

International Journal of Mathematics And its Applications

On Intuitionistic Fuzzy γ^* Generalized Connectedness

Research Article

V.M.Riya^{1*} and D.Jayanthi¹

1 Department of Mathematics, Avinashilingam University, Coimbatore, Tamil Nadu, India.

- Abstract: In this paper we have introduced the intuitionistic fuzzy γ^* generalized connected space, intuitionistic fuzzy γ^* generalized super connected space and intuitionistic fuzzy regular γ^* generalized open set. We investigated some of their properties. Also we characterized the intuitionistic fuzzy γ^* generalized super connected space.
- MSC: 54A40.

Keywords: Intuitionistic fuzzy topology, intuitionistic fuzzy γ* generalized closed set, intuitionistic fuzzy γ* generalized continuous mapping, intuitionistic fuzzy γ* generalized connected space.
(c) JS Publication.

1. Introduction

The concept of fuzzy sets was introduced by Zadeh [11] and later Atanassov [1] generalized this idea to intuitionistic fuzzy sets using the notion of fuzzy sets. On the other hand Coker [2] introduced intuitionistic fuzzy topological spaces. Recently many fuzzy topological concept such as fuzzy connectedness have been generalized for intuitionistic fuzzy topological spaces. In this paper we introduce intuitionistic fuzzy γ^* generalized connectedness in intuitionistic fuzzy topological spaces. Also we provide some characterizations of intuitionistic fuzzy γ^* generalized connectedness.

2. Preliminaries

Definition 2.1 ([1]). An intuitionistic fuzzy set (IFS for short) A is an object having the form

$$A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}$$

where the functions $\mu_A : X \to [0,1]$ and $\nu_A : X \to [0,1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non-membership (namely $\nu_A(x)$) of each element $x \in X$ to the set A, respectively, and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$. Denote by IFS(X), the set of all intuitionistic fuzzy sets in X. An intuitionistic fuzzy set A in X is simply denoted by $A = \langle x, \mu_A, \nu_A \rangle$ instead of denoting $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X\}$.

Definition 2.2 ([1]). Let A and B be two IFSs of the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X\}$ and $B = \{\langle x, \mu_B(x), \nu_B(x) \rangle : x \in X\}$. Then,

^{*} E-mail: riyavm@gmail.com

- (a). $A \subseteq B$ if and only if $\mu_A(x) \leq \mu_B(x)$ and $\nu_A(x) \geq \nu_B(x)$ for all $x \in X$,
- (b). A = B if and only if $A \subseteq B$ and $A \supseteq B$,
- (c). $A^{c} = \{ \langle x, \nu_{A}(x), \mu_{A}(x) \rangle : x \in X \},\$
- (d). $A \cup B = \{ \langle x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) \rangle : x \in X \},\$
- (e). $A \cap B = \{ \langle x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x) \rangle : x \in X \}.$

The intuitionistic fuzzy sets $0_{\sim} = \langle x, 0, 1 \rangle$ and $1_{\sim} = \langle x, 1, 0 \rangle$ are respectively the empty set and the whole set of X.

Definition 2.3 ([2]). An intuitionistic fuzzy topology (IFT in short) on X is a family τ of IFSs in X satisfying the following axioms:

- (1). $0_{\sim}, 1_{\sim} \in \tau$,
- (2). $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$,
- (3). $\cup G_i \in \tau$ for any family $\{G_i : i \in J\} \in \tau$.

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS in short) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS in short) in X. The complement Ac of an IFOS A in an IFTS (X, τ) is called an intuitionistic fuzzy closed set (IFCS in short) in X.

Definition 2.4 ([9]). Two IFSs A and B are said to be q-coincident (A_qB in short) if and only if there exits an element $x \in X$ such that $\mu_A(x) > \nu_B(x)$ or $\nu_A(x) < \mu_B(x)$.

Definition 2.5 ([9]). Two IFSs A and B are said to be not q-coincident $(A_{\bar{q}}B \text{ in short})$ if and only if $A \subseteq B^c$.

Definition 2.6 ([3]). An IFS $A = \langle x, \mu_A, \nu_A \rangle$ in an IFTS (X, τ) is said to be an

- (1). intuitionistic fuzzy γ closed set (IF γ CS in short) if $cl(int(A)) \cap int(cl(A)) \subseteq A$
- (2). intuitionistic fuzzy γ open set (IF γOS in short) if $A \subseteq int(cl(A)) \cup cl(int(A))$.

