International Journal of Mathematics And its Applications

On W_{9}-Curvature Tensor of Generalized Sasakian-Space-Forms

Research Article

Shyam Kishor ${ }^{1}$, Pushpendra Verma ${ }^{1}$ and Puneet Kumar Gupt ${ }^{1 *}$
1 Department of Mathematics and Astronomy, University of Lucknow, Lucknow, Uttar Pradesh, India.

$$
\begin{array}{ll}
\text { Abstract: } & \text { The object of the present paper is to study generalized Sasakian-space-forms satisfying certain curvature conditions on } \\
& W_{9}-\text { curvature tensor. In this paper, we study } W_{9}-\text { semisymmetric, } W_{9} \text {-flat, } \xi-W_{9} \text { - flat, generalized Sasakian-space- } \\
& \text { forms satisfying } I(\xi, X) \cdot S=0, I(\xi, X) \cdot R=0, I(\xi, X) \cdot P=0 \text { and } I(\xi, X) \cdot \widetilde{C}=0 . \\
\text { MSC: } & 53 \mathrm{C} 25,53 \mathrm{D} 15 .
\end{array}
$$

Keywords: Generalized Sasakian-space form, W_{9} - curvature tensor, Concircular curvature tensor, Ricci tensor, η-Einstein Manifold, scalar curvature.
(C) JS Publication.

1. Introduction

P. Alegre, D. Blair and A. Carriazo [9] introduced and studied generalized Sasakian-space-forms. In 2011, M.M. Tripathi and P. Gupta [7] introduced and studied $\tau-$ curvature tensor in semi -Riemannian manifolds. They studied some properties of τ - curvature tensor. They defined W_{9} - curvature tensor of type $(0,4)$ for $(2 n+1)$-dimensional Riemannian manifold, as

$$
\begin{equation*}
W_{9}(X, Y, Z, U)=R(X, Y, Z, U)-\frac{1}{2 n}\{S(X, Y) g(Z, U)-g(Y, Z) S(X, U)\} \tag{1}
\end{equation*}
$$

where R and S denote the Riemannian curvature tensor of type $(0,4)$ defined by ' $R(X, Y, Z, U)=g(R(X, Y) Z, U)$ and the Ricci tensor of type $(0,2)$ respectively. The curvature tensor defined by (1) is known as $W_{9}-$ curvature tensor. A manifold whose $W_{9}-$ curvature tensor vanishes at every point of the manifold is called W_{9} - flat manifold. They also define τ-conservative semi-Riemannian manifolds and give necessary and sufficient condition for semi-Riemannian manifolds to be τ - conservative. Given an almost contact metric manifold $M(\phi, \xi, \eta, g)$, we say that M is generalized Sasakian-space-form if there exist three functions f_{1}, f_{2}, f_{3} on M such that the curvature tensor R is given by

$$
\begin{align*}
R(X, Y) Z= & f_{1}\{g(Y, Z) X-g(X, Z) Y\}+f_{2}\{g(X, \Phi Z) \Phi Y-g(Y, \Phi Z) \Phi X+2 g(X, \Phi Y) \Phi Z\} \\
& +f_{3}\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi\} \tag{2}
\end{align*}
$$

for any vector fields X, Y, Z on M. In such a case we denote the manifold as $M\left(f_{1}, f_{2}, f_{3}\right)$. In [8] the authors cited several examples of generalized Sasakian-space-forms. Alegre et al. [10] have given results on B.Y. Chen's inequality on submanifolds

[^0]of generalized complex space-forms and generalized Sasakian-space-forms. Al. Ghefari et al. analyse the CR submanifolds of generalized Sasakian-space-forms [11, 12]. Sreenivasa. G.T. Venkatesha and Bagewadi C.S. [13] have studied some results on $(L C S)_{2 n+1}$-Manifolds. S. K. Yadav, P.K. Dwivedi and D. Suthar [14] studied $(L C S)_{2 n+1}-$ Manifolds satisfying certain conditions on the concircular curvature tensor. De and Sarakar [15] have studied generalized Sasakian-space-forms regarding projective curvature tensor. Motivated by the above studies, in the present paper, we study flatness and symmetry property of generalized Sasakian-space-forms regarding W_{9}-curvature tensor. The present paper is organized as follows:

In this paper, we study the $W_{9}-$ curvature tensor of generalized Sasakian-space-forms with certain conditions. In section 2 , some preliminary results are recalled. In section 3 , we study W_{9} - semisymmetric generalized Sasakian-space-forms. Section 4 deals with $\xi-W_{9}$ flat generalized Sasakian-space-forms. Generalized Sasakian-space-forms satisfying $I . S=0$ are studied in section 5. In section 6, W_{9} - flat generalized Sasakian-space-forms are studied. Section 7 is devoted to study of generalized Sasakian-space-forms satisfying $I . R=0$. In section 8 , generalized Sasakian-space-forms satisfying $I . P=0$. The last section contains generalized Sasakian-space-forms satisfying $I . \widetilde{C}=0$.

