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1. Introduction

Fractional differential equations are generalizations of classical differential equations of integer order and they have been

widely applied in many areas of engineering, physics, mechanics, nonlinear control and so on, See [4, 6–8]. Lot of works

have been done on the oscillation of integer order differential equations [1–3]. Recently many articles have discussed the

oscillation of fractional differential equations [5, 10, 12]. In [11], Yang et al. have discussed oscillation of the following

nonlinear fractional differential equation

(
D1+α

0+ y
)

(t) + p(t) (Dα
0+y) (t) + q(t)f(y(t)) = g(t)

for t > 0 and 0 < α < 1. In [9], Tunc et al. considered the oscillation of the following equation

(
D1+α

0+ y
)

(t) + p(t) (Dα
0+y) (t) + q(t)f(G(t)) = 0

for t ≥ t0 > 0 and 0 < α < 1. In this paper, we consider the following fractional differential equation with damping term of

the form

[r(t)ψ(x(t))Dα
0+x(t)]

′
+ p(t)ψ(x(t))Dα

0+x(t) + F

(
t,

∫ t

0

(t− s)−αx(s)ds

)
= 0, t ≥ t0 > 0, (1)

where 0 < α < 1, Dα
0+(x(t)) denotes the Riemann-Liouville fractional derivative of order α of x(t) and is defined by

Dα
0+x(t) =

1

Γ(1− α)

d

dt

∫ t

0

(t− s)−αx(s)ds, t > 0,
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where Γ(.) is the gamma function (refer [6]). By a solution of equation (1), we mean a function x(t) ∈ C(R+,R) such that
t∫
0

(t− s)−αx(s)ds ∈ C1(R+,R), r(t)ψ(x(t))Dα
0+x(t) ∈ C1(R+,R) and satisfies (1) on (0,∞). We restricted to those solutions

of equation (1) satisfying sup {|x(t)| : t ≥ T} > 0 for any T > 0. A nontrivial solution of equation (1) is called oscillatory if

it has arbitrarily large zeros, otherwise it is called nonoscillatory. Equation (1) is called oscillatory if all of its solutions are

oscillatory. Throughout this paper, the following conditions are assumed to hold:

(H1) r(t) ∈ C1([t0,∞),R+) such that r(t) ≤ K for some K > 0.

(H2) p(t) ∈ C([t0,∞),R) such that p(t) < 0.

(H3) ψ ∈ C(R,R), 0 < ψ(x) ≤ m for some positive constant m and for all x 6= 0.

(H4) F (t, G) ∈ C1([t0,∞)× R,R+) such that F (t,G)
G
≥ q(t), where q(t) ∈ C1([t0,∞),R+), for G 6= 0 and t ≥ t0.

In this paper, we establish some oscillation criteria with examples.

2. Main Results

We need the following lemma to prove our main results.

Lemma 2.1 ([9]). Let x(t) be a solution of equation (1) and

G(t) =

∫ t

0

(t− s)−αx(s)ds, (2)

then

G′(t) = Γ(1− α)Dα
0+x(t). (3)

Theorem 2.2. If

t
lim→ ∞

{
Γ(1− α)

M

∫ t

t0

ds

r(s)

}
=∞ (4)

and

t
lim→ ∞

∫ t

t0

[
q(s)− Mp2(s)

4Γ(1− α)r(s)

]
ds =∞, (5)

then every solution of equation (1) is oscillatory.

Proof. Suppose that equation (1) has a nonoscillatory solution x(t) on [t0,∞). Without loss of generality, we assume that

x(t) is an eventually positive solution of equation (1). Then x(t) > 0 and G(t) > 0 on [t1,∞) for t1 > t0. Define

w(t) = −r(t)ψ(x(t))Dα
0+x(t)

G(t)

for t ≥ t1. Then we get

w′(t) = −
[

(r(t)ψ(x(t))Dα
0+x(t))′G(t)− (r(t)ψ(x(t))Dα

0+x(t))G′(t)

G2(t)

]
= p(t)

ψ(x(t))Dα
0+x(t)

G(t)
+
F (t, G)

G(t)
+

Γ(1− α)r(t)ψ(x(t))(Dα
0+x(t))2

G2(t)

≥ −p(t)w(t) + q(t) +
Γ(1− α)

Mr(t)
w2(t). (6)
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Integrating both sides from t2 to t, we have

w(t) ≥ w(t1) +

∫ t

t1

[
Γ(1− α)

w2(s)

Mr(s)
− p(s)w(s) + q(s)

]
ds

= w(t1) + Γ(1− α)

∫ t

t1

(
w(s)

(Mr(s))1/2
− M1/2p(s)

2r1/2Γ(1− α)

)2

ds+

∫ t

t0

[
q(s)− Mp2(s)

4Γ(1− α)r(s)

]
ds. (7)

By equation (5), there exists t2 ≥ t1, such that

w(t) > Γ(1− α)

(
w(s)

(Mr(s))1/2
− M1/2p(s)

2r1/2Γ(1− α)

)2

ds for t ≥ t2.

