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Abstract: Let (G, ∗) be a group with binary operation ‘∗′. The Intersection Operator graph ΓIO(G) of G is a graph with V (ΓIO(G)) =
G and two distinct vertices x and y are adjacent in ΓIO(G) if and only if 〈x〉 ∩ 〈y〉 ⊆ 〈x ∗ y〉. In this paper, we want

to explore how the group theoretical properties of G can effect on the graph theoretical properties of ΓIO(G). Some

characterizations for fundamental properties of ΓIO(G) have also been obtained. Finally, we characterize certain classes
of Intersection Operator Graph corresponding to finite abelian groups.
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1. Introduction

The study of algebraic structures, using the properties of graphs, becomes an exciting research topic in the last twenty

years, leading to many fascinating results and questions. There are many papers on assigning a graph to a ring or group

and thereby investigating algebraic properties of the ring or group using the associated graph, for instance, see [1, 2]. In

the present article, to any group G, we assign a graph and investigate algebraic properties of the group using the graph

theoretical concepts. Before starting, let us introduce some necessary notation and definitions.

We consider simple graphs which are undirected, with no loops or multiple edges. For any graph Γ = (V,E), V denote the

set of all vertices and E denote the set of all edges in Γ. The degree degΓ(v) of a vertex v in Γ is the number of edges

incident to v and if the graph is understood, then we denote degΓ(v) simply by deg(v). The order of Γ is defined |V (Γ)| and

its maximum and its minimum degrees will be denoted, respectively, by ∆(Γ) and δ(Γ). A graph Γ is regular if the degrees

of all vertices of Γ are the same. A vertex of degree 0 is known as an isolated vertex of Γ. A graph Ω is called a subgraph

of Γ if V (Ω) ⊆ V (Γ), E(Ω) ⊆ E(Γ). Let Γ = (V,E) be a graph and let S ⊆ V . A subgraph Ω of Γ is said to be aninduced

subgraph of Γ induced by S, if V (Ω) = S and each edge of Γ having its ends in S is also an edge of Ω. A simple graph Γ is

said to be complete if every pair of distinct vertices of Γ are adjacent in Γ. A graph Γ is said to be connected if every pair

of distinct vertices of Γ are connected by a path in Γ. An Eulerian graph has an Eulerian trail, a closed trail containing

all vertices and edges. The Union of two graphs Γ1 = (V1, E1) and Γ2 = (V2, E2) is a graph Γ = (V,E) with V = V1 ∪ V2

and E = E1 ∪ E2. The join of two graphs Γ1 = (V1, E1) and Γ2 = (V2, E2) is a graph denoted by Γ1 + Γ2 = (V,E) with

V = V1 ∪ V2 and E = E1 ∪ E2 ∪ {Edges joining every vertex of V1 with every vertex of V2}.
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Let G be a group with identity e. The order of the group G is the number of elements in G and is denoted by O(G). The

order of an element a in a group G is the smallest positive integer k such that ak = e. If no such integer exists, we say a

has infinite order. The order of an element a is denoted O(a). Let p be a prime number. A group G with O(G) = pk for

some k ∈ Z+, is called a p-group.

2. Preparation of Manuscript

In this section, we observe certain basic properties of Intersection operator graphs.

Definition 2.1. Let (G, ∗) be a group with binary operation ‘∗′. The Intersection Operator graph ΓIO(G) of G is a graph

with V (ΓIO(G)) = G and two distinct vertices x and y are adjacent in ΓIO(G) if and only if 〈x〉 ∩ 〈y〉 ⊆ 〈x ∗ y〉.

Proposition 2.2. Let (G, ∗) be a group with n elements. In ΓIO(G), the identity element e of G has degree n− 1.

Proof. Let (G, ∗) be a group with n elements. Let x ∈ G be any element. Clearly 〈x〉 ∩ 〈e〉 = {e} ⊆ 〈x ∗ e〉 = 〈x〉. Hence

the result follows.

Proposition 2.3. Let (G, ∗) be a group. For any non self inverse element x ∈ G, x and x−1 are non adjacent in ΓIO(G).

Proof. Let (G, ∗) be a group with identity element e. Let x ∈ G be non self inverse element. Since x ∗ x−1 = e and

〈x〉 = 〈x−1〉, 〈x〉 ∩ 〈x−1〉 6⊆ 〈e〉. Hence the result follows.

Proposition 2.4. Let (G, ∗) be a group. Any two distinct prime order elements are adjacent in ΓIO(G).

Proof. Let (G, ∗) be a group with identity element e. Let x, y ∈ G be any two elements such that O(x) = p and O(y) = q,

where p, q are distinct prime. Clearly 〈x〉 ∩ 〈y〉 = {e}. Therefore 〈x〉 ∩ 〈y〉 ⊆ 〈x ∗ y〉. Hence the result follows.

Theorem 2.5. Let G be any group. ΓIO(G) is complete if and only if every element of G is self inverse element.