2. Preliminaries

An odd - dimensional differentiable manifold $M^{2 n+1}$ of differentiability class C^{r+1}, there exists a vector valued real linear function Φ, a 1 -form η, associated vector field ξ and the Riemannian metric g satisfying

$$
\begin{align*}
\Phi^{2}(X) & =-X+\eta(X) \xi, \Phi(\xi)=0 \tag{3}\\
\eta(\xi) & =1, g(X, \xi)=\eta(X), \eta(\Phi X)=0 \tag{4}\\
g(\Phi X, \Phi Y) & =g(X, Y)-\eta(X) \eta(Y) \tag{5}
\end{align*}
$$

for arbitary vector fields X and Y, then $\left(M^{2 n+1}, g\right)$ is said to be an almost contact metric manifod [4], and the structure (Φ, ξ, η, g) is called an almost contact metric structure to $M^{2 n+1}$. In view of (3), (4) and (5), we have

$$
\begin{align*}
g(\Phi X, Y) & =-g(X, \Phi Y), g(\Phi X, X)=0 \tag{6}\\
\nabla_{X} \eta(Y) & =g\left(\nabla_{X} \xi, Y\right) \tag{7}
\end{align*}
$$

Again we know [9] that in a $(2 n+1)$ - dimensional generalized Sasakian-space-form, we have

$$
\begin{align*}
R(X, Y) Z=f_{1}\{ & g(Y, Z) X-g(X, Z) Y\}+f_{2}\{g(X, \Phi Z) \Phi Y-g(Y, \Phi Z) \Phi X+2 g(X, \Phi Y) \Phi Z\} \\
& +f_{3}\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi\} \tag{8}
\end{align*}
$$

for any vector field X, Y, Z on $M^{2 n+1}$, where R denotes the curvature tensor of $M^{2 n+1}$ and f_{1}, f_{2}, f_{3} are smooth functions on the manifold. The Ricci tensor S and the scalar curvature r of the manifold of dimension $(2 n+1)$ are respectively, given by

$$
\begin{align*}
S(X, Y) & =\left(2 n f_{1}+3 f_{2}-f_{3}\right) g(X, Y)-\left(3 f_{2}+(2 n-1) f_{3}\right) \eta(X) \eta(Y) \tag{9}\\
Q X & =\left(2 n f_{1}+3 f_{2}-f_{3}\right) X-\left(3 f_{2}+(2 n-1) f_{3}\right) \eta(X) \xi \tag{10}\\
r & =2 n(2 n+1) f_{1}+6 n f_{2}-4 n f_{3} \tag{11}
\end{align*}
$$

Also for a generalized Sasakian-space-forms, we have

$$
\begin{align*}
R(X, Y) \xi & =\left(f_{1}-f_{3}\right)\{\eta(Y) X-\eta(X) Y\} \tag{12}\\
R(\xi, X) Y & =-R(X, \xi) Y=\left(f_{1}-f_{3}\right)\{g(X, Y) \xi-\eta(Y) X\} \tag{13}\\
\eta(R(X, Y) Z) & =\left(f_{1}-f_{3}\right)\{g(Y, Z) \eta(X)-g(X, Z) \eta(Y)\} \tag{14}\\
S(X, \xi) & =2 n\left(f_{1}-f_{3}\right) \eta(X) \tag{15}\\
Q \xi & =2 n\left(f_{1}-f_{3}\right) \xi \tag{16}
\end{align*}
$$

where Q is the Ricci Operator, i.e.

$$
\begin{equation*}
g(Q X, Y)=S(X, Y) \tag{17}
\end{equation*}
$$

For a $(2 n+1)-$ dimensional $(n>1)$ Almost Contact Metric, the $W_{9}-$ curvature tensor I is given by

$$
\begin{equation*}
I(X, Y) Z=R(X, Y) Z-\frac{1}{2 n}\{S(X, Y) Z-g(Y, Z) Q X\} \tag{18}
\end{equation*}
$$

The $W_{9}-$ curvature tensor I in a generalized Sasakian-space-form satisfies

$$
\begin{align*}
I(X, Y) \xi & =\left(f_{1}-f_{3}\right)(\eta(Y) X-\eta(X) Y)-\frac{1}{2 n}\left\{\left(2 n f_{1}+3 f_{2}-f_{3}\right)(g(X, Y) \xi-\eta(Y) X)\right\} \tag{19}\\
I(\xi, Y) \xi & =\left(f_{1}-f_{3}\right)\{\eta(Y) \xi-Y\} \\
I(X, \xi) \xi & =\frac{1}{2 n}\left(4 n f_{1}+3 f_{2}-(2 n+1) f_{3}\right)(X-\eta(X) \xi) \tag{20}\\
I(\xi, X) Y & =\left(f_{1}-f_{3}\right)\{2 g(X, Y) \xi-\eta(X) Y-\eta(Y) X\} \tag{21}\\
I(\xi, X) \xi & =\left(f_{1}-f_{3}\right)\{\eta(X) \xi-X\}
\end{align*}
$$

