International Journal of Mathematics And its Applications

The Spectrum of Two New Corona of Graphs and its Applications

Research Article

Renny P Varghese ${ }^{1 *}$ and D. Susha ${ }^{1}$

1 Department of Mathematics, Catholicate College, Pathanamthitta, Kerala, India.

Abstract

In this paper we introduced two notions of corona products of graphs such as Duplication vertex corona and Duplication add vertex corona. Here we mainly determine the adjacency, Laplacian and signless Laplacian spectra of the new corona products of two graphs and we prove that the Duplication vertex corona and Duplication add vertex corona are cospectral graphs. In addition to that the Kirchhoff index and number of spanning trees of the new graph corona products were also calculated. Lastly, we focus on the classification of new class of integral graphs.

MSC: 05C50, 05C76.
Keywords: Spectrum, duplication graph, corona of graphs, integral graphs, Kirchhoff index, spanning tree.
(c) JS Publication.

1. Introduction

Throughout the paper we consider only simple and undirected graphs. Let G be an arbitrary graph with n vertices and vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let $A(G)$ be the adjacency matrix of G. It is an $n \times n$ symmetric matrix, $A(G)=\left(a_{i j}\right)_{n \times n}$, where $a_{i j}=1$ if v_{i} and v_{j} are connected by an edge in G and 0 , elsewhere.

Let the degree of v_{i} (number of vertices adjacent to v_{i}) in G be d_{i} and the diagonal degree matrix of G be $D(G)=$ $\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$. Brouwer and Haemers in [3] defined Laplacian matrix and signless Laplacian matrix as $L(G)=$ $D(G)-A(G)$ and $Q(G)=D(G)+A(G)$ respectively. The characteristic polynomial of A or of G is defined as $f_{G}(A: x)=$ $\operatorname{det}\left(x I_{n}-A\right)$, where I_{n} is the identity matrix of order n. The eigenvalues of G are the roots of $f_{G}(A: x)=0$. It is denoted by $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ and usually called adjacency spectrum or $A-$ spectrum of G. Similar manner the eigenvalues of $L(G)$ and $Q(G)$ are denoted by $0=\mu_{1} \leq \mu_{2} \leq \cdots \leq \mu_{n}$ and $\nu_{1} \leq \nu_{2} \leq \cdots \leq \nu_{n}$. They are called the Laplacian and signless Laplacian spectrum (or L - spectrum and Q - spectrum respectively) of G. The eigenvalues of $A(G), L(G)$ and $Q(G)$ are real numbers since the matrices are real and symmetric. The adjacency spectrum of a graph consists of the eigenvalues (together with their multiplicities) and the Laplacian (signless Laplacian) spectrum of G consists of the Laplace (signless Laplace) eigenvalues together with their multiplicities. A - cospectral graphs are those graphs with the same A - spectrum. Frucht and Harary in [5] introduced the concept of corona of two graphs and their spectrum by S. Barik et. al [2]. In [6] Gopalapillai introduced neighborhood corona of graphs and calculated the corresponding spectrum. In [11] Varghese and Susha defined some new join in duplication graph of an arbitrary graph. Motivated from these, in this paper we define

[^0]two new corona of graphs based on duplication graph of a graph and determined their adjacency, Laplacian and signless Laplacian spectrum.

The organisation of the paper is as follows. In section 2.1 we have some basic results on spectral graph theory which are useful in the succeeding sections. In section 3 we define two new corona product using duplication graph of a graph and find their adjacency, Laplacian and signless Laplacian spectra and we proved that they are cospectral. Then in the last section we discuss some applications such as number of spanning trees and the Kirchhoff index. We also give a brief description on some classification of new class of integral graphs.

