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1. Introduction

We begin with simple, finite, undirected graph G = (V (G), E(G)) where V (G) and E(G) denotes the vertex set and the

edge set respectively. For a finite set A, |A| denotes the number of elements of A. For all other terminology we follow Gross

[5]. We provide some useful definitions for the present work.

Definition 1.1. The graph labeling is an assignment of numbers to the vertices or edges or both subject to certain condi-

tion(s).

A detailed survey of various graph labeling is explained in Gallian [4].

Definition 1.2. For a graph G = (V (G), E(G)), a mapping f : V (G) → {0, 1} is called a binary vertex labeling of G and

f(v) is called the label of the vertex v of G under f . For an edge e = uv, the induced edge labeling f∗ : E(G) → {0, 1}

defined as f∗(uv) = |f(u)− f(v)|. Let vf (0), vf (1) be the number of vertices of G having labels 0 and 1 respectively under f

and let ef (0), ef (1) be the number of edges having labels 0 and 1 respectively under f∗.

Definition 1.3. A binary vertex labeling f of a graph G is called a cordial labeling if |vf (1)−vf (0)| ≤ 1 and |ef (1)−ef (0)| ≤ 1.

A graph G is said to be cordial if it admits cordial labeling.

The concept of cordial labeling was introduced by Cahit [1]. Lee and Liu [6] proved that all complete bipartite graphs and

all fans are cordial. Further, they proved that, the cycle Cn is cordial if and only if n 6≡ 2 (mod 4), the wheel Wn is cordial

if and only if n 6≡ 3 (mod 4), n ≥ 3. Prajapati and Gajjar [13] proved that complement of wheel graph and complement of

cycle graph are cordial if n 6≡ 4 (mod 8) or n 6≡ 7 (mod 8). Prajapati and Gajjar [14] proved that cordial labeling in the

context of duplication of cycle graph and path graph.
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Definition 1.4. Let G be a graph with vertex set V (G) and edge set E(G) and let f : E(G) → {0, 1}. Define f∗ on V (G)

by f∗ =
∑
{f(uv)/uv ∈ E(G)} (mod 2). The function f is called an E- cordial labeling of G if |vf (1) − vf (0)| ≤ 1 and

|ef (1)− ef (0)| ≤ 1. A graph is called E-cordial if it admits E-cordial labeling.

In 1997 Yilmaz and Cahit [19] introduced E-cordial labeling as a weaker version of edge-graceful labeling and with the blend

of cordial labeling. They proved that the trees with n vertices, Kn, Cn are E-cordial if and only if n 6≡ 2 (mod 4) while

Km,n admits E-cordial labeling if and only if m + n 6≡ 2 (mod 4).

Definition 1.5. A prime labeling of a graph G is an injective function f : V (G)→ {1, 2, ..., |V |} such that for every pair of

adjacent vertices u and v, gcd(f(u), f(v)) = 1. The graph which admits a prime labeling is called a prime graph.

The notion of a prime labeling was originated by Roger Entringer and was discussed in a paper by Tout et al. [16] . Many

researchers have studied prime graphs. For e.g. Fu and Huang [3] have proved that Pn and K1,n are prime graphs. Lee et

al. [7] have proved that Wn is a prime graph if and only if n is even. Vaidya and Prajapati [17] has proved that if n1 ≥ 4 is

an even integer and n2 is a natural number, then the graph obtained by identifying any of the rim vertices of a wheel Wn1

with an end vertex of a path graph Pn2 is a prime graph. Vaidya and Prajapati [18] have proved that switching the apex

vertex in Wn is a prime graph and switching a rim vertex in Wn is a prime graph if n+ 1 is prime. In the same paper it has

been proved that Wn is switching invariant if n is even.

Definition 1.6. G is called a vertex prime graph if there is a bijection f : E(G)→ {1, 2, ..., |E|} such that for any vertex v,

gcd
uv∈E

{f(uv)} = 1. The bijection f is called a vertex prime labeling of G.

Definition 1.7. Let G = (V,E) be a graph with p verhtices and q edges. A bijection f : V (G)→ {1, 2, ..., |V |+ |E|} is said

to be a total prime labeling if for each edge e = uv, the labels assigned to u and v are relatively prime and for each vertex

of degree at least 2, the greatest common divisor of the labels on the incident edges is 1. A graph which admits Total Prime

Labeling is called total prime graph.