Definition 2.7 ([3]). Let A be an IFS in an IFTS (X, τ) . Then the γ -interior and γ -closure of A are defined as

 $\gamma int(A) = \bigcup \{G/G \text{ is an } IF\gamma OS \text{ in } X \text{ and } G \subseteq A \}$ $\gamma cl(A) = \cap \{K/K \text{ is an } IF\gamma CS \text{ in } X \text{ and } A \subseteq K \}$

Note that for any IFS A in (X, τ) , we have $\gamma cl(A^c) = (\gamma int(A))^c$ and $\gamma int(A)^c = (\gamma cl(A))^c$.

Corollary 2.8 ([2]). Let A, A_i ($i \in J$) be intuitionistic fuzzy sets in X and B, B_j ($j \in K$) be intuitionistic fuzzy sets in Y and $f: X \to Y$ be a function. Then

- (1). $A_1 \subseteq A_2 \Rightarrow f(A_1) \subseteq f(A_2)$
- (2). $B_1 \subseteq B_2 \Rightarrow f^{-1}(B_1) \subseteq f^{-1}(B_2)$
- (3). $A \subseteq f^{-1}(f(A))$ [If f is injective, then $A = f^{-1}(f(A))$]
- (4). $f(f^{-1}(B)) \subseteq B$ [If f is surjective, then $B = f(f^{-1}(B))$]

- (5). $f^{-1}(\cup B_j) = \cup f^{-1}(B_j)$
- (6). $f^{-1}(\cap B_j) = \cap f^{-1}(B_j)$
- (7). $f^{-1}(0_{\sim}) = 0_{\sim}$
- (8). $f^{-1}(1_{\sim}) = 1_{\sim}$
- (9). $f^{-1}(B^c) = (f^{-1}(B))^c$

Definition 2.9 ([5]). An IFS A of an IFTS (X, τ) is said to be an intuitionistic fuzzy γ^* generalized closed set (briefly $IF\gamma^*GCS$) if $cl(int(A)) \cap int(cl(A)) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in (X, τ) .

Definition 2.10 ([6]). A mapping $f : (X, \tau) \to (Y, \sigma)$ is called an intuitionistic fuzzy γ^* generalized continuous (IF γ^*G continuous for short) mapping if $f^{-1}(V)$ is an IF γ^*GCS in (X, τ) for every IFCS V of (Y, σ) .

Definition 2.11 ([5]). If every $IF\gamma^*GCS$ in (X, τ) is an $IF\gamma CS$ in (X, τ) , then the space can be called as an intuitionistic fuzzy $\gamma^*T_{1/2}$ ($IF\gamma^*T_{1/2}$ in short) space.

Definition 2.12 ([5]). If every $IF\gamma^*GCS$ in (X, τ) is an IFCS in (X, τ) , then the space can be called as an intuitionistic fuzzy $\gamma^*cT_{1/2}$ ($IF\gamma^*cT_{1/2}$ in short) space.

Definition 2.13 ([2]). An IFTS (X, τ) is said to be an intuitionistic fuzzy C₅-connected space if the only IFS which are both IFOS and IFCS are 0_{\sim} and 1_{\sim} .

Definition 2.14 ([10]). An IFTS (X, τ) is said to be an intuitionistic fuzzy GO-connected space if the only IFS which are both IFGOS and IFGCS are 0_{\sim} and 1_{\sim} .

Definition 2.15 ([8]). An IFTS (X, τ) is an intuitionistic fuzzy C_5 -connected between two IFSs A and B if there is no IFOS E in (X, τ) such that $A \subseteq E$ and $E_{\bar{q}}B$.

Remark 2.16 ([7]). If an IFS A in an IFTS (X, τ) is an IF γ^* GCS in X, then γ^* gcl(A) = A. But the converse may not be true in general, since intersection does not exist in IF γ^* GCS [5].

Remark 2.17 ([7]). If an IFS A in an IFTS (X, τ) is an IF γ^* GOS in X, then γ^* gint(A) = A. But the converse may not be true in general, since union does not exist in IF γ^* GOS [5].

3. Intuitionistic Fuzzy γ^* Generalized Connected Spaces

In this section we introduce intuitionistic fuzzy γ^* generalized connected space and investigate some of their properties.

