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1. Introduction

In 1922, S. Banach [1], proved fixed point theorem for contraction mappings in complete metric space. It is first important

fundamental results in fixed point theory, which is also known as Banach contraction principle or Banach fixed point

theorem. After this provital result, many authors have studied various extensions and generalizations of Banach’s theorems

by considering contractive mappings on several directions in the literature (see [3–11]). In 2007, Huang and Zhang [2]

generalized concept of metric space, replacing the set of real numbers by an order Banach space, and showed some fixed

point theorems of different type of contractive mappings on cone metric spaces. Later, many authors generalized and studied

fixed and common fixed point results in cone metric spaces for normal and non normal cone. The Hardy-Roger’s contraction

was introduced in the work of Hardy-Rogers [15] which is generalization of Reich contraction. Recently, Cho et al. [12] Wang

and Guo [14] defined a concept of the c- distance in a cone metric space, which is a cone version of the w-distance of Kada

et al. [11] and proved some fixed point theorems in ordered cone metric spaces. Then Sintunavarat et al. [13] generalized

the Banach contraction theorem on c-distance of Cho et al. [12]. After that, several authors studied the existence and

uniqueness of the fixed point, common fixed point, coupled fixed point and common coupled fixed point problems using this

distance in cone metric spaces and ordered cone metric spaces see for examples [16–27].

In this paper, we studied some fixed point theorems of T-Hardy-Rogers contraction type mappings under the concept of

c-distance in complete cone metric spaces depended on another function. Throughout this paper, we do not impose the

normality condition for the cones, but the only assumption is that the cone P is solid, that is int P 6= ∅.
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2. Preliminary Notes

First, we recall some standard notations and definitions in cone metric spaces with some of their properties [2].

Definition 2.1. Let E be a real Banach space and P be a subset of Eand θ denote to the zero element in E, then P is

called a cone if and only if :

(1). P is a non-empty set closed and P 6= {θ},

(2). If a, b are non-negative real numbers and x, y ∈ P,then ax+ by ∈ P,

(3). x ∈ P and −x ∈ P ⇒ x = θ ⇔ P
⋂

(−P ) = {θ}.

Given a cone P ⊂ E, we define a partial ordering ≤ on E with respect to P by x = y if and only if y−x ∈ P . We shall write

x� y if y− x ∈ intP (where int P denotes the interior of P ). If intP 6= ∅, then cone P is solid. The cone P called normal

if there is a number K > 0 such that for all x, y ∈ E, θ ≤ x ≤ y ⇒ ‖x‖ = k‖y‖. The least positive number k satisfying the

above is called the normal constant of P .

Definition 2.2. Let x be a non-empty set. Suppose the mapping d : X ×X → E satisfies

(1). θ < d (x, y) for all x, y ∈ X and (x, y) = θ if and only if x = y,

(2). d (x, y) = d (y, x) for all x, y ∈ X,

(3). d (x, y) = d (x, z) + d (z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric space. The concept of cone metric space is more

general than that of a metric space.

Example 2.3. Let E = R2, P = {(x, y) ∈ E : x, y ≥ 0}, X = R and d : X ×X → E defined by d (x, y) = (|x− y|, α|x− y|),

where α ≥ 0 is a constant. Then (X, d) is a cone metric space.

Definition 2.4. Let (X, d) be a cone metric space, x ∈ X and {xn}n≥1 be a sequence in X. then,

(1). {xn}n≥1 Converges to x whenever for every c ∈ E with θ � c, if there is a natural number N such that d (xn, x) � c

for all n ≥ N. We denote this by lim
n→∞

xn = x or xn → x, (n→∞).

(2). {xn}n≥1 is said to be a Cauchy sequence if for every c ∈ E with θ � c, if there is a natural number N such that

d(xn, xm)� c for all n.m ≥ N

(3). (X, d) is called a complete cone metric space if every Cauchy sequence in X is Convergent.

Definition 2.5 ([28]). Let (X, d) be a cone metric space, P be a solid cone and T : X → X then

(1). T is said to be continuous if lim
n→∞

xn = x implies that lim
n→∞

Txn = Tx for all {xn} in X;

(2). T is said to be subsequently convergent, if for every sequence {xn} that {Txn} is convergent, implies {xn} has a

convergent subsequence,

(3). T is said to be sequentially convergent if for every sequence {xn}, if {Txn} is convergent, then {xn} is also convergent.

Lemma 2.6 ([29]).

(1). If E is a real Banach space with cone P and a ≤ λa where a ∈ P and θ ≤ λ < 1, then a = θ.
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(2). If c ∈ intP , θ ≤ an and an → θ then there a positive integer N such that an � c for all n ≥ N .

Next, we give the definition of c-distance on a cone metric space (X, d) which is generalization of w-distance of Kada et al.

[11] with some properties.

