13) the above equation reduces to

(1 = fs){g(U, I(X, Y)E)§ = n(I (X, Y)U — g(X, U)I(E, Y )€+ n(X) (U, Y)§

In view of (18), (19) and (20) and taking the inner product of above equation with &, we get

(1 — F) U (X, Y)E) — = (2nfs + 3o — f3)(—g(X, Y)n(D)

Con
+9(U,Y)n(X) +g(X, U)n(Y) = g(X, Y)n(U) +n(I(X,Y)U)} =0 (32)
On solving above equation, we get
%(fl = f{Bf2 4+ 2n = 1) f3)(g(Y, U)n(X) — n(X)n(Y)n(U))} = 0 (33)

From the above equation, we have either f; = f3 or

g, Un(X) =n(X)n(Y)n(U) =0 (34)

which is not possible in generalized Sasakian-space-form. Conversely, if fi = fs,then from (13), R(§,U) = 0.Then obviously

R.I = 0 is satisfied. This completes the proof. O

4. ¢ — Wy— Flat Generalized Sasakian-Space-Forms

Definition 4.1. A (2n+1)— dimensional (n > 1) generalized Sasakian-space-form is said to be Wo— flat [5] if (X, Y)E =0
for al X, Y € TM.

Theorem 4.2. A (2n + 1)— dimensional (n > 1) generalized Sasakian-space-form is & — Wo— flat if and only if it is n—
FEinstein Manifold.
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Proof.  Let us consider that a generalized Sasakian-space-form is £ — Wy— flat, i.e. I(X,Y)€ =0 . Then in view of (18),

we have

R(X,Y)E = *{S(X V)€ —g(Y,§)QX} (35)

R(X,Y)¢ = *{S(X Y)§—n(Y)QX} (36)
By using (12) and (14) above equation becomes
n(Y)QX = (2nfi +3f2 = f3)9(X,Y)€ = 3f2 + (2n = 1) fs)n(X)n(Y)E = 2n(f1 = f3)(n(Y) X = n(X)Y) (37)

Putting Y = £ in above equation, we get

QX =2n(f1 — fs)(2n(X)§ — X) (38)

Now, taking the inner product of the above equation with U, we get
S(X,U) =2n(fr — fs){9(X,U) = 2n(X)n(U)} (39)

which shows that generalised Sasakian-space-form is an n—Einstein Manifold. Conversely, suppose that (39) is satisfied.

Then by virtue of (35) and (38), we get I(X,Y )¢ =0. O

5. Generalized Sasakian-Space-Form Satisfying /.5 = 0

Theorem 5.1. A (2n+1)—dimension (n > 1) generalised Sasakian-space-form satisfying I.S = 0 is an n— Einstein Manifold.

Proof. Let us consider generalised Sasakian-space-form M?"T! satisfying I(¢, X).S = 0. In this case, we can write

S X)Y,Z)+ S(Y,I(&,X)Z) =0 for any vector fields X,Y, Z on M. Substituting (21) in above equation, we obtain
29(X,Y)S(¢, Z2) = n(X)S(Y, Z) = n(Y)S(X, Z) + 25(Y,£)g(X, Z) = n(X)S(Y, Z) —n(Z)S(Y, X) =0 (40)

For Z = £, the last equation is equivalent to

2.2n(f1 = f3)g(X,Y) = 2n(f1 — f3)n(X)n(Y) — S(Y,X) =0 (41)

which implies that,
S(X,Y) =2n(f1 = f3){29(X,Y) = n(X)n(Y)} (42)
This proves our assertion. O

6. Wy— flat Generalized Sasakian-space-forms

Theorem 6.1. A (2n+1)— dimensional (n > 1) generalized Sasakian-space-form is Wo— flat if and only if fr = (1 2n) = f3.