2. Preliminaries

Definition 2.1 ([10]). Suppose G be a graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $U(G)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be another set corresponding to $V(G)$. Draw x_{i} adjacent to all the vertices in $N\left(v_{i}\right)$, the neighborhood set of v_{i}, in G for each i and delete the edges of G only. The graph thus obtained is called the duplication graph of G and we denote it as $D G$.
Lemma 2.2 ([4]). Let $M=\left[\begin{array}{ll}M_{1} & M_{2} \\ M_{2} & M_{1}\end{array}\right]$ be a block symmetric matrix of order 2×2. Then the eigenvalues of M are those of $M_{1}+M_{2}$ together with $M_{1}-M_{2}$.

Proposition 2.3 ([4]). Let P_{1}, P_{2}, P_{3}, and P_{4} be matrices of order $n_{1} \times n_{1}, n_{1} \times n_{2}, n_{2} \times n_{1}, n_{2} \times n_{2}$ respectively with P_{1} and P_{4} are invertible. Then

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{cc}
P_{1} & P_{2} \\
P_{3} & P_{4}
\end{array}\right) & =\operatorname{det}\left(P_{1}\right) \operatorname{det}\left(P_{4}-P_{3} P_{1}^{-1} P_{2}\right) \\
& =\operatorname{det}\left(P_{4}\right) \operatorname{det}\left(P_{1}-P_{2} P_{4}^{-1} P_{3}\right)
\end{aligned}
$$

Definition 2.4 ([9]). Let A be the adjacency matrix of a graph G with n vertices. The determinant $\operatorname{det}(x I-A)=f_{G}(A$: $x) \neq 0$, is invertible being the characteristic matrix of A. The $A-$ coronal, $\chi_{A}(x)$, of G is defined to be the sum of the entries of the matrix $(x I-A)^{-1}$. We denote this as $\chi_{A}(x)=1_{n}^{T}(x I-A)^{-1} \mathbf{1}_{n}$, where $\boldsymbol{1}_{n}$ is a $n \times 1$ column vector with all entries equal to 1 .

We use the following results by McLeman and McNicholas defined in [9].
Let G be an r - regular graph on n vertices. Then

$$
\begin{equation*}
\chi_{A}(x)=\frac{n}{x-r} \tag{1}
\end{equation*}
$$

Each row sum of the Laplacian matrix $L(G)$ of any graph G with n vertices equal to 0 . Then

$$
\begin{equation*}
\chi_{L}(x)=\frac{n}{x} \tag{2}
\end{equation*}
$$

Let G be the bipartite graph $K_{p, q}$ where $p+q=n$. Then

$$
\begin{equation*}
\chi_{A}(x)=\frac{n x+2 p q}{x^{2}-p q} \tag{3}
\end{equation*}
$$

Let $A=\left(a_{i j}\right)$ and B be matrices. Then the Kronecker product [4], $A \otimes B$, of A and B is defined as the partition matrix $\left(a_{i j} B\right)$. This associative operation has the property that $(A \otimes B)^{T}=A^{T} \otimes B^{T},(A+B) \otimes C=A \otimes C+B \otimes C$ and
$(A \otimes B)(C \otimes D)=A C \otimes B D$ whenever the product $A C$ and $B D$ exist. Also for the non-singular matrix A and $B,(A \otimes B)^{-1}$ $=A^{-1} \otimes B^{-1}$. Moreover if A and B are $n \times n$ and $p \times p$ matrices, then $\operatorname{det}(A \otimes B)=(\operatorname{det} A)^{p}(\operatorname{det} B)^{n}$. Under these arguments we can substantiate that

$$
\begin{align*}
\left(\mathbf{1}_{n}^{T} \otimes I_{n}\right)\left(\left(x I_{n}-A\right)^{-1} \otimes I_{n}\right)\left(\mathbf{1}_{n} \otimes I_{n}\right) & =I_{n} \chi_{A}(x) \tag{4}\\
\left(\mathbf{1}_{n}^{T} \otimes I_{n}\right)\left(\left((x-1) I_{n}-A\right)^{-1} \otimes I_{n}\right)\left(\mathbf{1}_{n} \otimes I_{n}\right) & =I_{n} \chi_{A}(x-1) \tag{5}
\end{align*}
$$