Given an $(2 n+1)$ - dimensional Riemannian manifold (M, g), the Concircular curvature tensor \widetilde{C} is given by

$$
\begin{align*}
\widetilde{C}(X, Y) Z & =R(X, Y) Z-\frac{r}{2 n(2 n+1)}\{g(Y, Z) X-g(X, Z) Y\} \tag{22}\\
\widetilde{C}(\xi, X) Y & =\left[f_{1}-f_{3}-\frac{r}{2 n(2 n+1)}\right]\{g(X, Y) \xi-\eta(Y) X\} \tag{23}
\end{align*}
$$

and

$$
\begin{equation*}
\eta(\widetilde{C}(X, Y) Z)=\left[f_{1}-f_{3}-\frac{r}{2 n(2 n+1)}\right]\{g(Y, Z) \eta(X)-g(X, Z) \eta(Y)\} \tag{24}
\end{equation*}
$$

and Projective curvature tensor is given by

$$
\begin{equation*}
P(X, Y) Z=R(X, Y) Z-\frac{1}{2 n}[S(Y, Z) X-S(X, Z) Y] \tag{25}
\end{equation*}
$$

and related term

$$
\begin{align*}
& \eta(P(X, Y) \xi)=0 \tag{26}\\
& \eta(P(X, \xi) Z)=\frac{1}{2 n} S(X, Z)-\left(f_{1}-f_{3}\right) g(X, Z) \tag{27}\\
& \eta(P(\xi, Y) Z)=\left(f_{1}-f_{3}\right) g(Y, Z)-\frac{1}{2 n} S(Y, Z) \tag{28}
\end{align*}
$$

for any vector field X, Y, Z on M.

3. $W_{9}-$ Semisymmetric Generalized Sasakian-Space-Forms

Definition 3.1. $A(2 n+1)-$ dimensional $(n>1)$ generalized Sasakian-space-form is said to be $W_{9}-$ semisymmetric if it satisfies R.I $=0$, where R is the Riemannian curvature tensor and I is the $W_{9}-$ curvature tensor of the space forms.

Theorem 3.2. $A(2 n+1)-$ dimensional $(n>1)$ generalized Sasakian-space-form is $W_{9}-$ semisymmetric if and only if $f_{1}=f_{3}$.

Proof. Let us suppose that the generalized Sasakian-space-form $M\left(f_{1}, f_{2}, f_{3}\right)$ is W_{9} - semisymmetric, then we have

$$
\begin{equation*}
R(\xi, U) I(X, Y) \xi=0 \tag{29}
\end{equation*}
$$

The above equation can be written as

$$
\begin{equation*}
R(\xi, U) I(X, Y) \xi-I(R(\xi, U) X, Y) \xi-I(X, R(\xi, U) Y) \xi-I(X, Y) R(\xi, U) \xi=0 \tag{30}
\end{equation*}
$$

In view of (4), (12) and (13) the above equation reduces to

$$
\begin{align*}
\left(f_{1}-f_{3}\right)\{g(U, I(X, Y) \xi) \xi-\eta(I(X, Y) \xi) U & -g(X, U) I(\xi, Y) \xi+\eta(X) I(U, Y) \xi \\
& -g(U, Y) I(X, \xi) \xi+I(X, U) \eta(Y) \xi-I(X, Y) \eta(U) \xi+I(X, Y) U\}=0 \tag{31}
\end{align*}
$$

In view of (18), (19) and (20) and taking the inner product of above equation with ξ, we get

$$
\begin{align*}
\left(f_{1}-f_{3}\right)\{g(U, I(X, Y) \xi) & -\frac{1}{2 n}\left(2 n f_{1}+3 f_{2}-f_{3}\right)(-g(X, Y) \eta(U) \\
& +g(U, Y) \eta(X)+g(X, U) \eta(Y)-g(X, Y) \eta(U)+\eta(I(X, Y) U)\}=0 \tag{32}
\end{align*}
$$

On solving above equation, we get

$$
\begin{equation*}
\frac{1}{2 n}\left(f_{1}-f_{3}\right)\left\{\left(3 f_{2}+(2 n-1) f_{3}\right)(g(Y, U) \eta(X)-\eta(X) \eta(Y) \eta(U))\right\}=0 \tag{33}
\end{equation*}
$$

From the above equation, we have either $f_{1}=f_{3}$ or

$$
\begin{equation*}
g(Y, U) \eta(X)-\eta(X) \eta(Y) \eta(U)=0 \tag{34}
\end{equation*}
$$

which is not possible in generalized Sasakian-space-form. Conversely, if $f_{1}=f_{3}$, then from (13), $R(\xi, U)=0$.Then obviously $R . I=0$ is satisfied. This completes the proof.

4. $\xi-W_{9}-$ Flat Generalized Sasakian-Space-Forms

Definition 4.1. A $(2 n+1)-$ dimensional $(n>1)$ generalized Sasakian-space-form is said to be $W_{9}-$ flat $[5]$ if $I(X, Y) \xi=0$ for all $X, Y \in T M$.

Theorem 4.2. A $(2 n+1)-$ dimensional $(n>1)$ generalized Sasakian-space-form is $\xi-W_{9}-$ flat if and only if it is $\eta-$ Einstein Manifold.

