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1. Introduction

Throughout the paper we consider only simple and undirected graphs. Let G be an arbitrary graph with n vertices and vertex

set V (G) = {v1, v2, . . . , vn}. Let A(G) be the adjacency matrix of G. It is an n × n symmetric matrix, A(G) = (aij)n×n,

where aij = 1 if vi and vj are connected by an edge in G and 0, elsewhere.

Let the degree of vi (number of vertices adjacent to vi) in G be di and the diagonal degree matrix of G be D(G) =

diag(d1, d2, . . . , dn). Brouwer and Haemers in [3] defined Laplacian matrix and signless Laplacian matrix as L(G) =

D(G)−A(G) and Q(G) = D(G) +A(G) respectively. The characteristic polynomial of A or of G is defined as fG(A : x) =

det(xIn −A), where In is the identity matrix of order n. The eigenvalues of G are the roots of fG(A : x) = 0. It is denoted

by λ1 ≥ λ2 ≥ · · · ≥ λn and usually called adjacency spectrum or A − spectrum of G. Similar manner the eigenvalues of

L(G) and Q(G) are denoted by 0 = µ1 ≤ µ2 ≤ · · · ≤ µn and ν1 ≤ ν2 ≤ · · · ≤ νn. They are called the Laplacian and signless

Laplacian spectrum (or L - spectrum and Q - spectrum respectively) of G. The eigenvalues of A(G), L(G) and Q(G) are

real numbers since the matrices are real and symmetric. The adjacency spectrum of a graph consists of the eigenvalues

(together with their multiplicities) and the Laplacian (signless Laplacian) spectrum of G consists of the Laplace (signless

Laplace) eigenvalues together with their multiplicities. A - cospectral graphs are those graphs with the same A - spectrum.

Frucht and Harary in [5] introduced the concept of corona of two graphs and their spectrum by S. Barik et. al [2]. In [6]

Gopalapillai introduced neighborhood corona of graphs and calculated the corresponding spectrum. In [11] Varghese and

Susha defined some new join in duplication graph of an arbitrary graph. Motivated from these, in this paper we define
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two new corona of graphs based on duplication graph of a graph and determined their adjacency, Laplacian and signless

Laplacian spectrum.

The organisation of the paper is as follows. In section 2.1 we have some basic results on spectral graph theory which are

useful in the succeeding sections. In section 3 we define two new corona product using duplication graph of a graph and find

their adjacency, Laplacian and signless Laplacian spectra and we proved that they are cospectral. Then in the last section

we discuss some applications such as number of spanning trees and the Kirchhoff index. We also give a brief description on

some classification of new class of integral graphs.

2. Preliminaries

Definition 2.1 ([10]). Suppose G be a graph with vertex set V (G) = {v1, v2, . . . , vn} and U(G) = {x1, x2, . . . , xn} be another

set corresponding to V (G). Draw xi adjacent to all the vertices in N(vi), the neighborhood set of vi, in G for each i and

delete the edges of G only. The graph thus obtained is called the duplication graph of G and we denote it as DG.

Lemma 2.2 ([4]). Let M =

 M1 M2

M2 M1

 be a block symmetric matrix of order 2× 2. Then the eigenvalues of M are those

of M1 +M2 together with M1 −M2.

Proposition 2.3 ([4]). Let P1, P2, P3, and P4 be matrices of order n1 × n1, n1 × n2, n2 × n1, n2 × n2 respectively with P1

and P4 are invertible. Then

det

P1 P2

P3 P4

 = det(P1) det(P4 − P3P
−1
1 P2)

= det(P4) det(P1 − P2P
−1
4 P3).

Definition 2.4 ([9]). Let A be the adjacency matrix of a graph G with n vertices. The determinant det(xI − A) = fG(A :

x) 6= 0, is invertible being the characteristic matrix of A. The A − coronal, χA(x), of G is defined to be the sum of the

entries of the matrix (xI − A)−1. We denote this as χA(x) = 1T
n (xI − A)−11n, where 1n is a n× 1 column vector with all

entries equal to 1.

We use the following results by McLeman and McNicholas defined in [9].