Definition 3.1. An IFTS (X, τ) is said to be an IF γ^* generalized (IF γ^*G for short) connected space if the only IFS which are both IF γ^*GCS and IF γ^*CS are 0_{\sim} and 1_{\sim} .

Theorem 3.2. Every $IF\gamma^*G$ connected space is an IFC_5 -connected space but not conversely in general.

Proof. Let (X, τ) be an IF γ^* G connected space. Suppose (X, τ) is not an *IFC*₅-connected space [3], then there exists a proper IFS A which is both an IFOS and an IFCS in (X, τ) . That is A is both an IF γ^* GOS and an IF γ^* GCS in (X, τ) . This implies that (X, τ) is not an IF γ^* G connected space, a contradiction. Therefore (X, τ) must be an *IFC*₅-connected space.

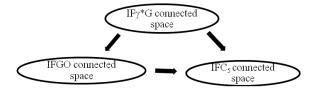
Example 3.3. Let $X = \{a, b\}$ and $\tau = \{0_{\sim}, G_1, G_2, 1_{\sim}\}$ be an IFT on X, where $G_1 = \langle x, (0.2_a, 0.2_b), (0.7_a, 0.8_b) \rangle$ and $G_2 = \langle x, (0.6_a, 0.5_b), (0.4_a, 0.4_b) \rangle$. Then (X, τ) is an IFC₅-connected space but not an IF γ^*G connected space, since the IFS $A = \langle x, (0.5_a, 0.4_b), (0.5_a, 0.5_b) \rangle$ is both an IF γ^*G open and an IF γ^*G closed set in (X, τ) .

Theorem 3.4. Every $IF\gamma^*G$ connected space is an IFGO-connected space but not conversely in general.

Proof. Let (X, τ) be an IF γ^* G connected space. Suppose (X, τ) is not an IFGO-connected space, then there exists a proper IFS A which is both an IFGOS and an IFGCS in (X, τ) . That is A is both an IF γ^* GOS and an IF γ^* GCS in (X, τ) . This implies that (X, τ) is not an IF γ^* G connected space, a contradiction. Therefore (X, τ) must be an IFGO-connected space.

Example 3.5. In Example 3.3, (X, τ) is an IFGO connected space but not an IF γ^*G connected space, since the IFS $A = \langle x, (0.5_a, 0.4_b), (0.5_a, 0.5_b) \rangle$ is both IF γ^*G open and IF γ^*G closed set in (X, τ) .

The relation between various types of intuitionistic fuzzy connectedness is given in the following diagram.



In the above diagram the reverse implications are not true in general.

Theorem 3.6. The IFTS (X, τ) is an IF γ^*G connected space if and only if there exists no nonzero IF γ^*G open sets A and B in (X, τ) such that $A = B^c$.

Proof. Necessity: Let A and B be two IF γ^* GOSs in (X, τ) such that $A \neq 0_{\sim}$, $B \neq 0_{\sim}$ and $A = B^c$. Therefore $A = B^c$ is an IF γ^* GCS. Since $B \neq 0_{\sim}$, $A = B^c \neq 1_{\sim}$. Hence A is a proper IFS which is both IF γ^* GOS and IF γ^* GCS in (X, τ) . Hence (X, τ) is not an IF γ^* G connected space. But it is a contradiction to our hypothesis. Hence there exists no non-zero IF γ^* GOSs A and B in (X, τ) such that $A = B^c$.

Sufficiency: Suppose (X, τ) is not an IF γ^* G connected space. Then there exists an IFS A which is both an IF γ^* GOS and an IF γ^* GCS with $0_{\sim} \neq A \neq 1_{\sim}$. Now let $B = A^c$. Then B is an IF γ^* GOS and $B \neq 1_{\sim}$. This implies $B^c = A \neq 0_{\sim}$, which is a contradiction to our hypothesis. Hence (X, τ) is an IF γ^* G connected space.

Theorem 3.7. Let (X, τ) be an $IF\gamma^* cT_{1/2}$ space, then the following are equivalent:

- (1). (X, τ) is an $IF\gamma^*G$ connected space
- (2). (X, τ) is an IFGO connected space
- (3). (X, τ) is an IFC5 connected space

Proof. $(1) \rightarrow (2)$ is obvious from the Theorem 3.4. $(2) \rightarrow (3)$ is obvious.