Proof. Let us consider that a generalized Sasakian-space-form is $\xi-W_{9}-$ flat, i.e. $I(X, Y) \xi=0$. Then in view of (18), we have

$$
\begin{align*}
& R(X, Y) \xi=\frac{1}{2 n}\{S(X, Y) \xi-g(Y, \xi) Q X\} \tag{35}\\
& R(X, Y) \xi=\frac{1}{2 n}\{S(X, Y) \xi-\eta(Y) Q X\} \tag{36}
\end{align*}
$$

By using (12) and (14) above equation becomes

$$
\begin{equation*}
\eta(Y) Q X=\left(2 n f_{1}+3 f_{2}-f_{3}\right) g(X, Y) \xi-\left(3 f_{2}+(2 n-1) f_{3}\right) \eta(X) \eta(Y) \xi-2 n\left(f_{1}-f_{3}\right)(\eta(Y) X-\eta(X) Y) \tag{37}
\end{equation*}
$$

Putting $Y=\xi$ in above equation, we get

$$
\begin{equation*}
Q X=2 n\left(f_{1}-f_{3}\right)(2 \eta(X) \xi-X) \tag{38}
\end{equation*}
$$

Now, taking the inner product of the above equation with U , we get

$$
\begin{equation*}
S(X, U)=2 n\left(f_{1}-f_{3}\right)\{g(X, U)-2 \eta(X) \eta(U)\} \tag{39}
\end{equation*}
$$

which shows that generalised Sasakian-space-form is an η-Einstein Manifold. Conversely, suppose that (39) is satisfied. Then by virtue of (35) and (38), we get $I(X, Y) \xi=0$.

5. Generalized Sasakian-Space-Form Satisfying $I . S=0$

Theorem 5.1. $A(2 n+1)$-dimension $(n>1)$ generalised Sasakian-space-form satisfying $I . S=0$ is an η-Einstein Manifold.
Proof. Let us consider generalised Sasakian-space-form $M^{2 n+1}$ satisfying $I(\xi, X) . S=0$. In this case, we can write $S(I(\xi, X) Y, Z)+S(Y, I(\xi, X) Z)=0$ for any vector fields X, Y, Z on M. Substituting (21) in above equation, we obtain

$$
\begin{equation*}
2 g(X, Y) S(\xi, Z)-\eta(X) S(Y, Z)-\eta(Y) S(X, Z)+2 S(Y, \xi) g(X, Z)-\eta(X) S(Y, Z)-\eta(Z) S(Y, X)=0 \tag{40}
\end{equation*}
$$

For $Z=\xi$, the last equation is equivalent to

$$
\begin{equation*}
2.2 n\left(f_{1}-f_{3}\right) g(X, Y)-2 n\left(f_{1}-f_{3}\right) \eta(X) \eta(Y)-S(Y, X)=0 \tag{41}
\end{equation*}
$$

which implies that,

$$
\begin{equation*}
S(X, Y)=2 n\left(f_{1}-f_{3}\right)\{2 g(X, Y)-\eta(X) \eta(Y)\} \tag{42}
\end{equation*}
$$

This proves our assertion.

6. $W_{9}-$ flat Generalized Sasakian-space-forms

Theorem 6.1. A $(2 n+1)$ - dimensional $(n>1)$ generalized Sasakian-space-form is $W_{9}-$ flat if and only if $f_{1}=\frac{3 f_{2}}{(1-2 n)}=f_{3}$.
Proof. For a $(2 n+1)-$ dimensional $(n>1) W_{9}-$ flat generalized Sasakian-space-forms, we have from (18)

$$
\begin{equation*}
R(X, Y) Z=\frac{1}{2 n}\{S(X, Y) Z-g(Y, Z) Q X\} \tag{43}
\end{equation*}
$$

In view of (9) and (10), the above equation takes the form

$$
\begin{equation*}
R(X, Y) Z=\frac{1}{2 n}\left\{\left(2 n f_{1}+3 f_{2}-f_{3}\right)(g(X, Y) Z-g(Y, Z) X)-\left(3 f_{2}+(2 n-1) f_{3}\right)(\eta(X) \eta(Y) Z+g(Y, Z) \eta(X) \xi)\right\} \tag{44}
\end{equation*}
$$

By virtue of (8) the above equation reduces to

$$
\begin{align*}
f_{1}\{g(Y, Z) X & -g(X, Z) Y\}+f_{2}\{g(X, \phi Z) \phi Y-g(Y, \phi Z) \phi X+2 g(X, \phi Y) \phi Z\} \\
& +f_{3}\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi\} \\
& =\frac{1}{2 n}\left\{\left(2 n f_{1}+3 f_{2}-f_{3}\right)(g(X, Y) Z-g(Y, Z) X)-\left(3 f_{2}+(2 n-1) f_{3}\right)(\eta(X) \eta(Y) Z+g(Y, Z) \eta(X) \xi)\right\} \tag{45}
\end{align*}
$$

Now, replacing Z by ϕZ in the above equation, we obtain

$$
\begin{align*}
& f_{1}\{g(Y, \phi Z) X-g(X, \phi Z) Y\}+f_{2}\left\{g\left(X, \phi^{2} Z\right) \phi Y-g\left(Y, \phi^{2} Z\right) \phi X+2 g(X, \phi Y) \phi^{2} Z\right\}+f_{3}\{g(X, \phi Z) \eta(Y) \xi-g(Y, \phi Z) \eta(X) \xi\} \\
& \quad=\frac{1}{2 n}\left\{\left(2 n f_{1}+3 f_{2}-f_{3}\right)(g(X, Y) \phi Z-g(Y, \phi Z) X)-\left(3 f_{2}+(2 n-1) f_{3}\right)(\eta(X) \eta(Y) \phi Z+g(Y, \phi Z) \eta(X) \xi)\right\} \tag{46}
\end{align*}
$$