3. New Corona Product of Graphs and Their Spectra

The following definitions describes the new graph corona product based on the duplication graph of a graph.
Definition 3.1. Let G_{1} and G_{2} be two vertex disjoint graphs with n_{1} and n_{2} vertices respectively. Let $D G_{1}$ be the duplication graph of G_{1} with vertex set $V\left(G_{1}\right) \cup U\left(G_{1}\right)$, where $V\left(G_{1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n_{1}}\right\}$ and $U\left(G_{1}\right)=\left\{x_{1}, x_{2}, \ldots, x_{n_{1}}\right\}$. Duplication add vertex corona, $G_{1} \circledast G_{2}$, is the graph obtained from $D G_{1}$ and n_{1} copies of G_{2} by making x_{i} adjacent to every vertices in the $i^{\text {th }}$ copy of G_{2} for $i=1,2, \ldots, n_{1}$.

Definition 3.2. Let G_{1} and G_{2} be two vertex disjoint graphs with n_{1} and n_{2} vertices respectively. Let $D G_{1}$ be the duplication graph of G_{1} with vertex set $V\left(G_{1}\right) \cup U\left(G_{1}\right)$, where $V\left(G_{1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n_{1}}\right\}$ and $U\left(G_{1}\right)=\left\{x_{1}, x_{2}, \ldots, x_{n_{1}}\right\}$. Duplication vertex corona, $G_{1} \odot G_{2}$, is the graph obtained from $D G_{1}$ and n_{1} copies of G_{2} by making v_{i} adjacent to every vertices in the $i^{\text {th }}$ copy of G_{2} for $i=1,2, \ldots, n_{1}$.

Figure 1. $K_{3} @ K_{2}$ and $K_{3} \circledast K_{2}$

If G_{1} is a graph with n_{1} vertices and m_{1} edges and G_{2} is a graph with n_{2} vertices and m_{2} edges, then $G_{1} \circledast G_{2}$ and $G_{1} \circledast G_{2}$ has $n_{1}\left(n_{2}+2\right)$ vertices and $2 m_{1}+n_{1}\left(n_{2}+m_{2}\right)$ edges.

Now we find the adjacency, Laplacian and signless Laplacian spectrum of $G_{1} \circledast G_{2}$.

Theorem 3.3. Let G_{i} be two graphs with n_{i} vertices with spectrum $\lambda_{i 1}(G) \geq \lambda_{i 2}(G) \geq \cdots \geq \lambda_{\text {in }}(G)$, for $i=1,2$. Then the characteristic polynomial of duplication add vertex corona, $G_{1} \circledast G_{2}$, is

$$
f_{G_{1}-G_{2}}(A: x)=\prod_{j=1}^{n_{2}}\left(x-\lambda_{2 j}\right)^{n_{1}} \prod_{i=1}^{n_{1}}\left(x^{2}-x \chi_{A_{2}}(x)-\lambda_{1 i}^{2}\right) .
$$

Proof. Let G_{1} be an r_{1} - regular graph on n_{1} vertices and m_{1} edges. G_{2} be an arbitrary graph on n_{2} vertices. $V\left(G_{1}\right)=$ $\left\{v_{1}, v_{2}, \ldots, v_{n_{1}}\right\}$ and $U\left(G_{1}\right)=\left\{x_{1}, x_{2}, \ldots, x_{n_{1}}\right\}$. The vertex in the $i^{\text {th }}$ copy of G_{2} be $\left\{u_{1}^{i}, u_{2}^{i}, \ldots, u_{n_{2}}^{i}\right\}$ and let $W_{j}=$
$\left\{u_{j}^{1}, u_{j}^{2}, \ldots, u_{j}^{n_{2}}\right\}$ for $j=1,2, \ldots, n_{2}$. Joining x_{i} to every vertex of the $i^{t h}$ copy of G_{2}. Then $V\left(G_{1}\right) \cup U\left(G_{1}\right) \cup\left\{W_{1} \cup W_{2} \cup\right.$ $\left.\ldots \cup W_{n_{2}}\right\}$ is a vertex partition of $G_{1} \circledast G_{2}$. By these vertex partitioning the adjacency matrix of $G_{1} \circledast G_{2}$ is

