International Journal of Mathematics And its Applications

# On Covering Radius of Codes Over $R=\mathbb{Z}_{2}+u \mathbb{Z}_{2}$, where $u^{2}=0$ Using Bachoc Distance 

## Research Article

## P. Chella Pandian ${ }^{1 *}$

1 Department of Mathematics, Srimad Andavan Arts and Science College (Autonomous), Tiruchirappalli, Tamilnadu, India.


#### Abstract

In this paper, we give lower and upper bounds on the covering radius of codes over the ring $R=\mathbb{Z}_{2}+u \mathbb{Z}_{2}$, where $u^{2}=0$ with bachoc distance and also obtain the covering radius of various Repetition codes, Simplex codes of $\alpha$-Type code and $\beta$-Type code. We give bounds on the covering radius for MacDonald codes of both types over $R=\mathbb{Z}_{2}+u \mathbb{Z}_{2}$.

MSC: $\quad 20 \mathrm{C} 05,20 \mathrm{C} 07,94 \mathrm{~A} 05,94 \mathrm{~A} 24$.


Keywords: Covering radius, Codes over finite rings, Simplex code, MacDonald code.
(C) JS Publication.

## 1. Introduction

In recent years, several papers have mentioned, codes over $\mathbb{Z}_{4}$ received much attention [1-3, 10, 12, 14, 15]. The covering radius of binary linear codes were studied [7, 8]. Recently the covering radius of codes over $\mathbb{Z}_{4}$ has been investigated with respect to chinese euclidean distance [5]. In 1999, Sole et al gave many upper and lower bounds on the covering radius of a code over $\mathbb{Z}_{4}$ with chinese euclidean distance. In [4], the covering radius of some particular codes over $\mathbb{Z}_{2}+u \mathbb{Z}_{2}$ have been investigated. In this correspondence, we consider the ring $R=\mathbb{Z}_{2}+u \mathbb{Z}_{2}$, where $u^{2}=0$. In this paper, we investigate the covering radius of the Simplex codes of both types and MacDonald codes and repetition codes over $R$. We also generalized some of the known bounds in [1]. A linear code $C$ of length $n$ over $R$ is an additive subgroup of $R^{n}$. An element of $C$ is called a codeword of $C$ and a generator matrix of $C$ is a matrix whose rows generate $C$. The Bachoc weight is defined in [6] and the weight of the elements $0,1, \mathrm{u}$ and $1+\mathrm{u}$ are $0,1,2$ and 2 respectively.

Definition 1.1. The Bachoc weight is given by the relation $w t_{B}=\sum_{i=1}^{n} w t_{B}\left(x_{i}\right)$, where

$$
w t_{B}\left(x_{i}\right)= \begin{cases}0 & \text { if } x_{i}=0 \\ 1 & \text { if } x_{i}=1 \\ 2 & \text { if } x_{i}=u \text { or } 1+u\end{cases}
$$

The Bachoc distance between x and y in $R^{n}$ is $d_{B}(x, y)=w t_{B}(x-y)=\sum_{i=1}^{n} w t_{B}\left(x_{i}-y_{i}\right)$. The minimum Bachoc weight $d_{B}$ of C is the smallest Bachoc weights among all non-zero codewords of C. A linear Gray map $\phi$ from $R \rightarrow \mathbb{Z}_{2}^{2}$ is defined by

[^0]$\phi(x+u y)=(y, x+y)$, for all $x+u y \in R$. The image $\phi(C)$, of a linear code $C$ over $R$ of length $n$ by the Gray map, is a binary code of length $2 n$ with same cardinality [14]. Any linear code $C$ over $R$ is equivalent to a code with generator matrix $G$ of the form
\[