Prime labeling and vertex prime labeling are introduced in [16] and [2]. Combining these two, The notion of a total prime

labeling was originated by Ramasubramanian and Kala [15] have proved that paths Pn, star K1,n, bistar, comb, cycles Cn

where n is even, helm Hn, K2,n and fan graph are total prime graph.

Definition 1.8. Let G = (V,E) be a (p, q) graph, and f be a map from V (G) to {1, 2, ..., p}. For each edge uv assign the

label |f(v) − f(u)| ≤ 1 ; f is called a difference cordial labeling if f is a one-to-one map and |ef (1) − ef (0)| ≤ 1 where

ef (1) denotes the number of edges labeled with 1 while ef (0) denotes the number of edges not labeled with 1. A graph with a

difference cordial labeling is called a difference cordial graph.

Ponraj et al. [10] first introduced the concept of difference cordial labeling in 2013. After that, they introduced many concepts

and studied some types of graphs that have this kind of labeling, such as path, cycle, complete graph, complete bipartite

graph, bistar, wheel, web, sun ower graph, lotus inside a circle, pyramid, permutation graph, book with n pentagonal pages,

t -fold wheel, and double fan, and some more standard graphs were investigated in [8–12]. In this paper, for every natural

number n the set {1, 2, ..., n} will be denoted by [n]. Origami is an ancient Japanese art of folding paper. The word origami

comes from two Japanese words: “ori”, which means to fold, and “kami”, which means paper. Usually origami models are

made strictly by folding paper. There is no cutting or gluing involved. Even if origami is mainly an artistic product, it has

received a great deal of attention from mathematicians, because of its interesting algebraic and geometrical properties. We

present a new graph inspired from a model of origami namely Braided Star.
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Definition 1.9. Let a0 be the apex vertex and a1, a2, ..., an−1, an be consecutive n rim vertices of wheel graph Wn, n ≥ 3; let

b1, b2, b3, ..., b2n−1, b2n be consecutive 2n vertices of cycle C2n; let c1, c2, c3, ..., c2n−1, c2n be consecutive 2n vertices of cycle

C2n. Join each ai to b2i−1 by an edge and b2i to c2i by an edge. Take a new vertex di; Join each di to c2i−1 and c2i+1 by an

edge, for each i ∈ [n], subscript are taken modulo n. The resulting graph is called braided star graph BRSn. which shown in

Figure 1.

Figure 1. The Braided Star Graph BRS8.

2. Main Results

Theorem 2.1. BRSn is cordial.

Proof. For the graph BRSn, V (BRSn) = {a0, ai, di/1 ≤ i ≤ n} ∪ {bi, ci/1 ≤ i ≤ 2n} and E(BRSn) =

{a0ai, aib2i−1, b2ic2i, c2i−1di/1 ≤ i ≤ n} ∪ {bibi+1, cici+1/1 ≤ i ≤ 2n− 1} ∪ {ana1, b2nb1, c2nc1, dnc1} ∪ {aiai+1, dic2i+1/1 ≤

i ≤ n− 1}. Therefore |V (BRSn)| = 6n + 1 and |E(BRSn)| = 10n. Define f : V (BRSn)→ {0, 1} as follows:

f(x) =


0, if x = a0;

1, if x ∈ {ai, b2i−1, di}, i ∈ [n];

0, if x ∈ {b2i, c2i, c2i−1}, i ∈ [n].

Thus vf (1) = 3n and vf (0) = 3n+ 1. The induced edge labeling f∗ : E(BRSn)→ {0, 1} is f∗(uv) = |f(u)− f(v)|, for every

edge e = uv ∈ E. Therefore

f∗(e) =



1 if e = bibi+1, i ∈ [2n− 1];

0 if e = cici+1, i ∈ [2n− 1];

1 if e ∈ {a0ai, dic2i−1}, i ∈ [n];

0 if e ∈ {aib2i−1, b2ic2i}, i ∈ [n];

0 if e = aiai+1, i ∈ [n− 1];

1 if e = dic2i+1, i ∈ [n− 1];

1 if e ∈ {b2nb1, dnc1};

0 if e ∈ {ana1, c2nc1}.
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Thus ef (1) = 5n and ef (0) = 5n. Therefore f satisfies the conditions |vf (1)− vf (0)| ≤ 1 and |ef (1)− ef (0)| ≤ 1 for cordial

labeing . So, f admits cordial labeling of BRSn. Hence BRSn is cordial.