$$
A=\left[\begin{array}{ccc}
0 & A_{1} & 0_{n_{1} \times n_{1} n_{2}} \\
A_{1} & 0_{n_{1} \times n_{1}} & \mathbf{1}_{n_{2}}^{T} \otimes I_{n_{1}} \\
0_{n_{1} n_{2} \times n_{1}} & \mathbf{1}_{n_{2}} \otimes I_{n_{1}} & A_{2} \otimes I_{n_{1}}
\end{array}\right],
$$

where A_{1} and A_{2} are the adjacency matrix of G_{1} and G_{2} respectively. $\mathbf{1}_{n_{2}}$ is a $n_{2} \times 1$ column vector with all entries equal to 1 . The characteristic polynomial of $G_{1} \circledast G_{2}$

$$
\begin{aligned}
f_{G_{1} \circledast G_{2}}(A: x) & =\operatorname{det}(x I-A) \\
& =\left|\begin{array}{ccc}
x I_{n_{1}} & -A_{1} & 0 \\
-A_{1} & x I_{n_{1}} & -\mathbf{1}_{n_{2}}^{T} \otimes I_{n_{1}} \\
0 & -\mathbf{1}_{n_{2}} \otimes I_{n_{1}} & \left(x I_{n_{2}}-A_{2}\right) \otimes I_{n_{1}}
\end{array}\right| .
\end{aligned}
$$

By using Proposition 2.3 we get,

$$
f_{G_{1} \circledast G_{2}}(A: x)=\operatorname{det}\left(\left(x I_{n_{2}}-A_{2}\right) \otimes I_{n_{2}}\right) \operatorname{det} S,
$$

where

$$
S=\left(\begin{array}{cc}
x I_{n_{1}} & -A_{1} \\
-A_{1} & x I_{n_{1}}
\end{array}\right)-\binom{0}{-\mathbf{1}_{n_{2}}^{T} \otimes I_{n_{1}}}\left(\left(x I_{n_{2}}-A_{2}\right) \otimes I_{n_{1}}\right)^{-1}\left(\begin{array}{ll}
0 & -\mathbf{1}_{n_{2}} \otimes I_{n_{1}}
\end{array}\right) .
$$

Using the property of Kronecker product and equation (4) we get,

$$
\begin{aligned}
S & =\left(\begin{array}{cc}
x I_{n_{1}} & -A_{1} \\
-A_{1} & x I_{n_{1}}
\end{array}\right)-\binom{0}{-\mathbf{1}_{n_{2}}^{T} \otimes I_{n_{1}}}\left(x I_{n_{2}}-A_{2}\right)^{-1} \otimes I_{n_{1}}\left(\begin{array}{ll}
0 & -\mathbf{1}_{n_{2}} \otimes I_{n_{1}}
\end{array}\right) \\
& =\left(\begin{array}{ll}
x I_{n_{1}} & -A_{1} \\
-A_{1} & x I_{n_{1}}
\end{array}\right)-\left(\begin{array}{cc}
0 & 0 \\
0 & \chi_{A_{2}}(x) I_{n_{1}}
\end{array}\right) \\
& =\left(\begin{array}{cc}
x I_{n_{1}} & -A_{1} \\
-A_{1} & x I_{n_{1}}-\chi_{A_{2}}(x) I_{n_{1}}
\end{array}\right)
\end{aligned}
$$