G=\left[$$
\begin{array}{ccc}
I_{k_{0}} & A & B  \tag{1}\\
\mathbf{0} & u I_{k_{1}} & 2 D
\end{array}
$$\right]
\]

where $A, B$ and $D$ are matrices over $R$. Then the code C contain all codewords $\left[v_{0}, v_{1}\right] G$, where $v_{0}$ is a vector of length $k_{1}$ over $R$ and $v_{1}$ is a vector of length $k_{2}$ over $\mathbb{Z}_{2}$. Thus $C$ contains a total of $4^{k_{1}} 2^{k_{2}}$ codewords. The parameters of $C$ are given $\left[n, 4^{k_{1}} 2^{k_{2}}, d\right]$ where $d$ reperesents the minimum bachoc distance of $C$. A linear code $C$ over $R$ of length $n, 2$-dimension $k$, minimum Bachoc distance $d_{B}$ is called an $\left[n, k, d_{B}\right]$ or simply an $[n, k]$ code.

## 2. Covering Radius of Codes

In this section, we introduce the basic notions of the covering radius of codes over $R$. The covering radius of a code $C$, denoted $r(C)$, is the smallest number $r$ such that the spheres covering radius of radius $r$ around the codewords of C cover the sets $R^{n}$. The covering radius of a code $C$ over $R$ with respect to the Bachoc distance is given by $r_{B}(C)=\max _{x \in R^{n}}\left\{\min _{c \in C}\{d(x, c)\}\right\}$. The following result of Mattson [7] is useful for computing covering radius of codes over rings generalized easily from codes over finite fields.

Proposition 2.1. If $C_{0}$ and $C_{1}$ are codes over $R$ generated by matrices $G_{0}$ and $G_{1}$ respectively and if $C$ is the code generated by

$$
G=\left(\begin{array}{c|c}
0 & G_{1} \\
\hline G_{0} & A
\end{array}\right)
$$

then $r_{d}(C) \leq r_{d}\left(C_{0}\right)+r_{d}\left(C_{1}\right)$ and the covering radius of $D$ (concatenation of $C_{0}$ and $C_{1}$ ) satisfy the following $r_{d}(D) \geq$ $r_{d}\left(C_{0}\right)+r_{d}\left(C_{1}\right)$, for all distances $d$ over $R$.

## 3. Covering Radius of Repetition Codes

A $q$-ary repetition code $C$ over a finite field $\mathbb{F}_{q}=\left\{\alpha_{0}=0, \alpha_{1}=1, \alpha_{2}, \alpha_{3}, \cdots, \alpha_{q-1}\right\}$ is an $[n, 1, n]$ code $C=\{\bar{\alpha} \mid \alpha \in$ $\left.\mathbb{F}_{q}\right\}$, where $\bar{\alpha}=\alpha \alpha \cdots \alpha$. The covering radius of $C$ is $\left\lfloor\frac{n(q-1)}{q}\right\rfloor[13]$. Using this, it can be seen easily that the covering radius of block of size $n$ repetition code $[n(q-1), 1, n(q-1)]$ generated by $G=[\overbrace{11 \cdots 1}^{n} \overbrace{\alpha_{2} \alpha_{2} \cdots \alpha_{2}}^{n} \cdots \overbrace{\alpha_{q-1} \alpha_{q-1} \cdots \alpha_{q-1}}^{n}]$ is $\left\lfloor\frac{n(q-1)^{2}}{q}\right\rfloor$ since it will be equivalent to a repetition code of length $(q-1) n$. Consider the repetition code over $R$. There are two types of them of length $n$ viz. unit repetition code $C_{\beta}:[n, 1,2 n]$ generated by $G_{\beta}=[\overbrace{11 \cdots 1}^{n}]$ and zero divisor repetition code $C_{\alpha}:(n, 2,4 n)$ generated by $G_{\alpha}=[\overbrace{u u \cdots u}^{n}]$. The following result determines the covering radius with respect to chinese euclidean distance over $R$.

