International Journal of Mathematics And its Applications

Meromorphic Functions and its Sharing Properties

Tapas Lowha ${ }^{1 *}$

1 Department of Mathematics, Sarsuna College, Sarsuna, Kolkata, West Bengal, India.

Abstract

In this paper, we study partial sharing of meromorphic functions and its derivatives.Our results improve or generalize the results of K.S. Karak and B.Lal [7] and Yang and Yi [1].

MSC: 30D35.

Keywords: Meromorphic function, shared values, differential polynomials, uniqueness.
(c) JS Publication.

1. Introduction

In this paper a meromorphic function will always mean meromorphic for whole complex plane. We shall use the standard notations of value distribution theory such as $T(r, f), m(r, f), N(r, f), \ldots$ (see [10]). We denote by $S(r, f)$ any quantity satisfying $S(r, f)=o(T(r, f))$ as $r \rightarrow \infty$ possible outside of a set with finite measure. Let f and g be two non constant meromorphic functions and a be a finite complex number. We denote by $E(a, f)$, the set of zeros of $f-a$, counting multiplicities and $\bar{E}(a, f)$ while ignoring multiplicities. We also say that the functions f and g are said to share the value $a \mathrm{CM}$ if $E(a, f)=E(a, g)$ and to share the value $a \mathrm{IM}$ if $\bar{E}(a, f)=\bar{E}(a, g)$. We denote $E_{k)}(a, f)$ the set of those zeros of $f-a$ for which multiplicities are not greater than k, counting multiplicities and $\bar{E}_{k)}(a, f)$ is the corresponding one for which multiplicities are not counted. We also denote $N_{k}\left(r, \frac{1}{f-a}\right)$ the counting function of those a points of f whose multiplicities are not greater than k counting according to multiplicities and $\bar{N}_{k)}\left(r, \frac{1}{f-a}\right)$ is similar one when multiplicities are counted only once. Similarly we defined $N_{(k}\left(r, \frac{1}{f-a}\right)$ when the multiplicities are atleast k and $\bar{N}_{(k}\left(r, \frac{1}{f-a}\right)$ is the reduced one. We denote class A to those meromorphic functions which satisfies $\bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)=S(r, f)$. Then clarly each member of class A is transcendental meromorphic functions. A function f is said to share the value a partially with a function $g \mathrm{CM}(\mathrm{IM})$ if $E(a, f) \subseteq E(a, g)[\bar{E}(a, f) \subseteq \bar{E}(a, g)]$. We also use $N_{1)}\left(r, \left.\frac{1}{g-a} \right\rvert\, f \neq a\right)$ to denote the simple zeros of $g-a$ that are not the zeros of $f-a$.

2. Main Results

In his book Yang and Yi [1] proved the following theorem:

Theorem 2.1. Let $f, g \in A$ and a be a non zero complex number.Furthermore, let k be a positive integer.

[^0](1). If $\bar{E}_{1)}(a, f)=\bar{E}_{1)}(a, g)$, then $f=g$ or $f g=a^{2}$.
(2). If $\bar{E}_{1)}\left(a, f^{(k)}\right)=\bar{E}_{1)}\left(a, g^{(k)}\right)$ then $f=g$ or $f^{(k)} g^{(k)}=a^{2}$.

In 2014, K.S.Charak and B.Lal [7] proved the following theorems which improved the Theorem 2.1.

Theorem 2.2. Let $f, g \in A$, a be a complex number and k be a positive integer.
(1). If $\bar{E}_{1)}(a, f) \subseteq \bar{E}_{1)}(a, g)$ and $N_{1)}\left(r, \left.\frac{1}{g-a} \right\rvert\, f \neq a\right)=S(r, g)$ then $f=g$.
(2). If $\bar{E}_{1)}\left(a, f^{(k)}\right) \subseteq \bar{E}_{1)}\left(a, g^{(k)}\right)$ and $N_{1)}\left(r, \left.\frac{1}{g^{(k)}-a} \right\rvert\, f^{(k)} \neq a\right)=S(r, g)$ then $f=g$ or $f^{(k)} g^{(k)}=a^{2}$.

In 2011, Huang and Huang [5] improved the following result of Yang and Hua [2] as
Theorem 2.3. Let f and g be two meromorphic functions and $n \geq 19$ be an integer. If $E_{1}\left(1, f^{n} f^{(1)}\right)=E_{1}\left(1, g^{n} g^{(1)}\right)$, then either $f=d g$ for some $(n+1)^{\text {th }}$ root of unity d or $f(z)=c_{1} e^{c z}$ and $g(z)=c_{2} e^{-c z}$, where c, c_{1}, c_{2} are constant satisfying $\left(c_{1} c_{2}\right)^{n+1} c^{2}=-1$.