Theorem 2.2. BRSn is E-cordial.

Proof. For the graph BRSn, V (BRSn) = {a0, ai, di/1 ≤ i ≤ n} ∪ {bi, ci/1 ≤ i ≤ 2n} and E(BRSn) =

{a0ai, aib2i−1, b2ic2i, c2i−1di/1 ≤ i ≤ n} ∪ {bibi+1, cici+1/1 ≤ i ≤ 2n− 1} ∪ {ana1, b2nb1, c2nc1, dnc1} ∪ {aiai+1, dic2i+1/1 ≤

i ≤ n− 1}. Therefore |V (BRSn)| = 6n + 1 and |E(BRSn)| = 10n. Define f : E(BRSn)→ {0, 1} as follows:

f(e) =



0 if e ∈ {aiai+1, b2ib2i+1, c2ic2i+1, c2i+1di}, i ∈ [n− 1];

0 if e = a0ai, i ∈ [n];

1 if e ∈ {aib2i−1, b2i−1b2i, b2ic2i, c2i−1c2i, c2i−1di}, i ∈ [n];

0 if e ∈ {ana1, b2nb1, c2nc1, c1dn}.

Thus ef (1) = 5n and ef (0) = 5n. The induced vertex labeling f∗ : V (BRSn) → {0, 1} is f∗(v) =
∑
{f(uv)/uv ∈

E(BRSn)}(mod2). Therefore

f∗(x) =


0 if x = a0;

1 if x ∈ {ai, di, c2i−1}, i ∈ [n];

0 if x ∈ {b2i, b2i−1, c2i}, i ∈ [n].

Thus vf (1) = 3n and vf (0) = 3n + 1. Therefore f satisfies the conditions |vf (1) − vf (0)| ≤ 1 and |ef (1) − ef (0)| ≤ 1 for

E-cordial labeing. So, f admits E-cordial labeling of BRSn. Hence BRSn is E-cordial.

Theorem 2.3. BRSn is prime graph.

Proof. For the graph BRSn, V (BRSn) = {a0, ai, di/1 ≤ i ≤ n} ∪ {bi, ci/1 ≤ i ≤ 2n} and E(BRSn) =

{a0ai, aib2i−1, b2ic2i, c2i−1di/1 ≤ i ≤ n} ∪ {bibi+1, cici+1/1 ≤ i ≤ 2n− 1} ∪ {ana1, b2nb1, c2nc1, dnc1} ∪ {aiai+1, dic2i+1/1 ≤

i ≤ n− 1}. Therefore |V (BRSn)| = 6n + 1 and |E(BRSn)| = 10n. Define f : V (BRSn)→ [6n + 1] as follows:

f(x) =



1 if x = a0;

6i−
(

1 + 3( 1+(−1)i

2
)
)

if x = ai, i ∈ [n] ;

6i−
(

1 + 3( 1+(−1)i+1

2
)
)

if x = b2i−1, i ∈ [n] ;

6i− 3 if x = b2i, i ∈ [n] ;

6i if x = di, i ∈ [n] ;

6i− 2 if x = c2i, i ∈ [n] ;

6i + 1 if x = c2i−1, i ∈ [n] .

Clearly f is an injective function. Let e be an arbitrary edge of BRSn . To prove f is a prime labeling of BRSn we have

the following cases:

If e = a0ai, gcd(f(a0), f(ai)) = gcd(1, 6i−
(

1 + 3( 1+(−1)i

2
)
)

) = 1, i ∈ [n].

If e = aib2i−1, gcd(f(ai), f(b2i−1)) = gcd(6i−
(

1 + 3( 1+(−1)i

2
)
)
, 6i−

(
1 + 3( 1+(−1)i+1

2
)
)

) = 1, i ∈ [n].