Proof. Assume every element of G is self inverse element. Let x, y ∈ G. Clearly 〈x〉∩〈y〉 = {e}. Therefore 〈x〉∩〈y〉 ⊆ 〈x∗y〉.

Hence x and y are adjacent in ΓIO(G). Since x and y are arbitrary , any two elements in G are adjacent in ΓIO(G).

Hence ΓIO(G) is complete. Conversely assume that ΓIO(G) is complete. Suppose G has a non self inverse element x, by

Proposition 2.3, x and x−1 are non adjacent in ΓIO(G), which is a contradiction. Hence every element of G is self inverse

element.

Theorem 2.6. Let G a group. ΓIO(G) is a star graph if and only if G ∼= Z2 or Z3.

Proof. Clearly if G ∼= Z2 or Z3, then ΓIO(G) is star graph.

Conversely assume that ΓIO(G) = K1,n. Since the identity element ′e′ has a full degree, any two non identity elements

are non adjacent in ΓIO(G). It is enough to prove that O(G) = 2 or 3. Suppose G has an element x of order k such that

k〉3. 〈x〉 = {e, x, x2, x3, . . . , xk−2, xk−1}. Since x ∗ xk−2 = xk−1 = x−1, 〈x〉 = 〈x ∗ xk−2〉 and 〈x〉 ∩ 〈xk−2〉 = 〈xk−2〉 ⊆ 〈x〉.

Therefore x and xk−2 are adjacent, which is a contradiction. There every non identity element of G has an order either

2 or 3. Suppose G has atleast two distinct subgroup of order either 2 or 3. Let x, y ∈ G be two element of order 2 such

that 〈x〉 6= 〈y〉. Clearly 〈x〉 ∩ 〈y〉 = {e}. Therefore 〈x〉 ∩ 〈y〉 ⊆ 〈x ∗ y〉. Hence x and y are adjacent in ΓIO(G), which is a

contradiction. Therefore G has a unique subgroup of order either 2 or 3. Hence G ∼= Z2 or Z3

Proposition 2.7. Let G be a finite group of order n with no self inverse element and q be number of edges in ΓIO(G).

Then q ≤ (n−1)2

2
. Moreover, this bound is sharp.
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Proof. By Proposition 2.2, degΓIO(G)(e) = n−1, where e is the identity element of G. Since G has no self inverse element,

by Proposition 2.3, for all x ∈ G−e, degΓIO(G)(x) ≤ n−2. From this we get the degree sum ≤ (n−1)+(n−1)(n−2) = (n−1)2.

Hence q ≤ (n−1)2

2
. Moreover, for the group Z3, ΓIO(Z3) ∼= K1,2 and for this graph the bound is sharp.

We now characterize the groups G for which the associated graph ΓIO(G) attains this bound.

Theorem 2.8. Let G be a finite abelian group of order n and q be number of edges in ΓIO(G). Then q = (n−1)2

2
if and only

if every element of G has an order p, where p is an odd prime.

Proof. Assume that ΓIO(G) is a graph with (n−1)2

2
edges. In view of Proposition 2.4, we get that degΓIO (a) = n− 2 for

all vertices a ∈ G− e and degΓIO (e) = n− 1. Let a ∈ G− e be any element of order k.

Claim: k be a prime number: By the assumption, a is adjacent to a2, a3, . . . , ak−2. Then by definition 〈a2〉 ⊆ 〈a3〉 ⊆

. . . ⊆ 〈ak−2〉 ⊆ 〈a〉. Also a−1 is adjacent to ak−2, ak−3, . . . , a2. Then by definition 〈ak−2 ⊆ 〈ak−3〉 ⊆ . . . 〈a2〉 ⊆ 〈a〉. Hence

we have

〈a〉 = 〈a2〉 = 〈a3〉 = · · · = 〈ak−1〉 (1)

Now we prove that O(a) = k is a prime number. Suppose not, k is not a prime. Without loss of generality assume that

k = pq, for some prime p and q. Since p, q|k and 〈a〉 is a cyclic group, there exists two element al, am ∈ 〈a〉 such that

〈al〉 = p and 〈am〉 = q. Which is a contradiction to (1). Hence k is a prime number. Since a is arbitrary, every element of G

is of prime order. Now we have to prove this prime order is unique. Suppose that let a, b ∈ G such that O(a) = p ,O(b) = q

, where p and q are distinct prime. Since G is abelian, O(a ∗ b) = pq, which is a contradiction to the fact every element of

G is of prime order. Therefore every element of G has a unique prime order.

Conversely, assume that every element other than identity has an order p. Since G is abelian, G ∼= Zp × Zp × . . .× Zp. By

Proposition 2.2, degΓIO(G)(e) = n− 1. Let a and b two element such that b 6= a−1. Clearly 〈a〉 ∩ 〈b〉 = 〈a〉or{e}. Therefore

〈a〉 ∩ 〈b〉 ⊆ 〈a ∗ b <. Therefore a and b are adjacent. Hence a is adjacent to all other elements in G other than its inverse.