Taking inner product of above equation with ξ, we get

$$
\begin{align*}
f_{1}\{g(Y, \phi Z) \eta(X) & -g(X, \phi Z) \eta(Y)\}+f_{3}\{g(X, \phi Z) \eta(Y)-g(Y, \phi Z) \eta(X)\} \\
& =\frac{1}{2 n}\left\{\left(2 n f_{1}+3 f_{2}-f_{3}\right)(-g(Y, \phi Z) \eta(X))-\left(3 f_{2}+(2 n-1) f_{3}\right) g(Y, \phi Z) \eta(X)\right\} \tag{47}
\end{align*}
$$

Putting $X=\xi$ in above equation, we get

$$
\begin{equation*}
\left(4 n f_{1}+6 f_{2}-2 f_{3}\right) g(Y, \phi Z)=0 \tag{48}
\end{equation*}
$$

Since $g(Y, \phi Z) \neq 0$ in general, we obtain

$$
\begin{equation*}
4 n f_{1}+6 f_{2}-2 f_{3}=0 \tag{49}
\end{equation*}
$$

Again replacing X by ϕX in equation (45), we get

$$
\begin{align*}
f_{1}\{g(Y, Z) \phi X & -g(\phi X, Z) Y\}+f_{2}\left\{g(\phi X, \phi Z) \phi Y-g(Y, \phi Z) \phi^{2} X+2 g(\phi X, \phi Y) \phi Z\right\}+f_{3}\{-\eta(Y) \eta(Z) \phi X+g(\phi X, Z) \eta(Y) \xi\} \\
& =\frac{1}{2 n}\left\{\left(2 n f_{1}+3 f_{2}-f_{3}\right)(g(\phi X, Y) Z-g(Y, Z) \phi X)\right\} \tag{50}
\end{align*}
$$

Taking inner product with ξ

$$
\begin{equation*}
f_{1}\{-g(\phi X, Z) \eta(Y)\}+f_{3} g(\phi X, Z) \eta(Y)=\frac{1}{2 n}\left(2 n f_{1}+3 f_{2}-f_{3}\right) g(\phi X, Y) \eta(Z) \tag{51}
\end{equation*}
$$

putting $Y=\xi$, we get

$$
\begin{equation*}
\left(f_{1}-f_{3}\right) g(\Phi X, Z)=0 \tag{52}
\end{equation*}
$$

Since $g(\phi X, Z) \neq 0$ in general, we obtain

$$
\begin{equation*}
f_{3}=f_{1} \tag{53}
\end{equation*}
$$

From equation (49) and (53), we get

$$
\begin{equation*}
f_{1}=\frac{3 f_{2}}{1-2 n}=f_{3} \tag{54}
\end{equation*}
$$

Conversely, suppose that $f_{1}=\frac{3 f_{2}}{1-2 n}=f_{3}$ satisfies in generalized Sasakian-space-form and then we have

$$
\begin{array}{r}
S(X, Y)=0, \\
Q X=0 \tag{56}
\end{array}
$$

Also, in view of (18), we have

$$
\begin{equation*}
I(X, Y, Z, U)=' R(X, Y, Z, U) \tag{57}
\end{equation*}
$$

where $I(X, Y, Z, U)=g(X, Y, Z, U)$ and ' $R(X, Y, Z, U)=g(X, Y, Z, U)$. Putting $Y=Z=e_{i}$ in above equation and taking summation over $i, 1 \leq i \leq 2 n+1$, we get

$$
\begin{equation*}
\sum_{i=1}^{2 n+1} I\left(X, e_{i}, e_{i}, U\right)=\sum_{i=1}^{2 n+1} \cdot R\left(X, e_{i}, e_{i}, U\right)=S(X, U) \tag{58}
\end{equation*}
$$

In view of (8) and (58), we have

$$
\begin{align*}
I(X, Y, Z, U) & =f_{1}\{g(Y, Z) g(X, U)-g(X, Z) g(Y, U)\}+f_{2}\{g(X, \phi Z) g(\phi Y, U)-g(Y, \phi Z) g(\phi X, U)+2 g(X, \phi Y) g(\phi Z, U)\} \\
& +f_{3}\{\eta(X) \eta(Z) g(Y, U)-\eta(Y) \eta(Z) g(X, U)+g(X, Z) \eta(Y) \eta(U)-g(Y, Z) \eta(X) \eta(U)\} \tag{59}
\end{align*}
$$

Now, putting $Y=Z=e_{i}$ in above equation and taking summation over $i, 1 \leq i \leq 2 n+1$, we get

$$
\begin{equation*}
\sum_{i=1}^{2 n+1} I\left(X, e_{i}, e_{i}, U\right)=2 n f_{1} g(X, U)+3 f_{2} g(\phi X, \phi U)-f_{3}\{(2 n+1) \eta(X) \eta(U)+g(X, U)\} \tag{60}
\end{equation*}
$$

In view of (55), (56) and (58), we have

$$
\begin{equation*}
2 n f_{1} g(X, U)+3 f_{2} g(\phi X, \phi U)-f_{3}\{(2 n+1) \eta(X) \eta(U)+g(X, U)\}=0 \tag{61}
\end{equation*}
$$

Putting $X=U=e_{i}$ in above equation and taking summation over $i, 1 \leq i \leq 2 n+1$, we get $f_{1}=0$. Then in view of (54), $f_{2}=f_{3}=0$. Therefore, we obtain from (8)

$$
\begin{equation*}
R(X, Y) Z=0 \tag{62}
\end{equation*}
$$

Hence in view of (55), (56) and (62), we have $I(X, Y) Z=0$. This completes the proof.