In 2014, K.S.Charak and B.Lal [7] improved Theorem 2.3 for functions of class A as
Theorem 2.4. Let $f, g \in A$, and $n \geq 2$ be an integer and $a(\neq 0) \in C$. If $\bar{E}_{1)}\left(a, f^{n} f(1)\right)=\bar{E}_{1)}\left(a, g^{n} g(1)\right)$, then either $f=d g$ for some $(n+1)$ th root of unity d or $f(z)=c_{1} e^{c z}$ and $g(z)=c_{2} e^{-c z}$, where c, c_{1}, c_{2} are constant satisfying $\left(c_{1} c_{2}\right)^{(n+1)} c^{2}=-a^{2}$.

In this paper we prove the following theorems which improve and generalise the above mentioned theorems. We extend Theorem 2.3 by incorporating partial sharing-which is our first theorem. The next theorem generalises the Theorem 2.1 for the function of class A.

Theorem 2.5. Let $f, g \in A, n \geq 2$ be an integer and $a(\neq 0) \in C$. If $\bar{E}_{1)}\left(a, f^{n} f^{(1)}\right) \subseteq \bar{E}_{1)}\left(a, g^{n} g^{(1)}\right)$ and $N_{1)}\left(r, \left.\frac{1}{g^{n} g^{1}-a} \right\rvert\, f^{n} f^{(1)} \neq a\right)=S(r, g)$ some $(n+1)$ th root of unity d or $f(z)=c_{1} e^{c z}$ and $g(z)=c_{2} e^{-c z}$ where c, c_{1}, c_{2} are constant satisfying $\left(c_{1} c_{2}\right)^{n+1} c^{2}=-a^{2}$.

Theorem 2.6. Let $f, g \in A$ and a be a non zero complex number. Also let n and k be two positive integers such that $n>2 k$. If $\bar{E}_{1)}\left(a,\left(f^{n}\right)^{(k)}\right)=\bar{E}_{1)}\left(a,\left(g^{n}\right)^{(k)}\right)$, then either $f=d g$ for some $n^{\text {th }}$ root of unity d or $f(z)=c_{1} e^{c z}$ and $g(z)=c_{2} e^{-c z}$ where c, c_{1}, c_{2} are constant satisfying $(-1)^{k}\left(c_{1} c_{2}\right)^{n}(2 c)^{k}=a^{2}$.

Theorem 2.7. Let $f, g \in A$ and a be a non zero complex number. Also let n and k be two positive integers such that $n>2 k$. If $\bar{E}_{1)}\left(a,\left(f^{n}\right)^{(k)}\right) \subseteq \bar{E}_{1)}\left(a,\left(g^{n}\right)^{(k)}\right)$ and $N_{1)}\left(r, \left.\frac{1}{\left(g^{n}\right)^{(k)}-a} \right\rvert\,\left(f^{n}\right)^{(k)} \neq a\right)=S(r, g)$, then either $f=d g$ for some nth root of unity d or $f(z)=c_{1} e^{c z}$ and $g(z)=c_{2} e^{-c z}$ where c, c_{1}, c_{2} are constant satisfying $(-1)^{k}\left(c_{1} c_{2}\right)^{n}(2 c)^{k}=a^{2}$.

Before going to the proof of the theorems, we need to mention some results in the form of lemmas.
Lemma 2.8 ([2]). Let f and g be two non constant entire functions, $n \geq 1$ and $a(\neq 0) \in C$. If $f^{n} f^{(1)} g^{n} g^{(1)}=a^{2}$ then $f(z)=c_{1} e^{c z}$ and $g(z)=c_{2} e^{-c z}$ where c, c_{1}, c_{2} are constant satisfying $\left(c_{1} c_{2}\right)^{(n+1)} c^{2}=-a^{2}$.

Lemma 2.9 ([1]). If $f \in A$ and k is a positive integer then $f^{(k)} \in A$.
Lemma 2.10 ([1]). If $f, g \in A$ and $f^{(k)}=g^{(k)}$ where k is a positive integer, then $f=g$.
Lemma 2.11 ([4]). Let $f(z)$ be a non constant entire function and let $k \geq 2$ be a positive integer. If $f(z) f^{(k)}(z) \neq 0$ then $f(z)=e^{a z+b}$ where $a \neq 0, b$ are constant.