Let G be an r - regular graph on n vertices. Then

χA(x) =
n

x− r . (1)

Each row sum of the Laplacian matrix L(G) of any graph G with n vertices equal to 0. Then

χL(x) =
n

x
. (2)

Let G be the bipartite graph Kp,q where p+ q = n. Then

χA(x) =
nx+ 2pq

x2 − pq . (3)

Let A = (aij) and B be matrices. Then the Kronecker product [4], A ⊗ B, of A and B is defined as the partition matrix

(aijB). This associative operation has the property that (A ⊗ B)T = AT ⊗ BT , (A + B) ⊗ C = A ⊗ C + B ⊗ C and
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(A⊗B)(C⊗D) = AC⊗BD whenever the product AC and BD exist. Also for the non-singular matrix A and B, (A⊗B)−1

= A−1 ⊗ B−1 . Moreover if A and B are n × n and p × p matrices, then det (A ⊗ B) = (det A)p (det B)n. Under these

arguments we can substantiate that

(1T
n ⊗ In)((xIn −A)−1 ⊗ In)(1n ⊗ In) = InχA(x) (4)

(1T
n ⊗ In)(((x− 1)In −A)−1 ⊗ In)(1n ⊗ In) = InχA(x− 1) (5)

3. New Corona Product of Graphs and Their Spectra

The following definitions describes the new graph corona product based on the duplication graph of a graph.

Definition 3.1. Let G1 and G2 be two vertex disjoint graphs with n1 and n2 vertices respectively. Let DG1 be the duplication

graph of G1 with vertex set V (G1) ∪ U(G1), where V (G1) = {v1, v2, . . . , vn1} and U(G1) = {x1, x2, . . . , xn1}. Duplication

add vertex corona, G1~G2, is the graph obtained from DG1 and n1 copies of G2 by making xi adjacent to every vertices in

the ith copy of G2 for i = 1, 2, . . . , n1.

Definition 3.2. Let G1 and G2 be two vertex disjoint graphs with n1 and n2 vertices respectively. Let DG1 be the duplication

graph of G1 with vertex set V (G1) ∪ U(G1), where V (G1) = {v1, v2, . . . , vn1} and U(G1) = {x1, x2, . . . , xn1}. Duplication

vertex corona, G1}G2, is the graph obtained from DG1 and n1 copies of G2 by making vi adjacent to every vertices in the

ith copy of G2 for i = 1, 2, . . . , n1.

Figure 1. K3}K2 and K3~K2

If G1 is a graph with n1 vertices and m1 edges and G2 is a graph with n2 vertices and m2 edges, then G1}G2 and G1~G2

has n1(n2 + 2) vertices and 2m1 + n1(n2 +m2) edges.

Now we find the adjacency, Laplacian and signless Laplacian spectrum of G1~G2.

Theorem 3.3. Let Gi be two graphs with ni vertices with spectrum λi1(G) ≥ λi2(G) ≥ · · · ≥ λin(G), for i = 1, 2. Then the

characteristic polynomial of duplication add vertex corona, G1~G2, is

fG1~G2(A : x) =

n2∏
j=1

(x− λ2j)
n1

n1∏
i=1

(x2 − xχA2(x)− λ2
1i).

Proof. Let G1 be an r1 - regular graph on n1 vertices and m1 edges. G2 be an arbitrary graph on n2 vertices. V (G1) =

{v1, v2, . . . , vn1} and U(G1) = {x1, x2, . . . , xn1}. The vertex in the ith copy of G2 be {ui
1, u

i
2, . . . , u

i
n2
} and let Wj =
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{u1
j , u

2
j , . . . , u

n2
j } for j = 1, 2, . . . , n2. Joining xi to every vertex of the ith copy of G2. Then V (G1) ∪ U(G1) ∪ {W1 ∪W2 ∪

. . . ∪Wn2} is a vertex partition of G1~G2. By these vertex partitioning the adjacency matrix of G1~G2 is

A =


0 A1 0n1×n1n2

A1 0n1×n1 1T
n2
⊗ In1

0n1n2×n1 1n2 ⊗ In1 A2 ⊗ In1

 ,

where A1 and A2 are the adjacency matrix of G1 and G2 respectively. 1n2 is a n2 × 1 column vector with all entries equal

to 1. The characteristic polynomial of G1~G2

fG1~G2(A : x) = det(xI −A)