7. Generalized Sasakian-space-forms Satisfying $I . R=0$

Theorem 7.1. A generalized Sasakian-space-form $M^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ satisfies the condition $I(\xi, X) \cdot R=0$ if and only if the functions f_{1} and f_{3} has the sectional curvature $\left(f_{1}-f_{3}\right)$.

Proof. Let generalized Sasakian-space-form satisfying

$$
\begin{equation*}
I(\xi, X) R(Y, Z) U=0 \tag{63}
\end{equation*}
$$

This can be written as

$$
\begin{equation*}
I(\xi, X) R(Y, Z) U-R(I(\xi, X) Y, Z) U-R(Y, I(\xi, X) Z) U-R(Y, Z) I(\xi, X) U=0 \tag{64}
\end{equation*}
$$

for any vector fields X, Y, Z, U on M. In view of (21), we obtain

$$
\begin{equation*}
I(\xi, X) R(Y, Z) U=\left(f_{1}-f_{3}\right)\{2 g(X, R(Y, Z) U) \xi-\eta(X) R(Y, Z) U-\eta(R(Y, Z) U) X\} \tag{65}
\end{equation*}
$$

On the other hand, by direct calculations, we have

$$
\begin{align*}
& R(I(\xi, X) Y, Z) U=\left(f_{1}-f_{3}\right)\{2 g(X, Y) R(\xi, Z) U-\eta(X) R(Y, Z) U-\eta(Y) R(X, Z) U\} \tag{66}\\
& R(Y, I(\xi, X) Z) U=\left(f_{1}-f_{3}\right)\{2 g(X, Z) R(Y, \xi) U-\eta(X) R(Y, Z) U-\eta(Z) R(Y, X) U\} \tag{67}\\
& R(Y, Z) I(\xi, X) U=\left(f_{1}-f_{3}\right)\{2 g(X, U) R(Y, Z) \xi-\eta(X) R(Y, Z) U-\eta(U) R(Y, Z) X\} \tag{68}
\end{align*}
$$

Substituting (64), (65), (66) and (67) in (63), we get

$$
\begin{align*}
& \left(f_{1}-f_{3}\right)\{2 g(X, R(Y, Z) U) \xi-\eta(X) R(Y, Z) U-\eta(R(Y, Z) U) X-2 g(X, Y) R(\xi, Z) U+\eta(X) R(Y, Z) U+\eta(Y) R(X, Z) U \\
& -2 g(X, Z) R(Y, \xi) U+\eta(X) R(Y, Z) U+\eta(Z) R(Y, X) U-2 g(X, U) R(Y, Z) \xi+\eta(X) R(Y, Z) U+\eta(U) R(Y, Z) X=0 \tag{69}
\end{align*}
$$

Taking inner product with ξ, above equation implies that

$$
\begin{gather*}
\left(f_{1}-f_{3}\right)\{2 g(X, R(Y, Z) U)-\eta(X) \eta(R(Y, Z) U)-2 g(X, Y) \eta(R(\xi, Z) U)+\eta(Y) \eta(R(X, Z) U)-2 g(X, Z) \eta(R(Y, \xi) U) \\
+2 \eta(X) \eta(R(Y, Z) U)+\eta(Z) \eta(R(Y, X) U)-2 g(X, U) \eta(R(Y, Z) \xi)+\eta(U) \eta(R(Y, Z) X)=0 \tag{70}
\end{gather*}
$$

In consequence of (8), (12), (13) and (14) the above equation takes the form

$$
2 g\left(X, R(Y, Z) U-2\left(f_{1}-f_{3}\right)(g(X, Y) g(Z, U)-g(X, Z) g(Y, U))+\left(f_{1}-f_{3}\right)(g(X, Y) \eta(Z) \eta(U)-g(X, Z) \eta(Y) \eta(U)\}=0\right.
$$

On solving, we get $2 g(X, R(Y, Z) U)-\left(f_{1}-f_{3}\right)\left(g(X, Y) g(Z, U)-g(X, Z) g(Y, U)=0\right.$, which say us $M^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ has the sectional curvature $\left(f_{1}-f_{3}\right)$.

8. Generalized Sasakian-space-forms satisfying $I . P=0$

Theorem 8.1. A generalized Sasakian-space-form $M^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ satisfies the condition $I(\xi, X) . P=0$ if and only if $M^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ has the sectional curvature of the form $\left(f_{1}-f_{3}\right)$.