Lemma 2.12 ([10]). Suppose that $f_{1}(z), f_{2}(z), \ldots, f_{n}(z)(n \geq 2)$ are meromorphic functions and $g_{1}(z), g_{2}(z), \ldots, g_{n}(z)$ are entire functions satisfying the following conditions
(1). $\sum_{j=1}^{n} f_{j}(z) e^{g_{j}(z)}=0$.
(2). $g_{j}(z)-g_{k}(z)$ are not constant for $1 \leq j<k \leq n$,
(3). For $1 \leq j \leq n, 1 \leq h<k \leq n, T\left(r, f_{j}\right)=o\left(T\left(r, e^{g_{h}-g_{k}}\right)\right)(r \rightarrow \infty, r \notin E)$.

Then $f_{j}(z)=0(j=1,2, \ldots, n)$.
Proof of Theorem 2.5. Let $F=\frac{f^{n+1}}{n+1}$ and $G=\frac{g^{n+1}}{n+1}$. So, $F^{(1)}=f^{n} f^{(1)}$ and $G^{(1)}=g^{n} g^{(1)}$.

$$
\begin{aligned}
\bar{N}(r, F)+\bar{N}\left(r, \frac{1}{F}\right) & =\bar{N}\left(r, \frac{f^{n+1}}{n+1}\right)+\bar{N}\left(r, \frac{n+1}{f^{n+1}}\right) \\
& =\bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right) \\
& =S(r, g)
\end{aligned}
$$

Similarly, $\bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G}\right)=S(r, g)$. Therefore, $F, G \in A$. By Lemma 2.9, we can get $F^{(1)}, G^{(1)} \in A$. By hypothesis,we have, $\bar{E}_{1)}\left(a, F^{(1)}\right) \subseteq \bar{E}_{1)}\left(a, G^{(1)}\right)$ and $N_{1)}\left(r, \left.\frac{1}{G^{(1)}-a} \right\rvert\, F^{(1)} \neq a\right)=S(r, g)$. So by Theorem 2.2 we have, $F=G$ or $F^{(1)} G^{(1)}=$ a^{2}. The remains of the proof are in same line as the proof of Theorem 2.4.

Proof of Theorem 2.6. Let $F=f^{n}$ and $G=g^{n}$. So, $\bar{N}(r, F)+\bar{N}\left(r, \frac{1}{F}\right)=S(r, f)$ and $\bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G}\right)=S(r, g)$. Therefore, $F, G \in A$. So, $\bar{E}_{1)}\left(a, F^{(k)}\right) \subseteq \bar{E}_{1)}\left(a, G^{(k)}\right)$. By Theorem (2) of 2.2, we have, $F=G$ or $F^{(k)} G^{(k)}=a^{2}$. If $F=G$ i.e., $f^{n}=g^{n}$ then $f=d g$ for some $\mathrm{n}^{\text {th }}$ root of unity d. If $F^{(k)} G^{(k)}=a^{2}$ i.e., $\left[f^{n}(z)\right]^{(k)}\left[g^{n}(z)\right]^{(k)}=a^{2}$. Let, $f(z)$ has a zero of multiplicity p at z_{0}, then z_{0} must be a pole of $g(z)$ of multiplicity $q($ say $)$. So, $n p-k=n q+k$ i.e., $n(p-q)=2 k$. This relation does not hold since $n>2 k$. Therefore, $f(z) \neq 0$ for any z and also $g(z) \neq \infty$ for any z. i.e., Similarly we can say $g(z) \neq 0$ and $f(z) \neq \infty$ for any z. Therefore, $\left[f^{n}\right]^{(k)} \neq 0$ and $\left[g^{n}\right]^{(k)} \neq 0$. By the Lemma 2.11, for $k \geq 2$, we have $f(z)=c_{1} e^{c z}$ and $g(z)=c_{2} e^{-c z}$ where c_{1}, c_{2} and c are constants satisfying $c_{1}^{n} e^{n c z}(n c)^{k} c_{2}^{n} e^{-n c z}(-1)^{k}(n c)^{k}=a^{2}$ i.e., $(-1)^{k}\left(c_{1} c_{2}\right)^{n}(n c)^{2 k}=a^{2}$. When $k=1$, we have $\left[f^{n}\right]^{(1)}\left[g^{n}\right]^{(1)}=a^{2}$ i.e.,

$$
\begin{equation*}
n^{2} f^{n-1} g^{n-1} f^{(1)} g^{(1)}=a^{2} \tag{1}
\end{equation*}
$$

Suppose that f has a zero of multiplicity p_{1} at z_{1}. Then z_{1} is a pole of multiplicity q_{1} of g. Therefore, $(n-1) p_{1}+p_{1}-1=$ $(n-1) q_{1}+q_{1}+1$ i.e., $n\left(p_{1}-q_{1}\right)=2$. Since $n>2 k$ i.e., $n>2$. So the relation does not hold. Therefore

$$
\begin{align*}
& f(z) \neq 0 \text { and } g(z) \neq 0 \text { for any } \mathrm{z} \text { and } \tag{2}\\
& f(z) \neq \infty \text { and } g(z) \neq \infty \text { for any } \mathrm{z} \tag{3}
\end{align*}
$$