=

∣∣∣∣∣
xIn1

−A1 0

−A1 xIn1
−1T

n2
⊗In1

0 −1n2
⊗In1

(xIn2
−A2)⊗In1

∣∣∣∣∣ .
By using Proposition 2.3 we get,

fG1~G2(A : x) = det ((xIn2 −A2)⊗ In2) det S,

where

S =

 xIn1 −A1

−A1 xIn1

−
 0

−1T
n2
⊗ In1

 ((xIn2 −A2)⊗ In1)−1

(
0 −1n2 ⊗ In1

)
.

Using the property of Kronecker product and equation (4) we get,

S =

 xIn1 −A1

−A1 xIn1

−
 0

−1T
n2
⊗ In1

 (xIn2 −A2)−1 ⊗ In1

(
0 −1n2 ⊗ In1

)

=

xIn1 −A1

−A1 xIn1

−
0 0

0 χA2(x)In1


=

xIn1 −A1

−A1 xIn1 − χA2(x)In1

 .

Again by Proposition 2.3 we get

det S = xn1 det
(
(x− χA2(x))In1 −A1(xIm1)−1A1

)
= xn1 det

(
(x− χA2(x))In1 −

A2
1

x

)
.

detS =

n1∏
i=1

(
x2 − xχA2(x)− λ2

1i

)
. (6)

Also by the property of Kronecker product,

det (xIn2 −A2)⊗ In1 = (det (xIn2 −A2))n1 (det (In1))n2 (7)

=

n2∏
j=1

(x− λ2j)
n1 . (8)

Hence using equations (6) and (7) we arrive that the characteristic equation is,

fG1~G2(A : x) =

n2∏
j=1

(x− λ2j)
n1

n1∏
i=1

(x2 − xχA2(x)− λ2
1i). (9)
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Corollary 3.4. Let G1 be a r1 - regular graph with n1 vertices and G2 be a r2 - regular graph with n2 vertices. Then the

A - spectrum of G1~G2 consists of,

(1). λ2j, repeated n1 times, for j = 2, 3, . . . , n2;

(2). Three roots of the equation, x3 − r2x2 − (λ2
1i + n2)x+ r2λ

2
1i = 0 for i = 1, 2, 3, . . . , n1.

Proof. Since G2 is r2 - regular, by equation (1),

χA2(x) =
n2

x− r2
.

From equation (9) the characteristic polynomial,

det (xI −A) =

n2∏
j=1

(x− λ2j)
n1

n1∏
i=1

(x2 − x n2

x− r2
− λ2

1i)

=

n2∏
j=2

(x− λ2j)
n1

n1∏
i=1

(x3 − r2x2 − (λ2
1i + n2)x+ r2λ

2
1i).

Corollary 3.5. Let G1 be a r1 - regular graph with n1 vertices and G2 = K̄n2 (Totally disconnected). Then the A - spectrum

of G1~G2 consists of,

(1). 0, repeated n1n2 times;

(2). ±
√
n2 + λ2

1i, for i = 1, 2, . . . , n1.

Proof. When G2 = K̄n2 then, by equation (1),

χA2(x) =
n2

x
.

Also λ2i = 0 for i = 1, 2, . . . , n2. Hence,

fG1~G2(A : x) = xn1n2

n1∏
i=1

(x2 − n2 − λ2
1i).

Corollary 3.6. Let G1 be a r1 - regular graph on n1 vertices and G2 = Kp,q, the complete bipartite graph. Then the A -

spectrum of G1~G2 consists of,

(1). 0, repeated n1(p+ q − 2) times;

(2). Four roots of the equation x4 − (p+ q + pq + λ2
1i)x

2 − 2pq + λ2
1i + pq = 0, for i = 1, 2, . . . , n1.

Proof. Since G2 = Kp,q, by equation (3)

χA2(x) =
(p+ q)x+ 2pq

x2 − pq .

The characteristic polynomial can be calculated as,

det (xI −A) = xn1(n2−2)
n1∏
i=1

(x4 − (p+ q + pq + λ2
1i)x

2 − 2pq + λ2
1i + pq).
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Corollary 3.7.

