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1. Introduction

In this paper a meromorphic function will always mean meromorphic for whole complex plane. We shall use the standard
notations of value distribution theory such as T'(r, f), m(r, f), N(r, f),... (see [10]). We denote by S(r, f) any quantity
satisfying S(r, f) = o(T(r, f)) as r — oo possible outside of a set with finite measure. Let f and g be two non constant
meromorphic functions and a be a finite complex number. We denote by E(a, f),the set of zeros of f — a, counting
multiplicities and E(a, f) while ignoring multiplicities. We also say that the functions f and g are said to share the value
a CM if E(a, f) = E(a,g) and to share the value a IM if E(a, f) = E(a,g). We denote Ej,(a, f) the set of those zeros of
f — a for which multiplicities are not greater than k, counting multiplicities and Ek) (a, f) is the corresponding one for which
multiplicities are not counted. We also denote Ny (r, ﬁ) the counting function of those a points of f whose multiplicities
are not greater than k counting according to multiplicities and Ny, (r, ﬁ) is similar one when multiplicities are counted
only once. Similarly we defined N(r, f—ia) when the multiplicities are atleast k and N x(r, ﬁ) is the reduced one. We
denote class A to those meromorphic functions which satisfies N (r, f) + N (r, %) = S(r, f). Then clarly each member of class
A is transcendental meromorphic functions. A function f is said to share the value a partially with a function g CM(IM)
it E(a, f) C E(a,g)[E(a, f) C E(a,g)]. We also use Ny (r, g%a|f # a) to denote the simple zeros of g — a that are not the

zeros of f — a.

2. Main Results

In his book Yang and Yi [1] proved the following theorem:

Theorem 2.1. Let f,g € A and a be a non zero complex number. Furthermore, let k be a positive integer.
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(1). If Evy(a, f) = Evy(a,g), then f =g or fg= a?.

(2). IfEl)(mf(k)) = El)(mg(k)) then f =g or f® g = 2.

In 2014, K.S.Charak and B.Lal [7] proved the following theorems which improved the Theorem 2.1.
Theorem 2.2. Let f,g € A, a be a complex number and k be a positive integer.

(1). If Eqy(a, f) C Eyy(a,g) and Ny (ﬁ Tl # a) = S(r,g) then f =g.

(2). Ifﬁl)(a,f(k)) C E1>(a,g(k)) and Ny (r, g(kﬁ\f(k) #* a) = S(r,g) then f =g or fFg® =¢2,
In 2011, Huang and Huang [5] improved the following result of Yang and Hua [2] as

Theorem 2.3. Let f and g be two meromorphic functions and n > 19 be an integer. If Ev (1, f*f®) = E1(1, g"gV), then

cz

either f = dg for some (n + 1) root of unity d or f(z) = c1e” and g(z) = c2e™ %, where c,c1,c2 are constant satisfying

(clcz)"+102 = —1.

In 2014, K.S.Charak and B.Lal [7] improved Theorem 2.3 for functions of class A as

Theorem 2.4. Let f,g € A, and n > 2 be an integer and a(# 0) € C. If Ev)(a, f"f(1)) = Eny(a,g"g(1)), then either
f = dg for some (n + 1)th root of unity d or f(z) = c1e” and g(z) = c2e”*, where c,c1,c2 are constant satisfying
(n+1) 2 — _ g2

(cic2) a’.

In this paper we prove the following theorems which improve and generalise the above mentioned theorems. We extend
Theorem 2.3 by incorporating partial sharing-which is our first theorem. The next theorem generalises the Theorem 2.1 for

the function of class A.

Theorem 2.5. Let f,g € A, n > 2 be an integer and a(# 0) € C. If Ey(a, f"fY) C Eiy(a,g"g") and

Niy(r, =5 I f® #£ a) = S(r,g) some (n + 1)th root of unity d or f(z) = c1e* and g(z) = c2e™°* where ¢, c1,ca

99l —a

ntlp2 _ 2

are constant satisfying (cicz) a“.

Theorem 2.6. Let f,g € A and a be a non zero complex number. Also let n and k be two positive integers such that n > 2k.
If Evy(a, (f")™) = E1y(a, (g™)"*), then either f = dg for some n'™ root of unity d or f(z) = c1e®* and g(z) = c2e™* where

¢, c1,co are constant satisfying (—1)*(c1c2)™(2¢)* = o®.

Theorem 2.7. Let f,g € A and a be a non zero complex number. Also let n and k be two positive integers such that n > 2k.
If El)(a, (fn)(k)) C E1)(a, (gn)(k)) and Nny) (r, m'(]t‘n)(k) £ a) = S(r,g), then either f = dg for some nth root of

cz

unity d or f(z) = c1e®® and g(z) = cae™* where c,c1,ca are constant satisfying (—1)*(c1e2)™(2¢)* = o2.

Before going to the proof of the theorems, we need to mention some results in the form of lemmas.