Therefore $f(z)$ and $g(z)$ can be expressed as

$$
\begin{equation*}
f(z)=e^{\alpha(z)} \text { and } g(z)=e^{\beta(z)} \tag{4}
\end{equation*}
$$

where $\alpha(z)$ and $\beta(z)$ are non constant functions. Putting these value in equation (1) we get,

$$
\begin{equation*}
n^{2} \alpha^{(1)} \beta^{(1)} e^{n(\alpha+\beta)}=1 \tag{5}
\end{equation*}
$$

Thus $\alpha^{(1)}$ and $\beta^{(1)}$ have no zeros and we can set $\alpha^{(1)}=e^{\delta(z)}$ and $\beta^{(1)}=e^{\gamma(z)}$ where δ and γ are entire functions. Equation (5) reduces to, $n^{2} e^{n(\alpha+\beta)+\delta+\gamma}=1$. Differentiating we have, $n\left(\alpha^{(1)}+\beta^{(1)}+\delta^{(1)}+\gamma^{(1)}=0\right.$ i.e.,

$$
\begin{equation*}
n\left(e^{\delta}+e^{\gamma}\right)+\delta^{(1)}+\gamma^{(1)}=0 \tag{6}
\end{equation*}
$$

i.e., $n\left(e^{\delta-\gamma}+1\right) e^{\gamma}+\alpha^{(2)} e^{-\delta}+\beta^{(2)} e^{-\gamma}=0$. By Lemma 2.12, we get, $e^{\delta-\gamma}+1=0$ i.e., $e^{\delta-\gamma}=-1$ i.e., $\delta-\gamma=(2 m+1) \pi i$. So from the above equalities, we get $\delta^{(1)}=\gamma^{(1)}=0$. So, δ and γ are constant. Therefore,

$$
\begin{equation*}
\alpha^{(1)} \text { and } \beta^{(1)} \text { are constant. } \tag{7}
\end{equation*}
$$

From (1), (2), (3), (4) and (7) we obtain, $f(z)=c_{1} e^{c z}$ and $g(z)=c_{2} e^{-c z}$ where c_{1}, c_{2} and c are three constants satisfying $\left(c_{1} c_{2}\right)^{n}(2 c)^{2 k}=-a^{2}$.

Proof of Theorem 2.7. Let $F=f^{n}$ and $G=g^{n}$. So as in previous theorem we have $F, G \in A$. So we have, $\bar{E}_{1)}\left(a, F^{(k)}\right) \subset$ $\bar{E}_{1)}\left(a, G^{(k)}\right)$. So by Theorem 2.2, we have, $F=G$ or $F^{(k)} G^{(k)}=a^{2}$. The remains of the proof are in the same line as the proof of the Theorem 2.6.

References

[1] C.C.Yang and H.X.Yi, Uniqueness theory of meromorphic functions, Kluwer Academic Publisher, (2003).
[2] C.C.Yang and X.Hua, Uniqueness and value sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math., 22(2)(1997), 395-406.
[3] E.Muesa and M.Reinders, Meromorphic fucntions sharing one value and unique range sets, Kodai Math. J., 18(3)(1995), 515-522.
[4] G.Frank, Eine Vermutung von Hayman uber nullstellenmeromorphic Funktion, Math. Z., 149(1976), 29-36.
[5] H.Huang and B.Huang, Uniqueness of meromorphic functions concerning differential polynomials, Appl. Math. (Irvine), 2(2)(2011), 230-235.
[6] J.F.Chen and W.C.Lin, Entire or meromorphic functions sharing one value, Computers and Mathematics with Applications, 56(2008), 1876-1883.
[7] K.S.Charak and B.Lal, Uniqueness of some differential polynomials of Meromorphic functions, arxiv preprint arxiv:1412.8273, (2014).
[8] M.Fang and Y.Wang, A note on the conjecture of Hayman, Mues and Gol'dberg, Comput. Methods Funct. Theory, 4(2013), 533-543.
[9] S.S.Bhoosnurmath and R.S.Dyavanal, Uniqueness and value sharing of meromorphic functions, Computers and Mathematics with Applications, 53(2007), 1191-1205.
[10] W.K.Hayman, Meromorphic functions, Oxford Mathematical Manogaphs, Clarendon Press, Oxford, (1964).
[11] X.B.Zhang and H.X.Yi, On some problems of difference functions and difference equations, Bull. Malays. Math. Sci., 36(2)(4)(2013), 1127-1137.

[^0]: * E-mail: t.lowha@gmail.com