Theorem 3.1. $2\left\lfloor\frac{n}{2}\right\rfloor \leq r_{B}\left(C_{\alpha}\right) \leq 2 n$ and $n \leq r_{B}\left(C_{\beta}\right) \leq 2 n$.
Proof. We know that $r_{B}\left(C_{\alpha}\right)=\max _{x \in R^{n}}\left\{d\left(x, C_{\alpha}\right)\right\}$. Let $x=\overbrace{u u \cdots u}^{\left\lfloor\frac{n}{2}\right\rfloor} \overbrace{000 \cdots 0}^{\left\lceil\frac{n}{2}\right\rceil} \in R^{n}$ and the generator matrix of $\alpha$-type code is $[u u \cdots u]$ is an $[n, 1,2 n]$ code. We have, $d_{B}(x, 00 \cdots 0)=w t_{B}(\overbrace{u u \cdots u}^{\left\lfloor\frac{n}{2}\right\rfloor} \overbrace{00 \cdots 0}^{\left\lceil\frac{n}{2}\right\rceil}-00 \cdots 0)=\left\lfloor\frac{n}{2}\right\rfloor u=\left\lfloor\frac{n}{2}\right\rfloor 2$, since the bachoc weight of u is 2 , and $d_{B}(x, u u \cdots u)=w t_{B}(\overbrace{u u \cdots u}^{\left\lfloor\frac{n}{2}\right\rfloor} \overbrace{000 \cdots 0}^{\left\lceil\frac{n}{2}\right\rceil}-u u \cdots u)=u\left\lceil\frac{n}{2}\right\rceil=2\left\lceil\frac{n}{2}\right\rceil$. Therefore, $d_{B}\left(x, C_{\alpha}\right)=$
$\min \left\{2\left\lfloor\frac{n}{2}\right\rfloor, 2\left\lceil\frac{n}{2}\right\rceil\right\}=2\left\lfloor\frac{n}{2}\right\rfloor$. Thus,

$$
\begin{equation*}
r_{B}\left(C_{\alpha}\right) \geq 2\left\lfloor\frac{n}{2}\right\rfloor \tag{2}
\end{equation*}
$$

If $x$ be any word in $R$. Let us take $x$ has $\omega_{0}$ coordinates as $0^{\prime} \mathrm{s}, \omega_{1}$ coordinates as $1^{\prime} \mathrm{s}, \omega_{2}$ coordinates as $u^{\prime} \mathrm{s}$ and $\omega_{3}$ coordinates as $(1+u)^{\prime}$ s, then $\omega_{0}+\omega_{1}+\omega_{2}+\omega_{3}=n$. Since $C_{\alpha}=\{00 \cdots 0, u u \cdots u\}$ and the bachoc weight of $R: 0$ is 0,1 is 1 and $(1+u), u$ is 2 , we have $d_{B}(x, 00 \cdots 0)=n-\omega_{0}+\omega_{2}+\omega_{3}$ and $d_{B}(x, u u \cdots u)=n-\omega_{2}+\omega_{0}+\omega_{3}$. Thus

$$
\begin{align*}
& d_{B}\left(x, C_{\alpha}\right)=\min \left\{n-\omega_{0}+\omega_{2}+\omega_{3}, n-\omega_{2}+\omega_{0}+\omega_{3}\right\} . \\
& d_{B}\left(x, C_{\alpha}\right) \leq n+n=2 n, \text { since } w_{3} \leq n . \tag{3}
\end{align*}
$$