 $(3) \rightarrow (1)$ Let (X, τ) be an intuitionistic fuzzy C_5 connected space. Suppose (X, τ) is not an IF γ^* G connected space, then there exists a proper IFS A in (X, τ) which is both an IF γ^* GOS and an IF γ^* GCS in (X, τ) . But since (X, τ) is an IF $\gamma^* cT_{1/2}$ space, A is both an IFOS and an IFCS in (X, τ) . This implies that (X, τ) is not an *IFC*₅ connected, which is a contradiction to our hypothesis. Therefore (X, τ) must be an IF γ^* G connected space. **Theorem 3.8.** If $f: (X, \tau) \to (Y, \sigma)$ is an $IF\gamma^*G$ continuous mapping and (X, τ) is an connected space, then (Y, σ) is an IFC_5 connected space.

Proof. Let (X, τ) be an IF γ^* G connected space. Suppose (Y, σ) is not an IFC_5 connected space, then there exists a proper IFS A which is both an IFOS and an IFCS in (Y, σ) . Since f is an IF γ^* G continuous mapping, $f^{-1}(A)$ is both an IF γ^* GOS and an IF γ^* GCS [6] in (X, τ) . But it is a contradiction to our hypothesis. Hence (Y, σ) must be an IFC_5 connected space.

Theorem 3.9. If $f: (X, \tau) \to (Y, \sigma)$ is an $IF\gamma^*G$ irresolute surjection mapping and (X, τ) is an $IF\gamma^*G$ connected space, then (Y, σ) is an $IF\gamma^*G$ connected space.

Proof. Suppose (Y, σ) is not an IF γ^* G connected space, then there exists a proper IFS A such that A is both an IF γ^* GOS and an IF γ^* GCS in (Y, σ) . Since f is an IF γ^* G irresolute mapping, $f^{-1}(A)$ is both an IF γ^* GOS and an IF γ^* GCS in (X, τ) [6]. But this is a contradiction to our hypothesis. Hence (Y, σ) must be an IF γ^* G connected space.

Definition 3.10. An IFTS (X, τ) is an IF γ^*G connected between two IFSs A and B if there is no IF $\gamma^*GOS E$ in (X, τ) such that A E and $E_{\bar{q}}B$.

Example 3.11. Let $X = \{a, b\}$ and $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.7_a, 0.8_b), (0.3_a, 0.2_b) \rangle$. Then, $IF\gamma^*GO(X) = \{0_{\sim}, 1_{\sim}, \mu_a \in [0, 1], \mu_b \in [0, 1], \nu_a \in [0, 1], \nu_b \in [0, 1]/0 \le \mu_a + \nu_a \le 1, 0 \le \mu_b + \nu_b \le 1\}$. The IFTS (X, τ) is an $IF\gamma^*G$ connected between the two IFSs $A = \langle x, (0.6_a, 0.7_b), (0.4_a, 0.3_b) \rangle$ and $B = \langle x, (0.3_a, 0.4_b), (0.7_a, 0.6_b) \rangle$ as there exists no $IF\gamma^*GO$ E such that A E and $E_{\bar{q}}B$.

Theorem 3.12. If an IFTS (X, τ) is an IF γ^*G connected between two IFSs A and B, then it is IFC₅ connected between A and B but the converse may not be true in general.

Proof. Suppose (X, τ) is not an IFC_5 connected between A and B, then there exists an IFOS E in (X, τ) such that A E and $E_{\bar{q}}B$. Since every IFOS is an IF γ^* GOS, there exists an IF γ^* GOS E in (X, τ) such that $A \subseteq E$ and $E_{\bar{q}}B$. This implies (X, τ) is not an IF γ^* G connected between A and B. Thus we get a contradiction to our hypothesis. Therefore the IFTS (X, τ) must be an IFC_5 connected between A and B.

Example 3.13. Let $X = \{a, b\}$ and $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.2_a, 0.3_b), (0.7_a, 0.7_b) \rangle$. Then (X, τ) is IFC₅-connected between the IFSs $A = \langle x, (0.2_a, 0.1_b), (0.8_a, 0.9_b) \rangle$ and $B = \langle x, (0.7_a, 0.8_b), (0.2_a, 0.2_b) \rangle$. But (X, τ) is not IF γ^*G connected between A and B, since the IFS $E = \langle x, (0.2_a, 0.1_b), (0.8_a, 0.9_b) \rangle$ is an IF γ^*GOS such that $A \subseteq E$ and $E \subseteq B^c$.