Proof. TFor a (2n + 1)— dimensional (n > 1) Wo— flat generalized Sasakian-space-forms, we have from (18)

R(X,Y)Z —{S(X Y)Z - g(Y, 2)QX} (43)

107



On Wy—Curvature Tensor of Generalized Sasakian-Space-Forms

In view of (9) and (10), the above equation takes the form
1
R(X,Y)Z = oA(2nf1 +3f2 = f3)(9(X, Y)Z = g(Y, 2)X) = 3f2 + 2n = 1) fa)(n(X)n(Y)Z + g(Y, Z)n(X)E)}  (44)
By virtue of (8) the above equation reduces to

fi{9g(Y. 2)X — g(X, 2)Y} + f2{9(X,9Z)¢Y — g(Y,$Z)pX + 29(X, ¢Y)dpZ}
+ fs{n(X)n(2)Y —n(Y)n(2)X + g(X, Z)n(Y)§ — g(Y, Z)n(X)&}
= i{(%ﬁ +3f2 = f3)(9(X,Y)Z — g(Y, 2)X) — (3f2 4+ (2n = 1) f)(n(X)n(Y) Z + g(Y, Z)n(X)€)}  (45)
Now, replacing Z by ¢Z in the above equation, we obtain
F{g(Y,0Z2)X — g(X,62)Y} + fo{g(X,6° 2)0Y — g(V,6* )X + 29(X, ¢Y)6° Z} + f3{9(X, 6 Z)n(Y)E — (Y, 6 Z)n(X)&}

= %{(%ﬁ +3f2 = f3)(9(X,Y)9Z — g(Y,62) X) — (3f2 + (2n — 1) f5) n(X)n(Y)oZ + g(Y, 6Z)n(X)&)} (46)

Taking inner product of above equation with &, we get

S{9(Y,02)n(X) — 9(X, 0Z)n(Y)} + f3{9(X,6Z)n(Y) — g(Y, $Z)n(X)}
21 {@nfr+3f2 = f3)(=g(Y,0Z)n(X)) = (3f2 + (2n — 1) f3)g(Y, $Z)n(X)} (47)

n

Putting X = £ in above equation, we get

(Anfi +6f2 —2f3)g9(Y,¢Z) =0 (48)

Since g(Y, ¢Z) # 0 in general, we obtain

Anfi+6f2 — 2fs =0 (49)

Again replacing X by ¢X in equation (45), we get

Fi{g(Y, 2)$X — g(6X, 2)Y } + fo{g(dX,02)¢Y — g(Y,02)¢° X + 29(¢ X, dY)PZ} + fs{—n(Y)n(Z)$X + g(¢X, Z)n(Y)E}

— i{@nfl +3f2— f3)(9(¢X,Y)Z — g(Y, 2)$X)} i

Taking inner product with &

J{=9(6X, 230V} + fag(0X, Z)n(Y) = 5= (2nfi + 32 = f2)g(6X, Y)n(2) (51)
putting Y = &, we get
(f1 = f2)g(®X,2) = 0 (52
Since g(¢X, Z) # 0 in general, we obtain
fo= i (53
From equation (49) and (53), we get
h=t o (54)
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3f

Conversely, suppose that fi1 = {22~ = f3 satisfies in generalized Sasakian-space-form and then we have

S(X,Y)=0, (55)
QX =0 (56)

Also, in view of (18), we have
I(X,Y,Z,U) = ‘R(X,Y, Z,U) (57)

where I[(X,Y,Z,U) = g(X,Y,Z,U) and ‘R(X,Y, Z,U) = g(X,Y, Z,U). Putting Y = Z = e; in above equation and taking

summation over i, 1 <1 < 2n + 1, we get

2n+1 2n+1
D> I(X,ei,ei,U) = > ‘R(X,ei,e,U) = S(X,U) (58)
i=1 i=1

In view of (8) and (58), we have

I(X,Y,2,U) = fi{g(Y, 2)9(X,U) — g(X, Z)g(Y,U)} + fo{9(X, ¢Z)g(8Y,U) — g(Y, 6 2)g(¢ X, U) + 29(X, Y )g(6Z,U)}

+ fs{n(X)n(2)g(Y,U) = n(Y)n(2)g(X,U) + g(X, Z)n(Y)n(U) — g(Y, Z)n(X)n(U)} (59)

Now, putting Y = Z = e; in above equation and taking summation over i,1 < ¢ < 2n 4+ 1, we get

2n+1

> I(X ei e, U) = 2nfig(X,U) + 3fag(¢X, 6U) — fs{(2n + 1)n(X)n(U) + 9(X,U)} (60)

i=1

In view of (55), (56) and (58), we have
2nf19(X,U) + 3f29(¢ X, oU) — fs{(2n + L)n(X)n(U) + g(X,U)} =0 (61)