(1). Let G1 and G2 be vertex disjoint regular graph which is cospectral and H is any arbitrary graph, then G1~H and G2~H

are A - cospectral.

(2). Let G be a regular graph and H1 and H2 be two A - cospectral graphs with χA(H1)(x) = χA(H2)(x) then G~H1 and

G~H2 are A - cospectral.

Theorem 3.8. Let G1 be a r1 - regular graph with n1 vertices and G2 be an arbitrary graph on n2 vertices with Laplacian

spectrum 0 = µj1 ≤ µj2 ≤ · · · ≤ µjn, j = 1, 2. Then L - spectrum of duplication add vertex corona, G1~G2, consists of

(1). 0;

(2). 1 + µ2j, repeated n1 times for j = 2, 3, . . . , n2;

(3). Two roots of the equation x2 − (2r1 + n2 + 1)x+ 2r1 + n2r1 = 0;

(4). Three roots of the equation x3 − (2r1 + n2 + 1)x2 + (n2r1 + 2r1 + 2r1µ1i − µ2
1i)x+ (µ2

1i − 2r1µ1i) = 0, i = 2, 3, . . . , n1.

Proof. The degree of the vertices of G1~G2 are dG1~G2(vi) = r1, dG1~G2(xi) = n2 +r1, i = 1, 2, . . . , n1 and dG1~G2(ui
j) =

dG2(uj) + 1, j = 1, 2, . . . , n2. The diagonal degree matrix of G1~G2 is,

D(G1~G2) =


r1In1 0 0

0 (r1 + n2)In1 0

0 0 (D(G2) + In2)⊗ In1

 ,

where D(G2) be the diagonal degree matrix of the graph G2.

(D(G2) + In2)⊗ In1 −A2 ⊗ In1 = (D(G2) + In2 −A2)⊗ In1

= (L2 + In2)⊗ In1 .

The Laplace matrix of G1~G2 is,

L = D −A

=


r1In1 −A1 0

−A1 (r1 + n2)In1 −1T
n2
⊗ In1

0 −1n2 ⊗ In1 (L2 + In2)⊗ In1

 ,

where L2 is the Laplacian matrix of G2 and 1n2 is a n2 × 1 column vector with all entries equal to 1. The Laplacian

characteristic polynomial of G1~G2,

fG1~G2(L : x) =

∣∣∣∣∣ (x−r1)In1
A1 0

A1 (x−r1−n2)In1
1T
n2

⊗In1

0 1n2
⊗In1

((x−1)In2
−L2)⊗In1

∣∣∣∣∣
= det (((x− 1)In2 − L2)⊗ In1) det S,

where, S =

 (x− r1)In1 A1

A1 (x− r1 − n2)In1

−
 0

1T
n2
⊗ In1

 (((x− 1)In2 − L2)⊗ In1)−1

(
0 1n2 ⊗ In1

)
.
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By using the property of Kronecker product and equation (5) we get the following steps.

S =

(x− r1)In1 A1

A1 (x− r1 − n2)In1

−
0 0

0 χL2(x− 1)In1


=

(x− r1)Inn1 A1

A1 (x− r1 − n2)In1 − χL2(x− 1))In1

 .

By applying Proposition 2.3 we get,

det S = (x− r1)n1det

(
(x− r1 − n2 − χL2(x− 1))In1 −

A2
1

x− r1

)
=

n1∏
i=1

((x− r1 − n2)(x− r1)− (x− r1)χL2(x− 1)− λ2
1i)

Since G2 is r2 - regular graph on n2 vertices, using equation (2) we have,

χL2(x− 1) =
n2

x− 1
.

On substituting these values and simplifying we arrive at the following step.

det S =
x(x2 − (1 + 2r1 + n2)x+ (2r1 + n2r1))

(x− 1)n1

n1∏
i=2

(x3 − (2r1 + n2 + 1)x2 + (r21 + 2r1 + n2r1 − λ2
1i)x+ λ2

1i − r21).