Theorem 3.14. An IFTS (X, τ) is $IF\gamma^*G$ connected between two IFSs A and B if and only if there is no $IF\gamma^*GOS$ and $IF\gamma^*GCS E$ in (X, τ) such that $A \subseteq E \subseteq B^c$.

Proof. Necessity: Let (X, τ) be IF γ^* G connected between two IFSs A and B. Suppose that there exists an IF γ^* GOS and IF γ^* GCS E in (X, τ) such that $A \subseteq E \subseteq B^c$, then $E_{\bar{q}}B$ and $A \subseteq E$. This implies (X, τ) is not IF γ^* G connected between A and B, by a contradiction to our hypothesis. Therefore there is no IF γ^* GOS and an IF γ^* GCS E in (X, τ) such that $A \subseteq E \subseteq B^c$.

Sufficiency: Suppose that (X, τ) is not IF γ^* G connected between A and B. Then there exists an IF γ^* GOS E in (X, τ) such that $A \subseteq E$ and $E_{\bar{q}}B$. This implies that there is no IF γ^* GOS E in (X, τ) such that $A \subseteq E \subseteq B^c$. But this is a contradiction to our hypothesis. Hence (X, τ) is IF γ^* G connected between A and B.

Theorem 3.15. If an IFTS (X, τ) is IF γ^*G connected between A and B and $A \subseteq A_1$, $B \subseteq B_1$, then (X, τ) is an IF γ^*G connected between A_1 and B_1 .

Proof. Suppose that (X, τ) is not IF γ^* G connected between A_1 and B_1 , then by Definition, there exists an IF γ^* GOS E in (X, τ) such that $A_1 \subseteq E$ and $E_{\bar{q}}B$. This implies $E \subseteq B_1^c$ and $A_1 \subseteq E$. That is $A \subseteq A_1 \subseteq E$. Hence $A \subseteq E$. Since $E \subseteq B_1^c$, $B_1 \subseteq E^c$. That is $B \subseteq B_1 \subseteq E^c$. Hence $E \subseteq B^c$. Therefore (X, τ) is not IF γ^* G connected between A and B, which is a contradiction to our hypothesis. Hence X must be IF γ^* G connected between A_1 and B_1 .

Theorem 3.16. Let (X, τ) be an IFTS and A and B be IFSs in (X, τ) . If A_qB , then (X, τ) is $IF\gamma^*G$ connected between A and B.

Proof. Suppose (X, τ) is not an IF γ^* G connected between A and B. Then there exists an IF γ^* GOS E in (X, τ) such that $A \subseteq E$ and $E \subseteq B^c$. This implies that $A \subseteq B^c$. That is $A_{\bar{q}}B$. But this is a contradiction to our hypothesis. Hence (X, τ) must be IF γ^* G connected between A and B.

Theorem 3.17. An IFTS (X, τ) is an IF γ^*G connected space if and only if there exists no non-zero IF γ^*G open sets A and B in (X, τ) such that $B = A^c$, $B = (cl(A))^c$, $A = (cl(B))^c$.

Proof. Necessity: Assume that there exist IFSs A and B such that $A \neq 0_{\sim} \neq B$, $B = A^c$, $B = (\gamma cl(A))^c$, $A = (\gamma cl(B))^c$. Since $(\gamma cl(A))^c$ and $(\gamma cl(B))^c$ are IF γ open sets in (X, τ) , A and B are IF γ^* G open sets in (X, τ) . This implies (X, τ) is not an IF γ^* G connected space, which is a contradiction. Therefore there exists no non-zero IF γ^* G open sets A and B in (X, τ) such that $B = A^c$, $B = (\gamma cl(A))^c$, $A = (\gamma cl(B))^c$.

Sufficiency: Let A be both an IF γ^* GOS and an IF γ^* GCS in (X, τ) such that $1_{\sim} \neq A \neq 0_{\sim}$. Now by taking $B = A^c$, we obtain a contradiction to our hypothesis. Hence (X, τ) is an IF γ^* G connected space.

Definition 3.18. An IFS A is called an intuitionistic fuzzy regular γ^* generalized open set (IFR γ^* GOS for short) if $A = \gamma^* gint(\gamma^* gcl(A))$. The complement of an IFR γ^* GOS is called an intuitionistic fuzzy regular γ^* generalized closed set (IFR γ^* GCS for short).