If e = aiai+1, gcd(f(ai), f(ai+1)) = gcd(6i−
(

1 + 3( 1+(−1)i

2
)
)
, 6(i + 1)−

(
1 + 3( 1+(−1)i+1

2
)
)

) = 1, i ∈ [n− 1].

If e = b2ic2i, gcd(f(b2i), f(c2i)) = gcd(6i− 3, 6i− 2) = 1, i ∈ [n].

If e = c2i−1di, gcd(f(c2i−1), f(di)) = gcd(6i + 1, 6i) = 1, i ∈ [n].

If e = dic2i+1, gcd(f(di), f(c2i+1)) = gcd(6i, 6i + 7) = 1, i ∈ [n− 1].

If e = c2i−1c2i, gcd(f(c2i−1), f(c2i)) = gcd(6i + 1, 6i− 2) = 1, i ∈ [n].
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If e = c2ic2i+1, gcd(f(c2i), f(c2i+1)) = gcd(6i− 2, 6i + 7) = 1, i ∈ [n− 1].

If e = b2i−1b2i, gcd(f(b2i−1), f(b2i)) = gcd(6i−
(

1 + 3( 1+(−1)i+1

2
)
)
, 6i− 3) = 1, i ∈ [n].

If e = b2ib2i+1, gcd(f(b2i), f(b2i+1)) = gcd(6i− 3, 6i + 2 +
(

3( 1+(−1)i+1

2
)
)

) = 1, i ∈ [n− 1].

If e = c2nc1, gcd(f(c2n), f(c1)) = gcd(6n− 2, 7) = 1.

If e = dnc1, gcd(f(dn), f(c1)) = gcd(6n, 7) = 1.

If e = b2nb1, gcd(f(b2n), f(b1)) = gcd(6n− 3, 2) = 1.

If e = ana1, gcd(f(an), f(a1)) = gcd(6n−
(

1 + 3( 1+(−1)n

2
)
)
, 5) = 1.

So, f is an injection and gcd(f(v), f(u)) = 1 for every pair of adjacent vertices u and v of BRSn. Then f admits prime

labeling of BRSn. Hence BRSn is a prime graph.

Theorem 2.4. BRSn is vertex prime graph.

Proof. For the graph BRSn, V (BRSn) = {a0, ai, di/1 ≤ i ≤ n} ∪ {bi, ci/1 ≤ i ≤ 2n} and E(BRSn) =

{a0ai, aib2i−1, b2ic2i, c2i−1di/1 ≤ i ≤ n} ∪ {bibi+1, cici+1/1 ≤ i ≤ 2n− 1} ∪ {ana1, b2nb1, c2nc1, dnc1} ∪ {aiai+1, dic2i+1/1 ≤

i ≤ n− 1}. Therefore |V (BRSn)| = 6n + 1 and |E(BRSn)| = 10n. Define f : E(BRSn)→ [10n] as follows:

f(x) =



10i− 9 if x = a0ai, i ∈ [n] ;

10i− 7 if x = aib2i−1, i ∈ [n] ;

10i− 4 if x = b2ic2i, i ∈ [n] ;

10i if x = c2i−1di, i ∈ [n] ;

10i− 8 if x = aiai+1, i ∈ [n− 1] ;

10i− 1 if x = dic2i+1, i ∈ [n− 1] ;

10i− 6 if x = b2i−1b2i, i ∈ [n] ;

10i− 5 if x = b2ib2i+1, i ∈ [n− 1] ;

10i− 3 if x = c2i−1c2i, i ∈ [n] ;

10i− 2 if x = c2ic2i+1, i ∈ [n− 1] ;

10n− 8 if x = ana1;

10n− 5 if x = b2nb1;

10n− 2 if x = c2nc1;

10n− 1 if x = dnc1.

Clearly f is an bijection. Let v be an arbitrary vertex of BRSn . To prove f is a vertex prime labeling of BRSn we have

the following cases:

If v = a0, gcd(f(a0a1), f(a0a2), ..., f(a0an)) = gcd(1, 11, ..., 10n− 9) = 1.

If v = ai, gcd(f(aia0), f(aiai+1), f(aib2i−1), f(aiai−1)) = gcd(10i− 9, 10i− 8, 10i− 7, 10i− 18) = 1, i ∈ [n− 1]− {1}.