Set

L1(t) = Γ(1− α)

(
w(s)

(Mr(s))1/2
− M1/2p(s)

2r1/2Γ(1− α)

)2

ds. (8)

Then w(t) > L1(t) > 0 for t ≥ t2. From (H2) and equation (8), we get

L′1(t) = Γ(1− α)

(
w(s)

(Mr(s))1/2
− M1/2p(s)

2r1/2Γ(1− α)

)2

> Γ(1− α)
w2(t)

Mr(t)
> Γ(1− α)

L2
1(t)

Mr(t)
.

That is,

Γ(1− α)

Mr(t)
<
L′1(t)

L2
1(t)

for t ≥ t2.

Integrating both sides from t2 to t, and letting t→∞, we have

Γ(1− α)

M

∫ t

t2

ds

r(s)
<

1

L1(t2)
− 1

L1(t)
<

1

L1(t2)
.

So

t
lim→ ∞

{
Γ(1− α)

M

∫ t

t2

ds

r(s)

}
<

1

L1(t2)
,

which is a contradiction to equation (4). Hence the proof is complete.

Theorem 2.3. Assume that there exist a positive function g ∈ C1([t0,∞) such that

t
lim→ ∞

{(
Γ(1− α)

MK

)1/2 ∫ t

t0

1

g(s)
ds

}
=∞ (9)

and

t
lim→ ∞

{
MK

4Γ(1− α)

∫ t

t0

{
p2(s)g(s) +

(g′(s))2

g(s)
− 2p(s)g′(s)− 4Γ(1− α)

MK
g(s)q(s)

}
ds+

1

2

Mr(t)

Γ(1− α)
g′(t)

}
=∞, (10)

then every solution of equation (1) is oscillatory.

Proof. Suppose that equation (1) has a nonoscillatory solution x(t) on [t0,∞). Without loss of generality, we assume that

x(t) is an eventually positive solution of equation (1). Then x(t) > 0 and G(t) > 0 on [t1,∞) for t1 > t0. Define

w(t) = −g(t)
r(t)ψ(x(t))Dα

0+x(t)

G(t)
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for t ≥ t1. Then from (H3) and (H4), we obtain

w′(t) = −g′(t)r(t)ψ(x(t))Dα
0+x(t)

G(t)
− g(t)

[
r(t)ψ(x(t))Dα

0+x(t)

G(t)

]′
=

g′(t)

g(t)
w(t) + g(t)p(t)

r(t)ψ(x(t))Dα
0+x(t)

G(t)
+ g(t)

F (t, G)

G(t)
+ Γ(1− α)g(t)

w2(t)

r(t)ψ(x(t))

≥ 1

g(t)

[
Γ(1− α)

Mr(t)
w2(t)− g(t)p(t)w(t) + g′(t)w(t)

]
+ g(t)q(t). (11)

Set

L2(t) =

(
Γ(1− α)

Mr(t)

)1/2

w(t) +
1

2

(
Mr(t)

Γ(1− α)

)1/2

g′(t). (12)

From equations (11) and (12), we get

w′(t) ≥ 1

g(t)

{(
L2(t)− 1

2

(
Mr(t)

Γ(1− α)

)1/2

p(t)g(t)

)2

−

(
1

2

(
Mr(t)

Γ(1− α)

)1/2

p(t)g(t)

)2

− Mr(t)

4Γ(1− α)
(g′(t))2

+
Mr(t)

2Γ(1− α)
p(t)g(t)g′(t)

}
+ g(t)q(t)

≥ 1

g(t)

{(
L2(t)− 1

2

(
Mr(t)

Γ(1− α)

)1/2

p(t)g(t)

)2

− Mr(t)

4Γ(1− α)

{
p2(t)g(t) +

(g′(t))2

g(t)
− 2p(t)g′(t)− 4Γ(1− α)

Mr(t)
g(t)q(t)

}
.