Definition 3.19. An IFTS (X, τ) is called an intuitionistic fuzzy γ^* generalized super connected space (IF γ^* GS connected for short) if there exists no proper IFR γ^* GOS in (X, τ) .

Theorem 3.20. Let (X, τ) be an IFTS, then the following are equivalent:

- (1). (X, τ) is an $IF\gamma^*GS$ connected space.
- (2). For every non-zero IFR $\gamma^* GOS A$, $\gamma^* gcl(A) = 1_{\sim}$.
- (3). For every IFR $\gamma^* GCS A$ with $A \neq 1_{\sim}, \ \gamma^* gint(A) = 0_{\sim}$.
- (4). There exists no IFR γ^* GOSs A and B in (X, τ) such that $A \neq 0_{\sim} \neq B$, $A \subseteq B^c$.
- (5). There exists no IFR γ^* GOSs A and B in (X, τ) such that $A \neq 0_{\sim} \neq B$, $B = (\gamma^* gcl(A))^c$, $A = (\gamma^* gcl(B))^c$.
- (6). There exists no IFR γ^* GCSs A and B in (X, τ) such that $A \neq 1_{\sim} \neq B$, $B = (\gamma^* gint(A))^c$, $A = (\gamma^* gint(B))^c$.

Proof. (1) \Rightarrow (2) Let $A \neq 0_{\sim}$ be an IFR γ^* GOS in X and $\gamma^* gcl(A) \neq 1_{\sim}$. Now let $B = \gamma^* gint(\gamma^* gcl(A))^c$. Then B is a proper IFR γ^* GOS in (X, τ) . But this is a contradiction to the fact that (X, τ) is an IF γ^* GS connected space. Therefore $\gamma^* gcl(A) = 1_{\sim}$.

(2) \Rightarrow (3) Let $A \neq 1_{\sim}$ be an IFR γ^* GCS in (X, τ) . If $B = A^c$, then B is an IFR γ^* GOS in (X, τ) with $B \neq 0_{\sim}$. Hence $\gamma^* gcl(B) = 1_{\sim}$, by hypothesis. This implies $(\gamma^* gcl(B))^c = 0_{\sim}$. That is $\gamma^* gint(B^c) = 0_{\sim}$. Hence $\gamma^* gint(A) = 0_{\sim}$.

 $(3) \Rightarrow (4) \text{ Suppose A and B be two IFR} \gamma^* \text{GOSs in } (X, \tau) \text{ such that } A \neq 0_{\sim} \neq B, A \subseteq B^c. \text{ Since } B^c \text{ is an IFR} \gamma^* \text{GCS in } (X, \tau) \text{ and } B \neq 0_{\sim} \text{ implies } B^c \neq 1_{\sim}, B^c = \gamma^* gcl(\gamma^* gint(B^c)) \text{ and we have } \gamma^* gint(B^c) = 0_{\sim}. \text{ But } A \subseteq B^c. \text{ Therefore } 0_{\sim} \neq A = \gamma^* gcl(\gamma^* gcl(A))\gamma^* gint(\gamma^* gcl(B^c)) = \gamma^* gint(\gamma^* gcl(\gamma^* gcl(\gamma^* gint(B^c)))) = \gamma^* gint(\gamma^* gcl(\gamma^* gcl(B^c))) = \gamma^* gint(B^c) = 0_{\sim}. \text{ A contradiction arises. Therefore } (4) \text{ is true.}$

(4) \Rightarrow (1) Suppose $0_{\sim} \neq A \neq 1_{\sim}$ be an IFR γ^* GOSs in (X, τ) . If we take $B = (\gamma^* gcl(A))^c$, then B is an IFR γ^* GOS, since $\gamma^* gint(\gamma^* gcl(B)) = \gamma^* gint(\gamma^* gcl(\gamma^* gcl(A))^c) = \gamma^* gint(\gamma^* gcl(A)))^c = \gamma^* gint(A^c) = (\gamma^* gcl(A))^c = B$. Also we get $B \neq 0_{\sim}$, since otherwise, if $B = 0_{\sim}$, this implies $(\gamma^* gcl(A))^c = 0_{\sim}$. That is $\gamma^* gcl(A) = 1_{\sim}$. Hence $A = \gamma^* gint(\gamma^* gcl(A)) = \gamma^* gint(1_{\sim}) = 1_{\sim}$, which is a contradiction. Therefore $B \neq 0_{\sim}$ and $A \subseteq B^c$. But this is a contradiction to (4). Therefore (X, τ) is an IF γ^* GS connected space.