From the Equations (2) and (3), we get $2\left\lfloor\frac{n}{2}\right\rfloor \leq r_{B}\left(C_{\alpha}\right) \leq 2 n$. Obtain the covering radius of $C_{\beta}$ with respect to the bachoc weight. We have $d_{B}(x, 00 \cdots 0)=n-\omega_{0}+\omega_{2}+\omega_{3}, d_{B}(x, 11 \cdots 1)=n-\omega_{1}+\omega_{2}+\omega_{3}, d_{B}(x, u u \cdots u)=n-\omega_{2}+\omega_{0}+$ $\omega_{3}$ and $d_{B}(x, 1+u 1+u \cdots 1+u)=n-\omega_{3}+\omega_{0}+\omega_{1}$ for any $x \in R$. This implies $d_{B}\left(x, C_{\beta}\right)=\min \left\{n-\omega_{0}+\omega_{2}+\omega_{3}, n-\omega_{1}+\omega_{2}+\right.$ $\left.\omega_{3}, n-\omega_{2}+\omega_{0}+\omega_{3}, n-\omega_{3}+\omega_{0}+\omega_{1}\right\} \leq 2 n$ and hence $r_{B}\left(C_{\beta}\right) \leq 2 n$. Let $x=\overbrace{00 \cdots 0}^{t} \overbrace{11 \cdots 1}^{t} \overbrace{u u \cdots u}^{t} \overbrace{1+u 1+u \cdots 1+u}^{n-3 t} \in R^{n}$, where $t=\left\lfloor\frac{n}{4}\right\rfloor$, then $d_{B}(x, 00 \cdots 0)=2 n-3 t, d_{B}(x, 11 \cdots 1)=2 n-4 t, d_{B}(x, u u \cdots u)=n$ and $d_{B}(x, 1+u 1+u \cdots 1+u)=5 t$. Therefore, $r_{B}\left(C_{\beta}\right) \geq \min \{2 n-3 t, 2 n-4 t, n\} \geq n$.

To determines the covering radius of $R$ three blocks each of size $n$ repetition code $B R e p^{3 n}:[3 n, 1,4 n]$ generated by $G=$ $[\overbrace{11 \cdots 1}^{n} \overbrace{u u \cdots u}^{n} \overbrace{1+u 1+u \cdots 1+u}^{n}]$ the block repetition code BRep ${ }^{3 n}:\left\{c_{0}=(0 \cdots 00 \cdots 00 \cdots 0), c_{1}=(11 \cdots 1 u u \cdots u 1+\right.$ $\left.u 1+u \cdots 1+u), c_{2}=(u u \cdots u 0 \cdots 0 u u \cdots u), c_{3}=(1+u 1+u \cdots 1+u u u \cdots u 1 \cdots 1)\right\}$. Thus $d_{B}\left(x, B \operatorname{Rep}{ }^{3 n}\right)=2\left\lfloor\frac{n}{2}\right\rfloor+2 n$ and $r_{B}\left(B R e p^{3 n}\right) \geq 2\left\lfloor\frac{n}{2}\right\rfloor+2 n$. Let $x=(u|v| w) \in R^{3 n}$, with $u$, $v$ and $w$ have compositions $\left(r_{0}, r_{1}, r_{2}, r_{3}\right),\left(s_{0}, s_{1}, s_{2}, s_{3}\right)$ and $\left(t_{0}, t_{1}, t_{2}, t_{3}\right)$ respectively such that $\sum_{i=0}^{3} r_{i}=n, \sum_{i=0}^{3} s_{i}=n$ and $\sum_{i=0}^{3} t_{i}=n$, then $d_{B}\left(x, c_{0}\right)=3 n-r_{0}+r_{2}+r_{3}-s_{0}+s_{2}+s_{3}-t_{0}+$ $t_{2}+t_{3}, d_{B}\left(x, c_{1}\right)=3 n-r_{1}+r_{2}+r_{3}-s_{2}+s_{0}+s_{1}+s_{3}-t_{3}+t_{0}+t_{1}, d_{B}\left(x, c_{2}\right)=3 n-r_{2}+r_{0}+r_{1}-s_{0}+s_{2}+s_{3}-t_{2}+t_{0}+t_{1}$ and $d_{B}\left(x, c_{3}\right)=3 n-r_{3}+r_{0}+r_{1}-s_{2}+s_{0}+s_{1}-t_{1}+t_{2}+t_{2}$. Thus, $d_{B}\left(x, B R e p^{3 n}\right)=\min \left\{3 n-r_{0}+r_{2}+r_{3}-s_{0}+s_{2}+s_{3}-t_{0}+t_{2}+t_{3}, 3 n-\right.$ $\left.r_{1}+r_{2}+r_{3}-s_{2}+s_{0}+s_{1}+s_{3}-t_{3}+t_{0}+t_{1}, 3 n-r_{2}+r_{0}+r_{1}-s_{0}+s_{2}+s_{3}-t_{2}+t_{0}+t_{1}, 3 n-r_{3}+r_{0}+r_{1}-s_{2}+s_{0}+s_{1}-t_{1}+t_{2}+t_{3}\right\}$.
Thus, we have the following theorem
Theorem 3.2. $2\left\lfloor\frac{n}{2}\right\rfloor+2 n \leq r_{B}\left(B R e p^{3 n}\right) \leq 4 n$.
One can also define a $R$ two blocks each of size $n$ repetition code $B R e p^{2 n}:[2 n, 1,2 n]$ generated by $G=[\overbrace{11 \cdots 1}^{n} \overbrace{u u \cdots u}^{n}]$. We have following theorem.