Putting X = U = e; in above equation and taking summation over 7,1 <14 < 2n + 1, we get fi = 0. Then in view of (54),
f2 = f3 = 0. Therefore, we obtain from (8)

R(X,Y)Z=0 (62)

Hence in view of (55), (56) and (62), we have I(X,Y)Z = 0. This completes the proof. O

7. Generalized Sasakian-space-forms Satisfying I.R =0

Theorem 7.1. A generalized Sasakian-space-form M>"T'(f1, fa, f3) satisfies the condition I(€,X).R =0 if and only if the

functions f1 and f3 has the sectional curvature (f1 — f3).

Proof.  Let generalized Sasakian-space-form satisfying
I, X)R(Y,Z)U =0 (63)
This can be written as

1, X)R(Y,Z)U — R(I(¢,X)Y, Z)U — R(Y,I1(§,X)Z)U — R(Y,Z)I(§,X)U =0 (64)
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for any vector fields X,Y, Z,U on M. In view of (21), we obtain

(& X)R(Y, 2)U = (f1 = f3){29(X, R(Y, 2)U)§ — n(X)R(Y, Z)U — n(R(Y, Z)U) X} (65)

On the other hand, by direct calculations, we have

R(I(&, X)Y, 2)U = (f1 = f3){29(X, Y)R(&, 2)U — n(X)R(Y, 2)U = n(Y)R(X, Z)U} (66)
R(Y, I(§, X)2)U = (fi = f5){29(X, Z)R(Y, )U — n(X)R(Y, 2)U — n(Z)R(Y, X)U} (67)
R(Y, 2)I(§, X)U = (f1 = f3){29(X, U)R(Y, 2)§ — n(X)R(Y, 2)U — n(U)R(Y, Z) X } (68)

Substituting (64), (65), (66) and (67) in (63), we get

(1 = f3){29(X, R(Y, 2)U)€ — n(X)R(Y, Z2)U — n(R(Y, 2)U)X — 29(X, Y)R(&, 2)U + n(X)R(Y, Z)U + n(Y)R(X, 2)U

—29(X, Z)R(Y, U + n(X)R(Y, Z)U + n(Z)R(Y, X)U — 29(X, U)R(Y, Z)§ + n(X)R(Y, Z)U + n(U)R(Y, Z2)X =0 (69)
Taking inner product with &, above equation implies that

(fr = f){29(X, R(Y, 2)U) = n(X)n(R(Y, 2)U) = 29(X, Y)n(R(E, 2)U) + n(Y)n(R(X, 2)U) — 29(X, Z)n(R(Y,§)U)

+ 2n(X)n(R(Y, 2)U) + n(Z)n(R(Y, X)U) — 29(X, U)n(R(Y, Z)§) + n(U)n(R(Y, Z)X) = 0 (70)
In consequence of (8), (12), (13) and (14) the above equation takes the form
29(X, R(Y, 2)U = 2(f1 — f3)(9(X,Y)g(Z,U) — (X, Z)g(Y,U)) + (fr — f3)(9(X, Y )n(Z)n(U) — g(X, Z)n(Y)n(U)} = 0

On solving, we get 2g(X, R(Y, Z)U) — (f1 — f2)(g(X,Y)g(Z,U) — g(X, Z)g(Y,U) = 0, which say us M>"T1(f1, f2, f3) has

the sectional curvature (f1 — f3). O

8. Generalized Sasakian-space-forms satisfying I.P =0

Theorem 8.1. A generalized Sasakian-space-form M>"VY(f1, fo, f3) satisfies the condition I(€,X).P = 0 if and only if

M"Y f1, fa, f3) has the sectional curvature of the form (fi — f3).