 $(1)\Rightarrow(5)$ Suppose A and B are any two IFR γ^* GOSs in (X,τ) such that $A \neq 0_{\sim} \neq B$, $B = (\gamma^*gcl(A))^c$ and $A = (\gamma^*gcl(B))^c$. Now we have $\gamma^*gint(\gamma^*gcl(A)) = \gamma^*gint(B^c) = (\gamma^*gcl(B))^c = A$, $A \neq 0_{\sim}$ and $A \neq 1_{\sim}$, since if $A = 1_{\sim}$, then $1_{\sim} = (\gamma^*gcl(B))^c \Rightarrow \gamma^*gcl(B) = 0_{\sim} \Rightarrow B = 0_{\sim}$. But $B \neq 0_{\sim}$. Therefore $A \neq 1_{\sim} \Rightarrow A$ is a proper IFR γ^* GOS in (X,τ) , which is a contradiction to (1). Hence (5) is true.

(5) \Rightarrow (1) Suppose A is an IFR γ^* GOS in (X, τ) such that $0_{\sim} \neq A \neq 1_{\sim}$. Now take $B = (\gamma^* gcl(A))^c$. In this case we get $B \neq 0_{\sim}$ and B is an IFR γ^* GOS in (X, τ) , $B = (\gamma^* gcl(A))^c$ and $(\gamma^* gcl(B))^c = (\gamma^* gcl(\gamma^* gcl(A))^c)^c = \gamma^* gint(\gamma^* gcl(A)^c)^c = \gamma^* gint(\gamma^$

(5) \Rightarrow (6) Suppose A and B be two IFR γ^* GCSs in (X, τ) such that $A \neq 1_{\sim} \neq B$, $B = (\gamma^* gint(A))^c$ and $A = (\gamma^* gint(B))^c$. Taking $C = A^c$ and $D = B^c$, C and D become IFR γ^* GOSs in (X, τ) with $C \neq 0_{\sim} \neq D$, $D = (\gamma^* gcl(C))^c = (\gamma^* gcl(D))^c$, which is a contradiction to (5). Hence (6) is true.

 $(6) \Rightarrow (5)$ It can be proved easily by the similar way as in $(5) \Rightarrow (6)$.

References

- [1] K.T.Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1)(1986), 87-96.
- [2] D.Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 88(1)(1997), 81-89.
- [3] I.M.Hanafy, Intuitionistic Fuzzy γ-Continuity, Canad. Math. Bull., 52(4)(2009), 544554.
- [4] Joung Kon Jeon, Young Bae Jun and Jin Han Park, Intuitionistic fuzzy alpha continuity and intuitionistic fuzzy pre continuity, International Journal of Mathematics and Mathematical Sciences, 2005(19)(2005), 3091-3101.
- [5] V.M.Riya and D.Jayanthi, Intuitionistic fuzzy γ^* generalized closed sets, Advances in Fuzzy Mathematics, 12(3)(2017), 389-410.
- [6] V.M.Riya and D.Jayanthi, Intuitionistic fuzzy γ^{*} generalized continuous mappings, Global Journal of Pure and Applied Mathematics, 13(7)(2017), 2859-2874.
- [7] V.M.Riya and D.Jayanthi, Intuitionistic fuzzy almost γ^{*} generalized continuous mappings, Applied Mathematical Sciences, 11(31)(2017), 1531-1538.
- [8] R.Santhi and K.Sakthivel, Intuitionistic fuzzy alpha generalized connectedness in fuzzy topological spaces, Int. Jour. of Appl. Math. and Physics, 3(1)(2011), 1-5.
- [9] S.S.Thakur and Rekha Chaturvedi, Regular Generalized closed sets in intuitionistic fuzzy topological spaces, Universitatea Din Bacau, Studii Si Cercetari Stiintifice, Seria, 6(2006), 257-272.

- [10] S.S.Thakur and R.Chaturvedi, Generalized continuity in intuitionistic fuzzy topological spaces, Notes on Intuitionistic Fuzzy Sets, 12(1)(2006), 38-44.
- [11] L.A.Zadeh, Fuzzy sets, Information and Control, 8(3)(1965), 338-353.