Integrating both sides from t1 to t, we obtain

w(t) ≥ w(t1) +

∫ t

t1

1

g(s)

(
L2(s)− 1

2

(
Mr(s)

Γ(1− α)

)1/2

p(s)g(s)

)2

ds

− M

4Γ(1− α)

∫ t

t1

r(s)

{
p2(s)g(s) +

(g′(s))2

g(s)
− 2p(s)g′(s)− 4Γ(1− α)

Mr(s)
g(s)q(s)

}
ds. (13)

From equations (12) and (13), we have

L2(t) ≥
(

Γ(1− α)

MK

)1/2

w(t1) +

(
Γ(1− α)

MK

)1/2 ∫ t

t1

1

g(s)

(
L2(s)− 1

2

(
MK

Γ(1− α)

)1/2

p(s)g(s)

)2

ds

− MK

4Γ(1− α)

∫ t

t1

{
p2(s)g(s) +

(g′(s))2

g(s)
− 2p(s)g′(s)− 4Γ(1− α)

MK
g(s)q(s)

}
ds+

1

2

(
Mr(t)

Γ(1− α)

)1/2

g′(t). (14)

By (10) and (H1), there exists t2 ≥ t1, such that

L2(t) >

(
Γ(1− α)

MK

)1/2 ∫ t

t2

1

g(s)

(
L2(s)− 1

2

(
MK

Γ(1− α)

)1/2

p(s)g(s)

)2

ds.

Let

Q(t) =

(
Γ(1− α)

MK

)1/2 ∫ t

t2

1

g(s)

(
L2(s)− 1

2

(
MK

Γ(1− α)

)1/2

p(s)g(s)

)2

ds. (15)

From (H2), we have L2(t) > Q(t) > 0. Then

Q′(t) ≥
(

Γ(1− α)

MK

)1/2
1

g(t)

(
Q(t)(t)− 1

2

(
MK

Γ(1− α)

)1/2

p(t)g(t)

)2

>

(
Γ(1− α)

MK

)1/2
1

g(t)
Q2(t). (16)

That is, (
Γ(1− α)

MK

)1/2
1

g(t)
<
Q′(t)

Q2(t)
.

Integrating both sides from t2 to t, we obtain(
Γ(1− α)

MK

)1/2 ∫ t

t2

1

g(s)
<

1

Q(t2)
− 1

Q(t)
<

1

Q(t2)
.

Letting t→∞, we get a contradiction to equation (9). Hence the proof is complete.
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3. Examples

In this section, we give two examples to illustrate our main results.

Example 3.1. Consider the fractional differential equation

[
e−x

2(t)D
1/2
0+ x(t)

]′
− 2e−x

2(t)

t3
D

1/2
0+ x(t) +

(
2 +

1

t2

)∫ t

0

(t− s)−αx(s)ds = 0 (17)

for t ≥ 1. Here α = 1/2, r(t) = 1, ψ(x(t)) = e−x
2

≤ 1 = M, p(t) = − 2
t3

, F (t, G) =
(
2 + 1

t2

) t∫
0

(t−s)−αx(s)ds, q(t) = 2+ 1
t2

.

Then

t
lim→ ∞

{
Γ(1− α)

M

∫ t

t0

ds

r(s)

}
= t

lim→ ∞
{√

π

∫ t

1

ds

}
=∞

and

t
lim→ ∞

∫ t

t0

[
q(s)− Mp2(s)

4Γ(1− α)r(s)

]
ds = t

lim→ ∞
∫ t

1

[(
2 +

1

s2

)
− 1

2
√
πs2

]
ds

= t
lim→ ∞

[
t

(
2− 1

t2
+

1

2
√
πt3

)
−
(

1 +
1

2
√
π

)]
=∞.

Thus by Theorem 2.1, equation (17) is oscillatory.

Example 3.2. Consider the fractional differential equation

[
1

2 + x2(t)
D

1/2
0+ x(t)

]′
− 1

3t(1 + x2(t))
D

1/2
0+ x(t) +

(
5t+ exp

∫ t
0 (t−s)−αx(s)ds

)∫ t

0

(t− s)−αx(s)ds = 0 (18)

for t ≥ 1. Here α = 1/2, r(t) = 1 = K, ψ(x(t)) = 1
2+x2

≤ 1
2

= M, p(t) = − 2
3t
,

F (t, G)

G(t)
= 5t+ exp

∫ t
0 (t−s)−αx(s)ds ≥ 5t = q(t).

If we take g(t) = 2t, then it is easy to verify that

t
lim→ ∞

{
Γ(1− α)

MK

∫ t

t0

ds

g(s)

}
= t

lim→ ∞
{√

2π

∫ t

1

1

2s
ds

}
=∞

and

t
lim→ ∞

{
MK

4Γ(1− α)

∫ t

t0

{
p2(s)g(s) +

(g′(s))2

g(s)
− 2p(s)g′(s)− 4Γ(1− α)

MK
g(s)q(s)

}
ds+

1

2

Mr(t)

Γ(1− α)
g′(t)

}
= t

lim→ ∞
{

1

2
√
π

[
1

4

∫ t

1

(
32

9s
− 80
√
πs2
)
ds+ 1

]}
=∞

Thus by Theorem 2.2, equation (18) is oscillatory.
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