Since G1 is r1 - regular, we use the fact that λi = r1 − µi for i = 2, 3, . . . , n1 and µ1 = 0. Hence,

fG1~G2(L : x) = x(x2 − (1 + 2r1 + n2)x+ (2r1 + n2r1))

n2∏
j=2

(x− 1− µ2j)
n1

n1∏
i=2

(x3 − (2r1 + n2 + 1)x2 + (n2r1 + 2r1 + 2r1µ1i − µ2
1i)x+ µ2

1i − 2r1µ1i).

Corollary 3.9.

(1). Let G1 and G2 be vertex disjoint regular graph which is Laplacian cospectral and H is any arbitrary graph then G1~H

and G2~H are Laplacian cospectral.

(2). Let G be a regular graph and H1 and H2 be two cospectral graphs then G~H1 and G~H2 are Laplacian cospectral.

Theorem 3.10. Let G1 be a r1 - regular graph with n1 vertices and G2 be an arbitrary graph with n2 vertices with signless

Laplacian spectrum νi1 ≤ νi2 ≤ · · · ≤ νin for i = 1, 2. Then

fG1~G2(Q : x) =

n2∏
j=1

(x− 1− ν2j)n1

n1∏
i=1

(x2 − (2r1 + n2 + χQ2(x− 1))x+ r21 + n2r1 + r1χQ2(x− 1)− λ2
1i).
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Proof. The signless Laplace adjacency matrix of G1~G2 is,

Q =


r1In1 A1 0

A1 (r1 + n2)In1 1T
n2
⊗ In1

0 1n2 ⊗ In1 (Q2 + In2)⊗ In1

 ,

where Q2 is the signless Laplacian matrix of G2. The proof of the theorem is similar to Theorem 3.8.

Corollary 3.11. Let G1 be a r1 - regular graph with n1 vertices and G2 be a r2 - regular graph with n2 vertices. Then

fG1~G2(Q : x) =

n2−1∏
j=1

(x− 1− ν2j)n1

n1∏
i=1

(x3 − ax2 + bx− c),

where, a = 1 + 2r1 + 2r2 + n2, b = 2r1 + r21 + n2r1 + 2n2r2 + 4r1r2 − λ2
1i and c = r21 + 2r21r2 + 2n2r1r2 − 2r2λ

2
1i − λ2

1i.

Corollary 3.12.

(1). Let G1 and G2 be vertex disjoint regular graph which is cospectral and H is any arbitrary graph then G1~H and G2~H

are Q - cospectral.

(2). Let G be a regular graph and H1 and H2 be two A - cospectral graphs with χQ(H1)(x) = χQ(H2)(x) then G~H1 and

G~H2 are Q - cospectral.

Proposition 3.13. Let G1 be a r1 - regular graph with n1 vertices and G2 be an arbitrary graph with n2 vertices then

Duplication vertex corona and Duplication add vertex corona, G1}G2 and G1~G2, are A - cospectral.

Proof. Let G1 be a r1 - regular graph with n1 vertices and m1 edges. G2 be an arbitrary graph with n2 vertices.

V (G1) = {v1, v2, . . . , vn1} and U(G1) = {x1, x2, . . . , xn1}. The vertex in the ith copy of G2 be {ui
1, u

i
2, . . . , u

i
n2
} and let

Wj = {u1
j , u

2
j , . . . , u

n2
j } for j = 1, 2, . . . , n2. Then V (G1) ∪ U(G1) ∪ {W1 ∪W2 ∪ . . . ∪Wn2} is a vertex partition of G1}G2.

By these vertex partitioning the adjacency matrix of Duplication vertex corona, G1}G2, is

A =


0 A1 1T

n2
⊗ In1

A1 0n1×n1 0n1×n1n2

1n2 ⊗ In1 0n1n2×n1 A2 ⊗ In1

 ,

where A1 and A2 are the adjacency matrix of G1 and G2 respectively. 1n2 is a n2 × 1 column vector with all entries equal

to 1 and In1 is an identity matrix of order n1. Interchanging the first and second row and then interchange the first and

second column of the above determinant. The characteristic polynomial become

fG1}G2(A : x) = det (xI −A)

=

∣∣∣∣∣
xIn1

−A1 0

−A1 xIn1
−1T

n2
⊗In1

0 −1n2
⊗In1

(xIn2
−A2)⊗In1

∣∣∣∣∣
= fG1~G2(A : x).