Definition 2.7 ([12]). Let (X, d) be a cone metric space. A function q : X × X → E is called a c-distance on X if the

following conditions hold:

(Q1). θ ≤ q(x, y) for all x, y ∈ X,

(Q2). q (x, y) ≤ q (x, y) + q(y, z) for all x, y, z ∈ X,

(Q3). for each x ∈ X and n ≥ 1, if q(x, yn) ≤ u for some u = ux ∈ P , then q(x, y) ≤ u. Whenever {yn} is a sequence in X

converging to a point y ∈ X,

(Q4). for all c ∈ E with θ � c, there exist e ∈ E with θ ∈ e such that q (z, x)� e and q (z, y)� e imply d (x, y)� c.

Example 2.8 ([12]). Let E = R and P = {x ∈ E : x ≥ 0}. Let X = [0,∞) and define a mapping d : X × X → E by

d (x, y) = |x− y| for all x, y ∈ X. Then (X, d) is a cone metric space. Define by q : X × X → E by q (x, y) = y for all

x, y ∈ X. Then qis a c-distance onX.

Example 2.9 ([17, 18]). Let E = R2 and P = {(x, y) ∈ E : x, y ≥ 0}. Let X = [0, 1] and define a mapping d : X ×X → E

by d (x, y) = (|x− y| , |x− y|) for all x, y ∈ X. Then (X, d) is a complete cone metric space. Define a mapping q : X×X → E

by q (x, y) = (y, y) for all x, y ∈ X. Then q is a c-distance.

Example 2.10 ([26]). Let X = C 1
R

[0, 1] (the set of real valued functions on X which also have continuous derivatives on

X), P = {ϕ ∈ E : ϕ (t) ≥ 0} . A cone metric d on X is defined by d (x, y) (t) := |x− y| .ϕ(t) where ϕ ∈ P is an arbitrary

function. This cone is non normal. Then (X, d) is a complete cone metric space. Define a mapping q : X × X → E by

q (x, y) (t) = y.et for all x, y ∈ X. It is easy to see that q is a c-distance.

Lemma 2.11 ([12]). Let (X, d) be a cone metric space and q is c-distance on X. Let {xn} and {yn} be a sequences in X

and x, y, z ∈ X. Suppose that un is sequence in P converging to 0. Then the following conditions hold:

(1). If q(xn, y) ≤ un and q(xn, z) ≤ un, then y = z.

(2). If q(xn, yn) ≤ un and q(xn, z) ≤ un, then {yn} converges to z.

(3). If q(xn, xm) ≤ un for m > n and {xn} is a Cauchy sequence in X.

(4). If q(y, xn) ≤ un then {xn} is a Cauchy sequence in X.

Remark 2.12 ([12]).

(1). q (x, y) = q(y, x) does not necessarily for all x, y ∈ X.

(2). q (x, y) = θ is not necessarily equivalent to x− y for all x, y ∈ X.

Now, we introduce the T-Hardy-Rogers’s contraction under the concept of c-distance in cone metric spaces.

Definition 2.13. Let (X, d) be a cone metric spaces and f, T : X → X be any two mappings. A mapping f is said to be

T-Hardy-Rogers contraction, if there exists a constant k, l,m, n, r ∈ [0, 1) with k + l +m+ n+ r < 1 such that

q(Tfx, Tfy) ≤ kq(Tx, Ty) + lq(Tx, Tfx) +mq(Ty, Tfy) + nq (Tx, Tfy) + rq(Ty, Tfx) for all x, y ∈ X.
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3. Main Results

Now, we give our main results in this paper.

Theorem 3.1. Let (X, d) be a complete cone metric spaces, P be a solid cone and q be a c-distance on X. In addition

T : X → X be an one to one, continuous function and f : X → X be a mappings satisfies the contractive condition

q (Tfx, Tfy) ≤ kq (Tx, Ty) + lq (Tx, Tfx) +mq (Ty, Tfy) + nq (Tx, Tfy) + rq(Ty, Tfx) (1)

for all x, y ∈ X. Where k, l,m, n, r ∈ [0, 1) are constants such that k + l+m+ n+ r < 1. Then f has an unique fixed point

x∗ ∈ X. And for any x ∈ X, iterative sequence {fxn} converges to the fixed point. If u = fu. Then q (Tu, Tu) = θ.