Theorem 3.3. $2\left\lfloor\frac{n}{2}\right\rfloor+n \leq r_{B}\left(\right.$ BRep $\left.^{2 n}\right) \leq \frac{11 n}{4}$.
Block code $B R e p^{m+n}$ can be generalized to a block repetition code (two blocks of size $m$ and $n$ respectively) $B R e p^{m+n}$ : $[m+n, 1, \min \{m, 2 m+n\}]$ generated by $G=[\overbrace{11 \cdots 1}^{m} \overbrace{u u \cdots u}^{n}]$. Theorem 3.3 can be easily generalized for two different length using similar arguments to the following

Theorem 3.4. $2\left\lfloor\frac{n}{2}\right\rfloor+m \leq r_{B}\left(\right.$ Rep $\left.^{2 n}\right) \leq 2 m+\frac{3 n}{2}$.

## 4. Simplex Codes of $\alpha$-type Code and $\beta$-type Code Over $R$

Quaternary Simplex codes of $\alpha$-type and $\beta$-type have been recently studied in [2]. The $\alpha$-type Simplex code $S_{k}^{\alpha}$ is a linear code over $R$ with parameters $\left[4^{k}, k\right]$ and an inductive generator matrix given by

$$
G_{k}^{\alpha}=\left[\begin{array}{c|c|c|c}
00 \cdots 0 & 11 \cdots 1 & u u \cdots u & 1+u 1+u \cdots 1+u  \tag{4}\\
\hline G_{k-1}^{\alpha} & G_{k-1}^{\alpha} & G_{k-1}^{\alpha} & G_{k-1}^{\alpha}
\end{array}\right]
$$

with $G_{1}^{\alpha}=[01 u 1+u]$. The $\beta$-type simplex code $S_{k}^{\beta}$ is a punctured version of $S_{k}^{\alpha}$ with parameters $\left[2^{k-1}\left(2^{k}-1\right), k\right]$ and an inductive generator matrix given by

$$
G_{2}^{\beta}=\left[\begin{array}{cccc|c|c}
1 & 1 & 1 & 1 & 0 & u  \tag{5}\\
\hline 0 & 1 & u & 1+u & 1 & 1
\end{array}\right],
$$

and for $k>2$

$$
G_{k}^{\beta}=\left[\begin{array}{c|c|c}
11 \cdots 1 & 00 \cdots 0 & u u \cdots u  \tag{6}\\
\hline G_{k-1}^{\alpha} & G_{k-1}^{\beta} & G_{k-1}^{\beta}
\end{array}\right],
$$

where $G_{k-1}^{\alpha}$ is the generator matrix of $S_{k-1}^{\alpha}$. For details the reader is refered to [2].
Theorem 4.1. $r_{B}\left(S_{k}^{\alpha}\right) \leq \frac{2^{2 k+2}-1}{3}$.
Proof. From equation 4, the result of Mattson for finite rings and using Theorem 3.2, we get