Proof. The condition $I(\xi, X) P=0$ implies that

$$
\begin{equation*}
(I(\xi, X) P)(Y, Z, U)=I(\xi, X) P(Y, Z) U-P(I(\xi, X) Y, Z) U-P(Y, I(\xi, X) Z) U-P(Y, Z) I(\xi, X) U=0 \tag{71}
\end{equation*}
$$

for any vector fields X, Y, Z on M. In view of (10), we obtain from (27)

$$
\begin{equation*}
\eta(P(X, Y) Z)=0 \tag{72}
\end{equation*}
$$

Since,

$$
\begin{align*}
& I(\xi, X) P(Y, Z) U=\left(f_{1}-f_{3}\right)\{2 g(X, P(Y, Z) U) \xi-\eta(X) P(Y, Z) U\} \tag{73}\\
& \left.P(I(\xi, X) Y, Z) U=\left(f_{1}-f_{3}\right)\{2 g(X, Y) P(\xi, Z) U-\eta(X) P(Y, Z) U)-\eta(Y) P(X, Z) U\right\} \tag{74}\\
& P(Y, I(\xi, X) Z) U=\left(f_{1}-f_{3}\right)\{2 g(X, Z) P(Y, \xi) U-\eta(X) P(Y, Z) U-\eta(Z) P(Y, X) U\} \tag{75}
\end{align*}
$$

Finally, we conclude that

$$
\begin{equation*}
P(Y, Z) I(\xi, X) U=\left(f_{1}-f_{3}\right)\{2 g(X, U) P(Y, Z) \xi-\eta(X) P(Y, Z) U-\eta(U) P(Y, Z) X\} \tag{76}
\end{equation*}
$$

So, substituting (73), (74), (75) and (76) in (63), we deduce that
$\left(f_{1}-f_{3}\right)\{2 g(X, P(Y, Z) U) \xi-\eta(X) P(Y, Z) U-2 g(X, Y) P(\xi, Z) U+\eta(X) P(Y, Z) U)+\eta(Y) P(X, Z) U-2 g(X, Z) P(Y, \xi) U$

$$
\begin{equation*}
+\eta(X) P(Y, Z) U+\eta(Z) P(Y, X) U-2 g(X, U) P(Y, Z) \xi+\eta(X) P(Y, Z) U+\eta(U) P(Y, Z) X\}=0 \tag{77}
\end{equation*}
$$

Taking inner product with ξ, we get

$$
\left(f_{1}-f_{3}\right)\left\{g(X, R(Y, Z) U)-\left(f_{1}-f_{3}\right)(g(X, Y) g(Z, U)-g(X, Z) g(Y, U))\right\}=0
$$

which say us $M^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ has the sectional curvature $\left(f_{1}-f_{3}\right)$.

9. Generalized Sasakian-space-forms Satisfying $I . \widetilde{C}=0$

Theorem 9.1. A generalized Sasakian-space-forms $M^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ satisfies the condition $I(\xi, X) . \widetilde{C}=0$ if and only if either the scalar curvature τ of $M^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ is $\tau=8 n(2 n+1)\left(f_{1}-f_{3}\right)$ or a real space form with the sectional curvature $\left(f_{1}-f_{3}\right)$.

Proof. The condition $I(\xi, X) . \widetilde{C}=0$ implies that

$$
\begin{equation*}
(I(\xi, X) \widetilde{C})(Y, Z, U)=I(\xi, X) \widetilde{C}(Y, Z) U-\widetilde{C}(I(\xi, X) Y, Z) U-\widetilde{C}(Y, I(\xi, X) Z) U-\widetilde{C}(Y, Z) I(\xi, X) U=0 \tag{78}
\end{equation*}
$$

for any vector fields X, Y, Z and U on M. From (22) and (23), we can easily to see that

$$
\begin{align*}
& I(\xi, X) \widetilde{C}(Y, Z) U=\left(f_{1}-f_{3}\right)\{2 g(X, \widetilde{C}(Y, Z) U) \xi-\eta(X) \widetilde{C}(Y, Z) U-\eta(\widetilde{C}(Y, Z) U) X\} \tag{79}\\
& \widetilde{C}(I(\xi, X) Y, Z) U=\left(f_{1}-f_{3}\right)\{2 g(X, Y) \widetilde{C}(\xi, Z) U-\eta(X) \widetilde{C}(Y, Z) U-\eta(Y) \widetilde{C}(X, Z) U\} \tag{80}\\
& \widetilde{C}(Y, I(\xi, X) Z) U=\left(f_{1}-f_{3}\right)\{2 g(X, Z) \widetilde{C}(Y, \xi) U-\eta(X) \widetilde{C}(Y, Z) U-\eta(Z) \widetilde{C}(Y, X) U\} \tag{81}
\end{align*}
$$

and

$$
\begin{equation*}
\widetilde{C}(Y, Z) I(\xi, X) U=\left(f_{1}-f_{3}\right)\{2 g(X, U) \widetilde{C}(Y, Z) \xi-\eta(X) \widetilde{C}(Y, Z) U-\eta(U) \widetilde{C}(Y, Z) X\} \tag{82}
\end{equation*}
$$