Again by Proposition 2.3 we get

$$
\begin{align*}
\operatorname{det} S & =x^{n_{1}} \operatorname{det}\left(\left(x-\chi_{A_{2}}(x)\right) I_{n_{1}}-A_{1}\left(x I_{m_{1}}\right)^{-1} A_{1}\right) \\
& =x^{n_{1}} \operatorname{det}\left(\left(x-\chi_{A_{2}}(x)\right) I_{n_{1}}-\frac{A_{1}^{2}}{x}\right) . \\
\operatorname{det} S & =\prod_{i=1}^{n_{1}}\left(x^{2}-x \chi_{A_{2}}(x)-\lambda_{1 i}^{2}\right) . \tag{6}
\end{align*}
$$

Also by the property of Kronecker product,

$$
\begin{align*}
\operatorname{det}\left(x I_{n_{2}}-A_{2}\right) \otimes I_{n_{1}} & =\left(\operatorname{det}\left(x I_{n_{2}}-A_{2}\right)\right)^{n_{1}}\left(\operatorname{det}\left(I_{n_{1}}\right)\right)^{n_{2}} \tag{7}\\
& =\prod_{j=1}^{n_{2}}\left(x-\lambda_{2 j}\right)^{n_{1}} . \tag{8}
\end{align*}
$$

Hence using equations (6) and (7) we arrive that the characteristic equation is,

$$
\begin{equation*}
f_{G_{1} \circledast G_{2}}(A: x)=\prod_{j=1}^{n_{2}}\left(x-\lambda_{2 j}\right)^{n_{1}} \prod_{i=1}^{n_{1}}\left(x^{2}-x \chi_{A_{2}}(x)-\lambda_{1 i}^{2}\right) . \tag{9}
\end{equation*}
$$

Corollary 3.4. Let G_{1} be a r_{1} - regular graph with n_{1} vertices and G_{2} be a r_{2} - regular graph with n_{2} vertices. Then the A - spectrum of $G_{1} \circledast G_{2}$ consists of,
(1). $\lambda_{2 j}$, repeated n_{1} times, for $j=2,3, \ldots, n_{2}$;
(2). Three roots of the equation, $x^{3}-r_{2} x^{2}-\left(\lambda_{1 i}^{2}+n_{2}\right) x+r_{2} \lambda_{1 i}^{2}=0$ for $i=1,2,3, \ldots, n_{1}$.

Proof. Since G_{2} is r_{2} - regular, by equation (1),

$$
\chi_{A_{2}}(x)=\frac{n_{2}}{x-r_{2}} .
$$

From equation (9) the characteristic polynomial,

$$
\begin{aligned}
\operatorname{det}(x I-A) & =\prod_{j=1}^{n_{2}}\left(x-\lambda_{2 j}\right)^{n_{1}} \prod_{i=1}^{n_{1}}\left(x^{2}-x \frac{n_{2}}{x-r_{2}}-\lambda_{1 i}^{2}\right) \\
& =\prod_{j=2}^{n_{2}}\left(x-\lambda_{2 j}\right)^{n_{1}} \prod_{i=1}^{n_{1}}\left(x^{3}-r_{2} x^{2}-\left(\lambda_{1 i}^{2}+n_{2}\right) x+r_{2} \lambda_{1 i}^{2}\right) .
\end{aligned}
$$

Corollary 3.5. Let G_{1} be a r_{1} - regular graph with n_{1} vertices and $G_{2}=\overline{K_{n}}$ (Totally disconnected). Then the $A-$ spectrum of $G_{1} \circledast G_{2}$ consists of,
(1). 0 , repeated $n_{1} n_{2}$ times;
(2). $\pm \sqrt{n_{2}+\lambda_{1 i}^{2}}$, for $i=1,2, \ldots, n_{1}$.