Proof.  The condition I(£, X)P = 0 implies that

for any vector fields X,Y, Z on M. In view of (10), we obtain from (27)

n(P(X,Y)Z)=0 (72)

Since,
1(&, X)P(Y, Z2)U = (f1 — fs){29(X, P(Y, 2)U)§ — n(X)P(Y, Z)U} (73)
P(I(&, X)Y, Z2)U = (f1 — f3){29(X,Y)P(§, 2)U —n(X)P(Y, Z)U) —n(Y)P(X, Z)U} (74)

PY,I(§, X)2)U = (fi = fs){29(X, 2)P(Y, §)U — n(X) P(Y, 2)U — n(Z) P(Y, X)U} (75)
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Finally, we conclude that
PY, 2)I(§, X)U = (fr = f3){29(X, U)P(Y, 2)§ — n(X)P(Y, Z)U —n(U)P(Y, 2) X } (76)
So, substituting (73), (74), (75) and (76) in (63), we deduce that

(i = fs){29(X, P(Y, 2)U)§ = n(X)P(Y, Z)U = 29(X,Y) P(&, 2)U + n(X)P(Y, Z)U) +n(Y)P(X, 2)U - 29(X, Z) P(Y, §)U

+n(X)P(Y, Z)U +n(Z)P(Y, X)U = 29(X,U)P(Y, Z)§ + n(X)P(Y, Z)U + n(U)P(Y, Z)X} = 0 (77)
Taking inner product with &, we get
(fr = fs){9(X, R(Y, Z2)U) — (fr — f3)(9(X,Y)g(Z,U) — g(X, Z)g(Y,U))} =0
which say us M?" 1 (f1, f2, f3) has the sectional curvature (fi — f3). O

9. Generalized Sasakian-space-forms Satisfying [ C=0

Theorem 9.1. A generalized Sasakian-space-forms M*" T (f1, f2, f3) satisfies the condition I(§,X).C~’ = 0 if and only if

either the scalar curvature T of M2" 1 (f1, f2, f3) is T = 8n(2n+1)(f1 — f3) or a real space form with the sectional curvature

(fr = f3)-

Proof. The condition I(¢, X)é = 0 implies that
(I(&,X)C)(Y, Z,U) = I(¢£,X)C(Y, 2)U — C(I(¢, X)Y, Z)U — C(Y,1(§,X) Z)U — C(Y, Z)I(£,X)U = 0 (78)

for any vector fields X,Y, Z and U on M. From (22) and (23), we can easily to see that

I(&,X)C(Y, 2)U = (f1 — f2){29(X, C(Y, 2)U)¢ — n(X)C(Y, Z)U — n(C(Y, Z)U)X } (79)

CI(6, X)Y, Z2)U = (f1 — f3){29(X,Y)C(¢, 2)U — n(X)C(Y, Z)U — n(Y)C(X, Z)U} (80)

C(Y,I(6,X)2)U = (f1 — fs){29(X, Z)C(Y,)U — n(X)C(Y, Z)U — n(Z)C(Y, X)U} (81)
and

C(Y, Z)I(&, X)U = (f1 — fs){29(X, U)C(Y, Z)¢ — n(X)C(Y, Z)U — n(U)C(Y, Z)X } (82)

Thus, substituting (79), (80), (81) and (82) in (78) and after from necessary abbreviations, (78) takes from

(f1 = f){29(X, C(Y, 2)U)¢ = n(X)C(Y, 2)U = n(C(Y, 2)U)X —29(X,Y)C (&, 2)U + n(X)C(Y, Z)U + n(Y)C(X, Z)U

—2g(X, 2)C(Y.OU +n(X)C(Y, 2)U +n(Z)C(Y, X)U = 29(X, U)C(Y, Z)¢ + n(X)C(Y, Z)U +n(U)C(Y, 2)X} =0 (83)
Taking inner product with £ and solving

(= B)2005 L)) + (5 = F)(6(Z. 009X, Y) = oV 00X 20 + (= fo = ot

o) Qo2 UmEOn)

=29, U)n(X)n(Z) + g(X, Y)n(Z)n(U) — 9(X, Z)n(Y)nU))} =0 (84)
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Now putting U = £ in the above equation, we get

(fi = f3)A(fr = f3) — o

ann 1) (90 In(Z) — (X, Zpn(¥)} =0

Above equation tells us that M2" T (f1, f2, f3) has the scalar curvature 7 = 8n(2n + 1)(f1 — f3).
Conversely, if M*"T(f1, f2, f3) is either real space form with sectional curvature (fi — f3) or it has the scalar curvature

7 =8n(2n+ 1)(f1 — f3). This completes the proof. O
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