If v = a1, gcd(f(a1a0), f(a1a2), f(a1b1), f(a1an)) = gcd(1, 2, 3, 10n− 8) = 1.

If v = an, gcd(f(ana0), f(ana1), f(anb2n−1), f(anan−1)) = gcd(10n− 9, 10n− 8, 10n− 7, 10n− 18) = 1.

If v = b2i, gcd(f(b2ib2i+1), f(b2ib2i−1), f(b2ic2i)) = gcd(10i− 5, 10i− 6, 10i− 4) = 1, i ∈ [n− 1].

If v = b2n, gcd(f(b2nb1), f(b2nb2n−1), f(b2nc2n)) = gcd(10n− 5, 10n− 6, 10n− 4) = 1.

If v = b2i−1, gcd(f(b2i−1b2i), f(b2i−1b2i−2), f(b2i−1ai)) = gcd(10i− 6, 10i− 15, 10i− 7) = 1, i ∈ [n]− {1}.

If v = b1, gcd(f(b1b2), f(b1b2n), f(b1a1)) = gcd(4, 10n− 5, 3) = 1.

If v = c2i−1, gcd(f(c2i−1c2i−2), f(c2i−1c2i), f(c2i−1di−1), f(c2i−1di)) = gcd(10i−12, 10i−3, 10i−11, 10i) = 1, i ∈ [n]−{1}.

If v = c1, gcd(f(c1c2), f(c1c2n), f(c1d1), f(c1dn)) = gcd(7, 10n− 2, 10, 10n− 1) = 1.
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If v = c2i, gcd(f(c2ic2i−1), f(c2iv2i+1), f(c2ib2i)) = gcd(10i− 3, 10i− 2, 10i− 4) = 1, i ∈ [n− 1].

If v = c2n, gcd(f(c2nc2n−1), f(c2nc1), f(c2nb2n)) = gcd(10n− 3, 10n− 2, 10n− 4) = 1.

If v = di, gcd(f(dic2i−1), f(dic2i+1)) = gcd(10i, 10i− 1) = 1, i ∈ [n− 1].

If v = dn, gcd(f(dnc1), f(dnc2n−1)) = gcd(10n, 10n− 1) = 1.

So, f is an bijection and gcd
uv∈E

{f(uv)} = 1. The edges are labeled such that for any vertex vi, the g.c.d of all the edges

incident with vi is 1. Then f admits vertex prime labeling of BRSn. Hence BRSn is a vertex prime graph.

Theorem 2.5. BRSn is Total prime graph

Proof. For the graph BRSn, V (BRSn) = {a0, ai, di/1 ≤ i ≤ n} ∪ {bi, ci/1 ≤ i ≤ 2n} and E(BRSn) =

{a0ai, aib2i−1, b2ic2i, c2i−1di/1 ≤ i ≤ n} ∪ {bibi+1, cici+1/1 ≤ i ≤ 2n− 1} ∪ {ana1, b2nb1, c2nc1, dnc1} ∪ {aiai+1, dic2i+1/1 ≤

i ≤ n− 1}. Therefore |V (CSn)| = 6n + 1 and |E(CSn)| = 10n. Define f : V (BRSn) ∪ E(BRSn)→ [16n + 1] as follows:

f(x) =



1 if x = a0;

6i−
(

1 + 3( 1+(−1)i

2
)
)

if x = ai, i ∈ [n] ;

6i−
(

1 + 3( 1+(−1)i+1

2
)
)

if x = b2i−1, i ∈ [n] ;

6i− 3 if x = b2i i ∈ [n] ;

6i if x = di i ∈ [n] ;

6i− 2 if x = c2i i ∈ [n] ;

6i + 1 if x = c2i−1, i ∈ [n] ;

6n + 10i− 8 if x = a0ai, i ∈ [n] ;

6n + 10i− 6 if x = aib2i−1, i ∈ [n] ;

6n + 10i− 3 if x = b2ic2i, i ∈ [n] ;

6n + 10i + 1 if x = c2i−1di, i ∈ [n] ;

6n + 10i− 7 if x = aiai+1, i ∈ [n− 1] ;

6n + 10i if x = dic2i+1, i ∈ [n− 1] ;

6n + 10i− 5 if x = b2i−1b2i, i ∈ [n] ;

6n + 10i− 4 if x = b2ib2i+1, i ∈ [n− 1] ;

6n + 10i− 2 if x = c2i−1c2i, i ∈ [n] ;

6n + 10i− 1 if x = c2ic2i+1, i ∈ [n− 1] ;

16n− 7 if x = ana1;

16n− 4 if x = b2nb1;

16n− 1 if x = c2nc1;

16n if x = dnc1.