Therefore degΓIO(G)(a
i) = n−2 for i = 1, 2, . . . , n−1. From this we get the degree sum = (n−1)+(n−1)(n−2) = (n−1)2.

Hence q = (n−1)2

2
.

Theorem 2.9. Let G be a abelian group of order pn. ΓIO(G) ∼= K1,2,2,...,ktimes, where k = pn−1
2

if and only if G ∼=

Zp × Zp × . . .× Zp.

Proof. Let G be a abelian group of order pn. Assume that ΓIO(G) ∼= K1,2,2,...,ktimes, where k = pn−1
2

. Clearly the

number of edges of the graph ΓIO(G) is (pn−1)2

2
. Therefore by Theorem 2.8, every element of G has an order p and hence

G ∼= Zp × Zp × . . .× Zp.

Conversely, assume that G ∼= Zp × Zp × . . .× Zp. Therefore for every a ∈ G − e is not adjacent to a−1 only. Therefore we

can be partition the vertex set of ΓIO(G) into k+ 1 set, where k = pn−1
2

such that the identity element e belongs into single

partition and the remaining k sets, each set contains the pair elements a and a−1. Clearly each partition is an independent

set and every element of one partition is adjacent to every element of other partition. Hence ΓIO(G) ∼= K1,2,2,...,ktimes,

where k = pn−1
2

Theorem 2.10. Let G be a cyclic group of order 2p, where p is a prime and p ≥ 3. Then the number of edges of ΓIO(G)

is equal to 3p2−4p+3
2

.

Proof. Let G be a cyclic group of order 2p, where p is a prime and p ≥ 3. Therefore G ∼= Z2p. The vertex set of

G can be partition into four sets namely A,B,C and D such that A = {0}, B = {1, 3, 5, . . . , p − 2, p − 3, . . . , 2p − 1},
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C = {2, 4, 6, . . . , 2p − 2} and D = {p}. Clearly |A| = 1, |B| = p − 1, |C| = p − 1 and |D| = 1. By Proposition 2.2,

degΓIO
(0) = 2p − 1. The elements of B are generator of G, the elements of C have an order p and the element in D has

an order 2. Since the sum of two odd integer is even, no two elements of B are adjacent in ΓIO(G). Let x ∈ B. Therefore

p − x ∈ C and x + p − x = p. So x and p − x are non adjacent in ΓIO(G) also the sum of odd integer and even integer is

again odd integer. Let x ∈ B, x is adjacent to all element in C other than p− x and the element of A. Therefore ∀x ∈ B,

degΓIO
(x) = 1 + p − 2. Since G has unique subgroup of order p and sum of two even integer is even, Every element in C

is adjacent to all element in C other than its inverse. Since p is odd, every element in C is adjacent to the element in D.

Therefore ∀x ∈ C, degΓIO
(x) = 1 + (p− 3) + (p− 2) + 1 = 2p− 3.Clearly degΓIO

(p) = 1 + p− 1 = p. Therefore

The sum of the degrees of all vertices = (2p− 1) + [(p− 1)(p− 1)] + [(p− 1)(2p− 3)] + p

= 2p− 1 + p2 − 2p+ 1 + 2p2 − 3p− 2p+ 3 + p

= 3p2 − 4p+ 3

Hence the number of edges of ΓIO(G) = 3p2−4p+3
2

.

Theorem 2.11. Let G be a cyclic group of order p2, where p is an odd prime . Then the number of edges of ΓIO(G) is

equal to (p−1)(p3−1)
2

.

Proof. Let G be a cyclic group of order p2, where p is an odd prime. Therefore G ∼= Zp2 . The vertex set of G can be

partition into three sets namely A,B and C such that A = {0}, B = {p, 2p, 3p, . . . , (p− 1)p} and C = G− A− B. Clearly

|A| = 1, |B| = p− 1 and |C| = p(p− 1). By Proposition 2.2, degΓIO
(0) = p2 − 1. The elements of C are generator of G and

the elements of B have an order p. Let x, y ∈ B. Since A ∪B is a subgroup of G, either x+ y ∈ B or x+ y = 0. Hence for

all x in B, x is adjacent to all elements other than its inverse in B. Let x ∈ B and y ∈ C, then x+ y ∈ C. Therefore for all

x in B, x is adjacent to all elements in C. Therefore ∀x ∈ B, degΓIO
(x) = 1 + p− 3 + p(p− 1) = p2− 2. Clearly the element

in C is adjacent to all element in A and B. For each x in C, x is not adjacent to p− x, 2p− x, . . ., p2 − x, which are in C.

Therefore ∀x ∈ C, degΓIO
(x) = 1 + (p− 1) + p2 − 2p− 1 = p2 − p− 1. Therefore

The sum of the degrees of all vertices = (p2 − 1) + [(p− 1)(p2 − 2)] + [p(p− 1)(p2 − p− 1)]

= (p− 1)[p+ 1 + p2 − 2 + p3 − p2 − p]

= (p− 1)(p3 − 1)

Hence the number of edges of ΓIO(G) = (p−1)(p3−1)
2

.
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