Proof. When $G_{2}=\overline{K_{n_{2}}}$ then, by equation (1),

$$
\chi_{A_{2}}(x)=\frac{n_{2}}{x} .
$$

Also $\lambda_{2 i}=0$ for $i=1,2, \ldots, n_{2}$. Hence,

$$
f_{G_{1} \circledast \mathscr{G}_{2}}(A: x)=x^{n_{1} n_{2}} \prod_{i=1}^{n_{1}}\left(x^{2}-n_{2}-\lambda_{1 i}^{2}\right) \text {. }
$$

Corollary 3.6. Let G_{1} be a r_{1} - regular graph on n_{1} vertices and $G_{2}=K_{p, q}$, the complete bipartite graph. Then the A spectrum of $G_{1} \circledast G_{2}$ consists of,
(1). 0 , repeated $n_{1}(p+q-2)$ times;
(2). Four roots of the equation $x^{4}-\left(p+q+p q+\lambda_{1 i}^{2}\right) x^{2}-2 p q+\lambda_{1 i}^{2}+p q=0$, for $i=1,2, \ldots, n_{1}$.

Proof. Since $G_{2}=K_{p, q}$, by equation (3)

$$
\chi_{A_{2}}(x)=\frac{(p+q) x+2 p q}{x^{2}-p q} .
$$

The characteristic polynomial can be calculated as,

$$
\operatorname{det}(x I-A)=x^{n_{1}\left(n_{2}-2\right)} \prod_{i=1}^{n_{1}}\left(x^{4}-\left(p+q+p q+\lambda_{1 i}^{2}\right) x^{2}-2 p q+\lambda_{1 i}^{2}+p q\right)
$$

Corollary 3.7.

(1). Let G_{1} and G_{2} be vertex disjoint regular graph which is cospectral and H is any arbitrary graph, then $G_{1} \circledast H$ and $G_{2} \circledast H$ are A - cospectral.
(2). Let G be a regular graph and H_{1} and H_{2} be two A - cospectral graphs with $\chi_{A\left(H_{1}\right)}(x)=\chi_{A\left(H_{2}\right)}(x)$ then $G \circledast H_{1}$ and $G \circledast H_{2}$ are A - cospectral.

Theorem 3.8. Let G_{1} be a r_{1} - regular graph with n_{1} vertices and G_{2} be an arbitrary graph on n_{2} vertices with Laplacian spectrum $0=\mu_{j 1} \leq \mu_{j 2} \leq \cdots \leq \mu_{j n}, j=1,2$. Then L - spectrum of duplication add vertex corona, $G_{1} \circledast G_{2}$, consists of
(1). 0;
(2). $1+\mu_{2 j}$, repeated n_{1} times for $j=2,3, \ldots, n_{2}$;
(3). Two roots of the equation $x^{2}-\left(2 r_{1}+n_{2}+1\right) x+2 r_{1}+n_{2} r_{1}=0$;
(4). Three roots of the equation $x^{3}-\left(2 r_{1}+n_{2}+1\right) x^{2}+\left(n_{2} r_{1}+2 r_{1}+2 r_{1} \mu_{1 i}-\mu_{1 i}^{2}\right) x+\left(\mu_{1 i}^{2}-2 r_{1} \mu_{1 i}\right)=0, i=2,3, \ldots, n_{1}$.

Proof. The degree of the vertices of $G_{1} \circledast G_{2}$ are $d_{G_{1} \circledast G_{2}}\left(v_{i}\right)=r_{1}, d_{G_{1} \circledast G_{2}}\left(x_{i}\right)=n_{2}+r_{1}, i=1,2, \ldots, n_{1}$ and $d_{G_{1} \circledast G_{2}}\left(u_{j}^{i}\right)=$ $d_{G_{2}}\left(u_{j}\right)+1, j=1,2, \ldots, n_{2}$. The diagonal degree matrix of $G_{1} \nVdash G_{2}$ is,

$$
D\left(G_{1} \circledast G_{2}\right)=\left[\begin{array}{ccc}
r_{1} I_{n_{1}} & 0 & 0 \\
0 & \left(r_{1}+n_{2}\right) I_{n_{1}} & 0 \\
0 & 0 & \left(D\left(G_{2}\right)+I_{n_{2}}\right) \otimes I_{n_{1}}
\end{array}\right]
$$

where $D\left(G_{2}\right)$ be the diagonal degree matrix of the graph G_{2}.