$$
\begin{aligned}
r_{B}\left(S_{k}^{\alpha}\right) & \leq r_{B}\left(S_{k-1}^{\alpha}\right)+r_{B}(<\overbrace{11 \cdots 1}^{2^{2(k-1)}} \overbrace{u u \cdots u}^{2^{2(k-1)}} \overbrace{1+u 1+u \cdots 1+u}^{2^{2(k-1)}}>) \\
& =r_{B}\left(S_{k-1}^{\alpha}\right)+4.2^{2(k-1)} \\
& \leq 4.2^{2(k-1)}+4.2^{2(k-2)}+4.2^{2(k-3)}+\cdots+4.2^{2.1}+r_{B}\left(S_{1}^{\alpha}\right) \\
r_{B}\left(S_{k}^{\alpha}\right) & \leq \frac{2^{2 k+2}-1}{3}\left(\text { since } r_{B}\left(S_{1}^{\alpha}\right)=5\right)
\end{aligned}
$$

Theorem 4.2. $r_{B}\left(S_{k}^{\beta}\right) \leq \frac{2^{2 k+1}+3.4^{k-1}-9.2^{k-2}-20}{3}$.
Proof. By equation 6, Proposition 2.1 and Theorem 3.4, we get

$$
\begin{aligned}
r_{B}\left(S_{k}^{\beta}\right) \leq & r_{B}\left(S_{k-1}^{\beta}\right)+r_{B}(<\overbrace{11 \cdots 1}^{4^{(k-1)}} \overbrace{u u \cdots u}^{2^{(2 k-3)}-2^{(k-2)}}>) \\
= & r_{B}\left(S_{k-1}^{\beta}\right)+2^{(2 k-2)}+2^{(2 k-3)}-2^{(k-2)} \\
\leq & 2\left(2^{(2 k-2)}+2^{(2 k-4)}+\cdots+2^{4}\right)+\frac{3}{2}\left(2^{(2 k-3)}+2^{(2 k-5)}+\cdots+2^{3}\right)- \\
& \frac{3}{2}\left(2^{(k-2)}+2^{(k-3)}+\cdots+2\right)+r_{B}\left(S_{2}^{\beta}\right) \\
r_{B}\left(S_{k}^{\beta}\right) \leq & \frac{2^{2 k+1}+3 \cdot 4^{k-1}-9.2^{k-2}-20}{3}\left(\text { since } r_{B}\left(S_{2}^{\beta}\right)=5\right) .
\end{aligned}
$$

## 5. MacDonald Codes of $\alpha$-type Code and $\beta$-type Code Over $R$

The $q$-ary MacDonald code $M_{k, t}(q)$ over the finite field $\mathbb{F}_{q}$ is a unique $\left[\frac{q^{k}-q^{t}}{q-1}, k, q^{k-1}-q^{t-1}\right]$ linear code in which every non-zero codeword has weight either $q^{k-1}$ or $q^{k-1}-q^{t-1}$ [11]. In [13], he studied the covering radius of MacDonald codes over a finite field. In fact, he has given many exact values for smaller dimension. In [9], authors have defined the MacDonald codes over a ring using the generator matrices of the Simplex codes. For $2 \leq t \leq k-1$, let $G_{k, t}^{\alpha}$ be the matrix obtained from $G_{k}^{\alpha}$ by deleting columns corresponding to the columns of $G_{t}^{\alpha}$. That is,

$$
\begin{equation*}
G_{k, t}^{\alpha}=\left[G_{k}^{\alpha} \backslash \frac{0}{G_{t}^{\alpha}}\right] \tag{7}
\end{equation*}
$$

and let $G_{k, t}^{\beta}$ be the matrix obtained from $G_{k}^{\beta}$ by deleting columns corresponding to the columns of $G_{t}^{\beta}$. That is,

$$
G_{k, t}^{\beta}=\left[\begin{array}{ll}
G_{k}^{\beta} & \backslash \frac{\mathbf{0}}{G_{t}^{\beta}} \tag{8}
\end{array}\right]
$$

where $[A \backslash B]$ denotes the matrix obtained from the matrix $A$ by deleting the columns of the matrix $B$ and $\mathbf{0}$ is a $(k-t) \times$ $2^{2 t}\left((k-t) \times 2^{t-1}\left(2^{t}-1\right)\right)$. The parameters in MacDonald codes of $\alpha$-type and $\beta$-type is $\left[4^{k}-4^{t}, k\right]$ and $\left[\left(2^{k-1}-2^{t-1}\right)\left(2^{k}+\right.\right.$ $\left.\left.2^{t}-1\right), k\right]$ code over $R$. The following Theorem gives a basic bound on the covering radius of above MacDonald codes.