Lemma 2.8 ([2]). Let f and g be two non constant entire functions, n > 1 and a(# 0) € C. If frfVgng® = a2 then

cz (n+1)c2 — 7042

f(z) = c1e” and g(z) = cae™* where ¢, c1,c2 are constant satisfying (c1c2)
Lemma 2.9 ([1]). If f € A and k is a positive integer then ) e A,
Lemma 2.10 ([1]). If f,g € A and f5) = g% where k is a positive integer, then f = g.

Lemma 2.11 ([4]). Let f(z) be a non constant entire function and let k > 2 be a positive integer. If f(z)f*)(z) # 0 then

f(z) = e***® where a # 0,b are constant.
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Lemma 2.12 ([10]). Suppose that f1(z), f2(2), ..., fa(2)(n > 2) are meromorphic functions and gi(z), g2(2),...,gn(z) are

entire functions satisfying the following conditions
(1). il Fi(2)esi® = 0.
i=
(2). g;(2) — gr(2) are not constant for 1 < j <k <mn,
(8). For1<j<mn,1<h<k<nT(rf;)=o0(T(r,e %)) (r —oco,r ¢ E).

Then fi(z) =0 (j =1,2,...,n).

gl
n+1

N(r,F)+ N ('r, %) =N ('r, :::1) +N (r, 7};:11)

:N@ﬁ+ﬁ0§>

gn+1

and G = T

Proof of Theorem 2.5. Let F = So, F = ) and G = g"g").

=5(r9)

Similarly, N(r,G) + N (r, %) = S(r,g). Therefore, F,G € A. By Lemma 2.9, we can get FO GM e A. By hypothesis,we
have, Ey)(a, FY) C Eyy(a, GV) and Ny, (r, m|F<l) #* a) = S(r,g). So by Theorem 2.2 we have, F = G or FWGW =

a®. The remains of the proof are in same line as the proof of Theorem 2.4. O

Proof of Theorem 2.6. Let F = f™ and G = g". So, N(r,F)+ N (r,+) = S(r,f) and N(r,G) + N (r, &) = S(r,g).
Therefore, F,G € A. So, E1>(a, F(k)) C El)(a, G(k)). By Theorem (2) of 2.2, we have, F = G or FOGW = g2 IfF =@
ie., f* = ¢g" then f = dg for some n*® root of unity d. If FFG® =42 ie., [f"(z)](k)[g"(z)](k) = a?. Let, f(2) has a zero of
multiplicity p at zo, then zo must be a pole of g(z) of multiplicity ¢(say). So, np—k = nqg+k i.e., n(p—q) = 2k. This relation
does not hold since n > 2k. Therefore, f(z) # 0 for any z and also g(z) # oo for any z. i.e., Similarly we can say g(z) # 0
and f(z) # oo for any z. Therefore, [f”](k) # 0 and [g"](k) # 0. By the Lemma 2.11, for k > 2, we have f(z) = c1e“ and
g(2) = cae™°* where c1, ¢z and ¢ are constants satisfying cfe™* (nc)"cye "% (—1)*(nc)F = a? i.e., (=1)"(cic2)"(nc)?* = o’
When k = 1, we have [f"]M[g"]V = a? i.e.,

n2fn—1gn—1f(1)g(1) — 2 (1)

Suppose that f has a zero of multiplicity p1 at z1. Then 21 is a pole of multiplicity g1 of g. Therefore, (n — 1)p1 +p1 — 1 =

(n—1)¢1 + g1 + 1 ie,n(p1 —q1) = 2. Since n > 2k i.e.,n > 2. So the relation does not hold. Therefore

f(z) #0 and g(z) # 0 for any z and (2)

f(2) # 0o and g(z) # oo for any z 3)

Therefore f(z) and g(z) can be expressed as

f(z) = €@ and g(z) = (4)

where a(z) and B(z) are non constant functions. Putting these value in equation (1) we get,

n2a(1)/j(1)en(a+ﬁ) -1 (5)
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Thus o™ and 8! have no zeros and we can set o) = €°*) and ) = ¢7*) where § and v are entire functions. Equation

(5) reduces to, n2e™(@+A+3+y — 1. Differentiating we have, n(a® + 0 + 50 44D =0 ie.,

n(e® +e) 460 440 =0 (6)

ie, n(e 7 +1)e” +a®Pe? + e = 0. By Lemma 2.12, we get, e 7 +1=01ie., 7 = —1ie,0 —y = (2m + 1)mi.

So from the above equalities, we get 6 = () = 0. So, § and ~ are constant. Therefore,

o™ and B are constant. (7)

From (1), (2), (3), (4) and (7) we obtain, f(z) = c1e®® and g(z) = coe”°® where c1,c2 and ¢ are three constants satisfying
(c1e2)™(20)% = —a?. O

Proof of Theorem 2.7. Let F = f™ and G = g™. So as in previous theorem we have F,G € A. So we have, Ey(a, F**)) C
El)(a, G(k)). So by Theorem 2.2, we have, FF = G or F®@G® — 42 The remains of the proof are in the same line as the

proof of the Theorem 2.6. O
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