Proposition 3.14. Let G1 be a r1 - regular graph with n1 vertices and G2 be an arbitrary graph with n2 vertices then

G1}G2 and G1~G2 are L - cospectral.
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Proof. The degree of the vertices of G1}G2 are dG1}G2(vi) = n2 +r1, dG1}G2(xi) = r1, i = 1, 2, . . . , n1 and dG1}G2(ui
j) =

dG2(uj) + 1, j = 1, 2, . . . , n2. The diagonal degree matrix of G1}G2 is

D(G1}G2) =


(r1 + n2)In1 0 0

0 r1In1 0

0 0 (D(G2) + In2)⊗ In1

 ,

where D(G2) be the diagonal degree matrix of the graph G2.

(D(G2) + In2)⊗ In1 −A2 ⊗ In1 = (D(G2) + In2 −A2)⊗ In1

= (L2 + In2)⊗ In1 .

The Laplace matrix of G1}G2 is,

L = D −A

=


(r1 + n2)In1 −A1 −1T

n2
⊗ In1

−A1 r1In1 0

−1n2 ⊗ In1 0 (L2 + In2)⊗ In1

 ,
where L1 and L2 are the Laplacian matrix of G1 and G2 respectively. 1n2 is a n2 × 1 column vector with all entries equal

to 1. The Laplacian characteristic polynomial of G1}G2,

fG1}G2(L : x) =

∣∣∣∣∣ (x−r1−n2)In1
A1 1T

n2
⊗In1

A1 (x−r1)In1
0

1n2
⊗In1

0 ((x−1)In2
−L2)⊗In1

∣∣∣∣∣
Interchanging the first and second row and then interchange the first and second column of the above determinant. The

Laplacian charcteristic polynomial become

fG1}G2(L : x) =


(x− r1)In1 −A1 0

−A1 (x− r1 − n2)In1 −1T
n2
⊗ In1

0 −1n2 ⊗ In1 (L2 + In2)⊗ In1


= fG1~G2(L : x).

Proposition 3.15. Let G1 be an r1 - regular graph on n1 vertices and G2 be an arbitrary graph on n2 vertices then G1}G2

and G1~G2 are Q - cospectral.

Proof. The proof of the Proposition is exactly same as that of the above Proposition.

4. Applications

Klein and Randić in [8] introduced a new notion named resistance distance based on electric resistance in a network

corresponding to a graph, in which the resistance distance between any two adjacent vertices is 1 ohm. The sum of the

resistance distance between all pairs of the vertices of a graph was conceived as a new graph invariant. The electric resistance

is calculated by means of the Kirchhoff laws called kirchhoff index. For a graph G with n(n ≥ 2) vertices the Kirchhoff

index, Kf(G), is defined as

Kf(G) = n

n∑
i=2

1

µi
. (10)
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Theorem 4.1. Let G1 be a r1 - regular graph with n1 vertices and G2 be an arbitrary graph with n2 vertices with Laplacian

spectrum 0 = µj1 ≤ µj2 ≤ · · · ≤ µjn, j = 1, 2. Then

Kf(G1~G2) = n1(n2 + 2)

[
n2∑
i=2

1

1 + µ2i
+

n1∑
i=2

n2r1 + 2r1 + 2r1µ1i − µ2
1i

2r1µ1i − µ2
1i

]
+
n1(1 + n2 + 2r1)

r1
.

Proof. Let y1 and y2 be the roots of the equation x2 − (2r1 + n2 + 1)x+ 2r1 + n2r1 = 0,

1

y1
+

1

y2
=
y1 + y2
y1y2

=
2r1 + n2r1
r1(n2 + 2)

.

Let yi1, yi2 and yi3 be the roots of the cubic equation x3− (2r1 +n2 + 1)x2 + (n2r1 + 2r1 + 2r1µ1i−µ2
1i)x+ (µ2

1i− 2r1µ1i) =

0, i = 2, 3, . . . , n1. Then

1

yi1
+

1

yi2
+

1

yi3
=
yi2yi3 + yi1yi3 + yi1yi2

yi1yi2yi3

=
n2r1 + 2r1 + 2r1µ1i − µ2

1i

2r1µ1i − µ2
1i

.