Theorem 5.1. $r_{B}\left(G_{k, t}^{\alpha}\right) \leq \frac{2^{2 k+2}-2^{2 r+2}}{3}+r_{B}\left(G_{r, t}^{\alpha}\right) \quad$ for $\quad k \geq r>t$.
Proof. By Proposition 2.1 and Theorem 3.2,

$$
\begin{aligned}
r_{B}\left(G_{k, t}^{\alpha}\right) & \leq r_{B}(<\overbrace{11 \cdots 1}^{2^{2(k-1)}} \overbrace{u u \cdots u}^{2^{2(k-1)}} \overbrace{1+u 1+u \cdots 1+u}^{2^{2(k-1)}}>)+r_{B}\left(G_{r, t}^{\alpha}\right) \\
& =4 \cdot 4^{k-1}+r_{B}\left(G_{k-1, t}^{\alpha}\right) \\
& \leq 4 \cdot 4^{k-1}+4 \cdot 4^{k-2}+\cdots+4 \cdot 4^{r}+r_{B}\left(G_{r, t}^{\alpha}\right) \text { for } k \geq r>t \\
r_{B}\left(G_{k, t}^{\alpha}\right) & \leq \frac{2^{2 k+2}-2^{2 r+2}}{3}+r_{B}\left(G_{r, t}^{\alpha}\right) \text { for } k \geq r>t .
\end{aligned}
$$

Theorem 5.2. $r_{B}\left(G_{k, t}^{\beta}\right) \leq \frac{2^{2 k+2}-2^{2 r+2}+3 \cdot 2^{2 k-2}-3 \cdot 2^{2 r-2}-9 \cdot 2^{k-1}+9 \cdot 2^{k-1}}{6}+r_{B}\left(G_{r, t}^{\beta}\right)$ for $t<r \leq k$
Proof. Using Proposition 2.1 and Theorem 3.4, we have

$$
\begin{aligned}
r_{B}\left(G_{k, t}^{\alpha}\right) \leq & r_{B}(<\overbrace{11 \cdots 1}^{2^{2(k-1)}} \overbrace{2^{2(k-1)-1}-2^{(k-1)-1}} \overbrace{u u \cdots u}>)+r_{B}\left(G_{k-1, t}^{\beta}\right) \\
= & 2 \cdot 2^{2(k-1)}+\frac{3}{2} \cdot 2^{2(k-1)-1}-\frac{3}{2} \cdot 2^{(k-1)-1}+r_{B}\left(G_{k-1, t}^{\beta}\right) \\
= & 2 \cdot 2^{2(k-1)}+\frac{3}{2} \cdot 2^{2(k-1)-1}-\frac{3}{2} \cdot 2^{(k-1)-1}+2 \cdot 2^{2(k-2)} \\
& +\frac{3}{2} \cdot 2^{2(k-2)-1}-\frac{3}{2} \cdot 2^{(k-2)-1}+r_{B}\left(G_{k-2, t}^{\beta}\right) \\
\leq & 2 \cdot 2^{2(k-1)}+\frac{3}{2} \cdot 2^{2(k-1)-1}-\frac{3}{2} \cdot 2^{(k-1)-1}+2 \cdot 2^{2(k-2)}+\frac{3}{2} \cdot 2^{2(k-2)-1} \\
& -\frac{3}{2} \cdot 2^{(k-2)-1}+\cdots+2 \cdot 2^{2 \cdot r}+\frac{3}{2} \cdot 2^{2 \cdot r-1}+\frac{3}{2} \cdot 2^{r-1}+r_{B}\left(G_{r, t}^{\beta}\right) \\
= & 2^{2 k}-2^{2 r}-2^{k}+2^{r}+r_{C E}\left(G_{r, t}^{\beta}\right), k \geq r>t \\
r_{B}\left(G_{k, t}^{\beta}\right) \leq & \frac{2^{2 k+2}-2^{2 r+2}+3 \cdot 2^{2 k-2}-3 \cdot 2^{2 r-2}-9 \cdot 2^{k-1}+9 \cdot 2^{k-1}}{6}+r_{B}\left(G_{r, t}^{\beta}\right) t<r \leq k .
\end{aligned}
$$