Clearly f is a bijection. Let e and v be an arbitrary edge and vertex of BRSn. To prove f is a total prime labeling of BRSn

we have the following cases: Then for any edge,

If e = a0ai, gcd(f(a0), f(ai)) = gcd(1, 6i−
(

1 + 3( 1+(−1)i

2
)
)

) = 1, i ∈ [n].

If e = aib2i−1, gcd(f(ai), f(b2i−1)) = gcd(6i−
(

1 + 3( 1+(−1)i

2
)
)
, 6i−

(
1 + 3( 1+(−1)i+1

2
)
)

) = 1, i ∈ [n].

If e = aiai+1, gcd(f(ai), f(ai+1)) = gcd(6i−
(

1 + 3( 1+(−1)i

2
)
)
, 6(i + 1)−

(
1 + 3( 1+(−1)i+1

2
)
)

) = 1, i ∈ [n− 1].

If e = b2ic2i, gcd(f(b2i), f(c2i)) = gcd(6i− 3, 6i− 2) = 1, i ∈ [n].

If e = c2i−1di, gcd(f(c2i−1), f(di)) = gcd(6i + 1, 6i) = 1, i ∈ [n].

If e = dic2i+1, gcd(f(di), f(c2i+1)) = gcd(6i, 6i + 7) = 1, i ∈ [n− 1].
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If e = c2i−1c2i, gcd(f(c2i−1), f(c2i)) = gcd(6i + 1, 6i− 2) = 1, i ∈ [n].

If e = c2ic2i+1, gcd(f(c2i), f(c2i+1)) = gcd(6i− 2, 6i + 7) = 1, i ∈ [n− 1].

If e = b2i−1b2i, gcd(f(b2i−1), f(b2i)) = gcd(6i−
(

1 + 3( 1+(−1)i+1

2
)
)
, 6i− 3) = 1, i ∈ [n].

If e = b2ib2i+1, gcd(f(b2i), f(b2i+1)) = gcd(6i− 3, 6i + 2 +
(

3( 1+(−1)i+1

2
)
)

) = 1, i ∈ [n− 1].

If e = c2nc1, gcd(f(c2n), f(c1)) = gcd(6n− 2, 7) = 1.

If e = dnc1, gcd(f(dn), f(c1)) = gcd(6n, 7) = 1.

If e = b2nb1, gcd(f(b2n), f(b1)) = gcd(6n− 3, 2) = 1.

If e = ana1, gcd(f(an), f(a1)) = gcd(6n−
(

1 + 3( 1+(−1)n

2
)
)
, 5) = 1.

Then for any vertex,

If v = a0, gcd(f(a0a1), f(a0a2), ..., f(a0an)) = gcd(6n + 2, 6n + 12, ..., 16n− 9) = 1.

If v = ai, gcd(f(aia0), f(aiai+1), f(aib2i−1), f(aivi−1)) = gcd(6n+ 10i− 8, 6n+ 10i− 17, 6n+ 10i− 6, 6n+ 10i− 7) = 1, i ∈

[n− 1]− {1}.

If v = a1, gcd(f(a1a0), f(a1a2), f(a1b1), f(a1an)) = gcd(6n + 2, 6n + 3, 6n + 4, 6n + 10n− 7) = 1.

If v = an, gcd(f(ana0), f(ana1), f(anb2n−1), f(anan−1)) = gcd(16n− 8, 16n− 7, 16n− 6, 16n− 17) = 1.

If v = b2i, gcd(f(b2ib2i+1), f(b2ib2i−1), f(b2ic2i)) = gcd(6n + 10i− 5, 6n + 10i− 4, 6n + 10i− 3) = 1, i ∈ [n− 1].