Substituting these result in the equation (10) we get

Kf(G1~G2) = n1(n2 + 2)

[
n2∑
j=2

1

1 + µ2j
+

n1∑
i=2

n2r1 + 2r1 + 2r1µ1i − µ2
1i

2r1µ1i − µ2
1i

]
+
n1(1 + n2 + 2r1)

r1
.

Spanning tree of a graph is a subgraph of it which is also a tree. The number of spanning tree of a graph G is denoted by

t(G). If G is a connected graph with n vertices and the Laplacian spectrum 0 = µ1(G) ≤ µ2(G) · · · ≤ µn(G) then [4] the

number of spanning tree

t(G) =
µ2(G)µ3(G) · · ·µn(G)

n
. (11)

Theorem 4.2. Let G1 be a r1 - regular graph with n1 vertices and G2 be an arbitrary graph on n2 vertices with Laplacian

spectrum 0 = µj1 ≤ µj2 ≤ · · · ≤ µjn, j = 1, 2. Then

t(G1~G2) =
r1
n1

n2∏
i=2

(1 + µ2i)
n1

n2∏
i=2

(µ2
1i − 2r1µ1i).

Proof. Referring the notations used in Theorem 3.8. Let y1 and y2 be the roots of the equation x2 − (2r1 + n2 + 1)x +

2r1 + n2r1 = 0. Product of the roots = y1y2 = 2r1 + n2r1. Let yi1, yi2 and yi3 be the roots of the cubic equation

x3 − (2r1 + n2 + 1)x2 + (n2r1 + 2r1 + 2r1µ1i − µ2
1i)x+ (µ2

1i − 2r1µ1i) = 0, i = 2, 3, . . . , n1. Then,

Product of the roots = yi1 yi2 yi3

= −(µ2
1i − 2r1µ1i)

= 2r1µ1i − µ2
1i.

Substituting these result in the equation (11) we get

t(G1~G2) =
r1
n1

n2∏
i=2

(1 + µ2i)
n1

n2∏
i=2

(µ2
1i − 2r1µ1i).

Corollary 4.3. t(Kn1~Kn2) = (n1 − 1)nn1−2
1 (n1 + 1)n1(n2−1)(n1 − 2)n1−1.

Proof. The notations are same as exactly defined in Theorem 4.2. If G1 = Kn1 and G2 = Kn2 , then r1 = n1 − 1,

µ1i = n1, i = 2, 3, . . . , n1 and µ2j = n2, j = 2, 3, . . . , n2. Proof follows by substituting these values in Theorem 4.2.
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4.1. Infinite Families of Integral Graphs

A graph is said to be an integral graph if the spectrum consists only of integers [1, 7]. The following propositions shows the

essential conditions for G1~G2 and G1}G2 to be an integral graph.

Proposition 4.4. Let G1 be a r1 - regular graph with n1 vertices and G2 be r2 - regular graph with n2 vertices. G1~G2

(respectively G1}G2) is an integral graph if and only if G1 and G2 are integral graphs and the roots of the equation,

x3 − r2x2 − (λ2
1i) + n2)x+ r2λ

2
1i = 0 for i = 2, 3, . . . , n1 are integers.

In particular if G2 = Kn (totally disconnected) then G1~G2 (respectively G1}G2) is an integral graph iff G1 is an integral

graph and n2 + λ2
1i for i = 2, 3, . . . , n1 are perfect squares.

Proposition 4.5. Let Gi be ri - regular graph on ni vertices then, G1~Kp,q (respectively G1}Kp,q) is an integral graph if

and only if p = q and the the roots of the equation x4 − (p + q + pq + λ2
1i)x

2 − 2pq + λ2
1i + pq = 0 for i = 1, 2, . . . , n1, are

integers.

5. Conclusion and Future Research

The concept of corona product of graph has many application in real life. In this paper we introduced two types of corona

product of graphs. Also we discussed some applications such as Kirchhoff index and number of spanning trees. We also

discuss some infinite family of integral graphs and some class of cospectral graphs. In this paper we are mainly focused on

the vertices and define the new corona product. But in future we can define the neighborhood corona and edge corona using

the duplication graph and can find the corresponding spectrum.
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