## Acknowledgement

This work was done while the author was supported by a grant(F. No: 4-4/2014-15(MRP-SEM/UGC-SERO, Nov.2014)) for the University Grants Commission, South Eastern Regional office, Hyderabad - 500001.

## References

[1] T.Aoki, P.Gaborit, M.Harada, M.Ozeki and P.Solé, On the covering radius of $\mathbb{Z}_{4}$ codes and their lattices, IEEE Trans. Inform. Theory, 45(6)(1999), 2162-2168.
[2] M.C.Bhandari, M.K.Gupta and A.K.Lal, On $\mathbb{Z}_{4}$ Simplex codes and their gray images, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, AAECC-13, Lecture Notes in Computer Science, (1999), 170-180.
[3] A.Bonnecaze, P.Solé, C.Bachoc and B.Mourrain, Type II codes over $\mathbb{Z}_{4}$, IEEE Trans. Inform. Theory, 43(1997), 969-976.
[4] P.Chella Pandian and C.Durairajan, On the covering radius of some code over $R=\mathbb{Z}_{2}+u \mathbb{Z}_{2}$, where $u^{2}=0$, International Journal of Research in Applied, 2(1)(2014), 61-70.
[5] P.Chella Pandian and C.Durairajan, On the Covering Radius of Codes Over $\mathbb{Z}_{4}$ with Chinese Euclidean Weight, International Journal on Information Theory, 4(4)(2015), 1-8.
[6] Christine Bachoc, Application of coding theory to the construction of modular lattices, Journal of Combin. Theory Ser., A78(1997), 92-119.
[7] G.D.Cohen, M.G.Karpovsky, H.F.Mattson and J.R.Schatz, Covering radius-Survey and recent results, IEEE Trans. Inform. Theory, 31(3)(1985), 328-343.
[8] C.Cohen, A.Lobstein and N.J.A.Sloane, Further Results on the Covering Radius of Codes, IEEE Trans. Inform. Theory, $32(5)(1986), 680-694$.
[9] C.J.Colbourn and M.K.Gupta, On quaternary MacDonald codes, Proc. Information Technology:Coding and Computing (ITCC), (2003), 212-215.
[10] J.H.Conway and N.J.A.Sloane, Self-dual codes over the integers modulo 4, Journal of Combin. Theory Ser. A, 62(1993), 30-45.
[11] S.Dodunekov and J.Simonis, Codes and projective multisets, The Electronic Journal of Communications, R37(5)(1998).
[12] S.T.Dougherty, M.Harada and P.Solé, Shadow codes over $\mathbb{Z}_{4}$, Journal of Finite Fields and Their Appl., (to appear).
[13] C.Durairajan, On Covering Codes and Covering Radius of Some Optimal Codes, Ph.D. Thesis, Department of Mathematics, IIT Kanpur, (1996).
[14] A.R.Hammons, P.V.Kumar, A.R.Calderbank, N.J.A.Sloane and P.Solé, The $\mathbb{Z}_{4}$-linearity of kerdock, preparata, goethals, and related codes, IEEE Trans. Inform. Theory, 40(1994), 301-319.
[15] M.Harada, New extremal Type II codes over $\mathbb{Z}_{4}$, Journal of Des. Codes and Cryptogr., 13(1998), 271-284.


[^0]:    * E-mail: chellapandianpc@gmail.com