Proof. Choose x0 ∈ X.X. Set x1 = fx0, x2 = fx1 = f2x0, . . . , xn+1 = fxn = fn+1x0. Then, from (1), we have

q(Txn,Txn+1) = q(Tfxn−1, T fxn)

≤ kq(Txn−1, Txn) + lq(Txn−1, T fxn−1) +mq(Txn, T fx2n) + nq(Txn−1, T fx2n) + rq(Txn, T fxn−1)

≤ kq(Txn−1, Txn) + lq(Txn−1, Txn) +mq(Txn, Txn+1) + nq(Txn−1, Txn+1) + rq(Txn, Txn)

q (Tx2n, Tx2n+1) ≤ (k + l + n) q(Tx2n−1, Tx2n) + (m+ n)q(Tx2n, Tx2n+1)

⇒ ([1− (m+ n)]q(Tx2n, Tx2n+1) ≤ (k + l + n) q(Tx2n−1, Tx2n)

⇒ q(Tx2n, Tx2n+1) ≤ k + l + n

1− (m+ n)
q(Tx2n−1, Tx2n)

≤ hq(Tx2n−1, Tx2n). (2)

Where k+l+n
1−(m+n)

= h < 1. Let m > n ≥ 1, we have

q(Txn, Txm) ≤ q (Txn, Txn+1) + q (Txn+1, Txn+2) + · · ·+ q(Txn−1, Txn)

≤
(
hn + hn+1 + · · ·+ hn−1) q(Tx0, Tx1)

≤ hn

1− hq (Tx0, Tx1)→∞, h→∞.

Thus, Lemma 2.11 (3), which implies that, {Txn} is a Cauchy sequence in X. Since X is complete cone metric space, then

there exist v ∈ X such that

Txn → v as n→∞ (3)

Since T is subsequently convergent, {xn} has a convergent subsequence. So, there are x∗ ∈ X and {xni} such that

xni → x∗ as i→∞. (4)

Since T is continuous, then by (3), we obtain

Txi = Tx∗. (5)

Now from (3) and (5), we conclude that

Tx∗ = v (6)
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By Definition 2.7. (Q3), we have

q(Tx2n, Tx
∗) ≤ h2n

1− hq (Tx0, Tx1) (7)

On the other hand and using (5), we have

q(Txn, T fx
∗) ≤ q(Tfx2n−1, T fx

∗)

≤ kq(Tx2n−1, Tx
∗)

≤ kh
2n−1

1− h q (Tx0, Tx1)

=
h2n

1− hq (Tx0, Tx1) . (8)

By Lemma 2.11 (1), from (7) and (8), we have

Tx∗ = Tfx∗ (9)

Since T is one to one, then x∗ = fx∗. Thus x∗ is a fixed point of f . Moreover, suppose that, u = fu and then we have

q(Tu, Tu) = q(Tfu, Tfu)

≤ kq (Tu, Tu) + lq(Tu, Tfu) +mq(Tu, Tfu) + nq(Tu, Tfu) + rq(Tu+ Tfu)

= (k + l +m+ n+ r)q(Tu, Tu)

Since k+ l+m+n+ r < 1, Lemma 2.6 (1), shows that q (Tu, Tu) = θ. Finally suppose that, if y∗ is another common fixed

point of f. Then we have

q(Tx∗, T y∗) = q(Tfx∗, T fy∗)

≤ kq (Tx∗, T y∗) + lq(Tx∗, T fx∗) +mq(Ty∗, T fy∗) + nq(Tx∗, T fy∗) + lq(Ty∗, T fx∗)

= kq (x∗, y∗) + lq (x∗, x∗) +mq (y∗, y∗) + nq (x∗, y∗) + rq (y∗, x∗)

= (k + n+ r)q(Tx∗, T y∗)

≤ (k + l +m+ n+ r)q(Tx∗, T y∗).

Since k+ l+m+ n+ r < 1, Lemma2.6 (1), shows that q (Tx∗, T y∗) = θ. Also we have q (Tx∗, Tx∗) = θ. Thus, Lemma 2.11

(1), Tx∗ = Ty∗. Since T is one to one, then x∗ = y∗ so, x∗ is the unique fixed point of f .

Remark 3.2.

(1). If we put n = r = 0 in Theorem 3.1, we get the result of Theorem 3.1 of Fadail et al. [26].

(2). If we put l = m = n = r = 0 in Theorem 3.1, we get the result of Corollary 3.2 of Fadail et al. [26].

(3). We put l = n = r = 0 and m = l in Theorem 3.1, we get the result of Corollary 3.3 of Fadail et al. [26].

If we take T = 1 in the above theorem, we get the following corollary.

Corollary 3.3. Let (X, d) be a complete cone metric spaces, P be a solid cone and q be a c-distance on X. Let f : X → X

be a mappings satisfies the contractive condition

q (fx, fy) ≤ kq (x, y) + lq (x, fx) +mq (y, fy) + nq (x, fy) + rq(y, fx)

for all x, y ∈ X, where k, l,m, n, r ∈ [0, 1) are constants such that k + l +m+ n+ r < 1. Then f has an unique fixed point

x∗ ∈ X. And for any x ∈ X, iterative sequence {fxn} converges to the fixed point. If u = fu. Then q (u, u) = θ.
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