If v = b2n, gcd(f(b2nb1), f(b2nb2n−1), f(b2nc2n)) = gcd(16n− 5, 16n− 4, 16n− 3) = 1.

If v = b2i−1, gcd(f(b2i−1b2i), f(b2i−1b2i−2), f(b2i−1ai)) = gcd(6n + 10i− 5, 6n + 10i− 14, 6n + 10i− 6) = 1, i ∈ [n]− {1}.

If v = b1, gcd(f(b1b2), f(b1b2n), f(b1a1)) = gcd(6n + 5, 16n− 4, 6n + 4) = 1.

If v = c2i−1, gcd(f(c2i−1c2i−2), f(c2i−1c2i), f(c2i−1di−1), f(c2i−1di)) = gcd(6n + 10i− 11, 6n + 10i− 2, 6n + 10i− 10, 6n +

10i + 1) = 1, i ∈ [n]− {1}.

If v = c1, gcd(f(c1c2), f(c1c2n), f(c1d1), f(c1dn)) = gcd(6n + 8, 16n− 1, 6n + 11, 16n) = 1.

If v = c2i, gcd(f(c2ic2i−1), f(c2iv2i+1), f(c2ib2i)) = gcd(6n + 10i− 2, 6n + 10i− 1, 6n + 10i− 3) = 1, i ∈ [n− 1].

If v = c2n, gcd(f(c2nc2n−1), f(c2nc1), f(c2nb2n)) = gcd(16n− 2, 16n− 1, 16n− 3) = 1.

If v = di, gcd(f(dic2i−1), f(dic2i+1)) = gcd(6n + 10i + 1, 6n + 10i) = 1, i ∈ [n− 1].

If v = dn, gcd(f(dnc1), f(dnc2n−1)) = gcd(16n + 1, 16n) = 1.

So, f is a bijection. According to this pattern, the vertices are labeled such that for any edge e = uv ∈ BRSn,

gcd(f(u), f(v)) = 1. Also the edges are labeled such that for any vertex vi, the g.c.d of all the edges incident with vi

is 1. So, f admits total labeling of BRSn. Hence BRSn is total prime graph.

Theorem 2.6. BRSn is difference cordial graph.

Proof. For the graph BRSn, V (BRSn) = {a0, ai, di/1 ≤ i ≤ n} ∪ {bi, ci/1 ≤ i ≤ 2n} and E(BRSn) =

{a0ai, aib2i−1, b2ic2i, c2i−1di/1 ≤ i ≤ n} ∪ {bibi+1, cici+1/1 ≤ i ≤ 2n− 1} ∪ {ana1, b2nb1, c2nc1, dnc1} ∪ {aiai+1, dic2i+1/1 ≤

i ≤ n− 1}. Therefore |V (BRSn)| = 6n + 1 and |E(BRSn)| = 10n. Define f : V (BRSn)→ [6n + 1] as follows:

f(x) =



1 if x = a0;

6i + 1 if x = ai, i ∈ [n] ;

6i if x = b2i−1, i ∈ [n] ;

6i− 1 if x = b2i, i ∈ [n] ;

6i− 2 if x = c2i, i ∈ [n] ;

6i− 3 if x = c2i−1, i ∈ [n] ;

6i− 4 if x = di, i ∈ [n] .
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The induced edge labeling f∗ : E(BRSn)→ {0, 1} is f∗(uv) = |f(u)− f(v)|, for every edge e = uv ∈ E. Therefore

f∗(e) =



0 if e ∈ {aiai+1, b2ib2i+1, c2ic2i+1, c2i+1di}, i ∈ [n− 1] ;

0 if e = a0ai, i ∈ [n] ;

1 if e ∈ {aib2i−1, b2i−1b2i, b2ic2i, c2i−1c2i, c2i−1di}, i ∈ [n] ;

0 if e ∈ {ana1, b2nb1, c2nc1, c1dn}.

Since ef (0) = ef (1) = 5n. Therefore f satisfies the conditions |ef (1)− ef (0)| ≤ 1 for difference cordial labeing. So, f admits

difference cordial labeling of BRSn. Hence BRSn is difference cordial.

3. Conclusion

we have derived six new results by investigating some labeling techniques in Braided star graph. More exploration is possible

for other graph families and in the context of different graph labeling problems.
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