Thus, substituting (79), (80), (81) and (82) in (78) and after from necessary abbreviations, (78) takes from

$$
\begin{align*}
& \left(f_{1}-f_{3}\right)\{2 g(X, \widetilde{C}(Y, Z) U) \xi-\eta(X) \widetilde{C}(Y, Z) U-\eta(\widetilde{C}(Y, Z) U) X-2 g(X, Y) \widetilde{C}(\xi, Z) U+\eta(X) \widetilde{C}(Y, Z) U+\eta(Y) \widetilde{C}(X, Z) U \\
& -2 g(X, Z) \widetilde{C}(Y, \xi) U+\eta(X) \widetilde{C}(Y, Z) U+\eta(Z) \widetilde{C}(Y, X) U-2 g(X, U) \widetilde{C}(Y, Z) \xi+\eta(X) \widetilde{C}(Y, Z) U+\eta(U) \widetilde{C}(Y, Z) X\}=0 \tag{83}
\end{align*}
$$

Taking inner product with ξ and solving

$$
\begin{align*}
& \left(f_{1}-f_{3}\right)\left\{2 g(X, R(Y, Z) U)+\left(f_{1}-f_{3}\right)(g(Z, U) g(X, Y)-g(Y, U) g(X, Z))+\left(f_{1}-f_{3}-\frac{\tau}{2 n(2 n+1)}\right)(2 g(Z, U) \eta(X) \eta(Y)\right. \\
& -2 g(Y, U) \eta(X) \eta(Z)+g(X, Y) \eta(Z) \eta(U)-g(X, Z) \eta(Y) \eta(U))\}=0 \tag{84}
\end{align*}
$$

Now putting $U=\xi$ in the above equation, we get

$$
\left(f_{1}-f_{3}\right)\left(4\left(f_{1}-f_{3}\right)-\frac{\tau}{2 n(2 n+1)}\right)\{g(X, Y) \eta(Z)-g(X, Z) \eta(Y)\}=0
$$

Above equation tells us that $M^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ has the scalar curvature $\tau=8 n(2 n+1)\left(f_{1}-f_{3}\right)$.
Conversely, if $M^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ is either real space form with sectional curvature ($f_{1}-f_{3}$) or it has the scalar curvature $\tau=8 n(2 n+1)\left(f_{1}-f_{3}\right)$. This completes the proof.

References

[1] A.Sarkar and U.C.De, Some curvature properties of generalized Sasakian-space-forms, Lobachevskii Journal of Mathematics, 33(1)(2012), 22-27.
[2] C.Özgür and M.M.Tripathi, On P-Sasakian manifolds satisfying certain conditions on concircular curvature tensor, Turk. J. Math., 31(2007), 171-179.
[3] C.Özgür, Hypersurfaces satisfying some curvature conditions in the semi-Euclidean space, Chaos Solutions and Fractals, 39(5)(2009), 2457-2464.
[4] D.E.Blair, Contact Manifolds in a Riemannian Geometry, vol. 509 of Lecture Notes in Mathematics, Springer, Berlin, Germany, (1976), 1-16.
[5] G.Zhen, J.L.Cabrerizo, L.M.Fernandez and M.Frenandez, On ξ - conformally flat contact metric manifolds, Indian Journal of Pure and Applied Mathematics, 28(6)(1997), 725-734.
[6] J.L.Cabrerizo, L.M.Fernandez and M.Frenandez and Z.Guo, The structure of a class of K-contact manifolds, Acta Mathematica Hungarica, 82(4)(1999), 331-340.
[7] M.M.Tripathi and P.Gupta, $\tau-$ curvature tensor on a semi-reimannian manifold, J. Adv. Math. Studies, 4(1)(2011), 117-129.
[8] P.Alegre and A.Cariazo, Structures on generalized Sasakian-space-forms, Differential Geom. and its application, 26(2008), 656-666.
[9] P.Alegre, D.E.Blair and A.Carriazo, Generalized Sasakian-space-forms, Israel Journal of Mathematics, 141(2004), 157183.
[10] P.Alegre and A.Cariazo, Y.H.Kim and D.W.Yoon, B. Y. Chen's inequality for submanifolds of generalized space forms, Indian Journal of Pure and Applied Mathematics, 38(3)(2007), 185-201.
[11] R.Al-Ghefari, F.R.Al-Solamy and M.H.Shahid, CR- submanifolds of generalized Sasakian-space-forms, JP Journal of Geometry and Topology, 6(2)(2006), 151-166.
[12] R.Al-Ghefari, F.R.Al-Solamy and M.H.Shahid, Contact CR-warped product submanifolds in genralized Sasakian-spaceforms, Balkan Journal of Geometry and its Applications, 11(2)(2006), 1-10.
[13] Sreenivasa, G.T.Venkatesha and C.S.Bagewadi, Some results on $(L C S)_{2_{n+1}-\text { Manifolds, Bulletin of Mathematical Anal- }}$ ysis and Applications, 1(3)(2009), 64-70.
[14] S.K.Yadav, P.K.Dwivedi and D.Suthar, On $(L C S)_{2_{n+1}-}$ Manifolds satisfying certain conditions on the concircular curvature tensor, Thai Journal of Mathematics, 9(3)(2011), 697-603.
[15] U.C.De and A.Sarkar, On the projective curvature tensor of generalized Sasakian-space-forms, Quaestiones Mathematicae, 33(2)(2010), 245-252.
[16] Z.Guo, Conformally symmetric K- contact manifolds, Chinese Quarterly Journal of Mathematics, 7(1)(1992), 5-10.

[^0]: * E-mail: puneetmathslu@gmail.com