$$
\begin{aligned}
\left(D\left(G_{2}\right)+I_{n_{2}}\right) \otimes I_{n_{1}}-A_{2} \otimes I_{n_{1}} & =\left(D\left(G_{2}\right)+I_{n_{2}}-A_{2}\right) \otimes I_{n_{1}} \\
& =\left(L_{2}+I_{n_{2}}\right) \otimes I_{n_{1}} .
\end{aligned}
$$

The Laplace matrix of $G_{1} \circledast G_{2}$ is,

$$
\begin{aligned}
L & =D-A \\
& =\left[\begin{array}{ccc}
r_{1} I_{n_{1}} & -A_{1} & 0 \\
-A_{1} & \left(r_{1}+n_{2}\right) I_{n_{1}} & -\mathbf{1}_{n_{2}}^{T} \otimes I_{n_{1}} \\
0 & -\mathbf{1}_{n_{2}} \otimes I_{n_{1}} & \left(L_{2}+I_{n_{2}}\right) \otimes I_{n_{1}}
\end{array}\right],
\end{aligned}
$$

where L_{2} is the Laplacian matrix of G_{2} and $\mathbf{1}_{n_{2}}$ is a $n_{2} \times 1$ column vector with all entries equal to 1 . The Laplacian characteristic polynomial of $G_{1} \circledast G_{2}$,

$$
\begin{aligned}
f_{G_{1} \circledast G_{2}}(L: x) & =\left|\begin{array}{cc}
\left(x-r_{1}\right) I_{n_{1}} & A_{1} \\
A_{1} & \left(x-r_{1}-n_{2}\right) I_{n_{1}} \\
0 & \mathbf{1}_{n_{2}} \otimes I_{n_{1}} \\
\left((x-1) I_{n_{2}}-L_{2}\right) \otimes I_{n_{1}}
\end{array}\right| \\
& =\operatorname{det}\left(\left((x-1) I_{n_{2}}-L_{2}\right) \otimes I_{n_{1}}\right) \operatorname{det} S, \\
\text { where, } S & =\left(\begin{array}{cc}
\left(x-r_{1}\right) I_{n_{1}} & A_{1} \\
A_{1} & \left(x-r_{1}-n_{2}\right) I_{n_{1}}
\end{array}\right)-\binom{0}{\mathbf{1}_{n_{2}}^{T} \otimes I_{n_{1}}}\left(\left((x-1) I_{n_{2}}-L_{2}\right) \otimes I_{n_{1}}\right)^{-1}\left(\begin{array}{ll}
0 & \mathbf{1}_{n_{2}} \otimes I_{n_{1}}
\end{array}\right) .
\end{aligned}
$$

By using the property of Kronecker product and equation (5) we get the following steps.

$$
\begin{aligned}
S & =\left(\begin{array}{cc}
\left(x-r_{1}\right) I_{n_{1}} & A_{1} \\
A_{1} & \left(x-r_{1}-n_{2}\right) I_{n_{1}}
\end{array}\right)-\left(\begin{array}{cc}
0 & 0 \\
0 & \chi_{L_{2}}(x-1) I_{n_{1}}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\left(x-r_{1}\right) I_{n} n_{1} & A_{1} \\
A_{1} & \left.\left(x-r_{1}-n_{2}\right) I_{n_{1}}-\chi_{L_{2}}(x-1)\right) I_{n_{1}}
\end{array}\right)
\end{aligned}
$$

By applying Proposition 2.3 we get,

$$
\begin{aligned}
\operatorname{det} S & =\left(x-r_{1}\right)^{n_{1}} \operatorname{det}\left(\left(x-r_{1}-n_{2}-\chi_{L_{2}}(x-1)\right) I_{n_{1}}-\frac{A_{1}^{2}}{x-r_{1}}\right) \\
& =\prod_{i=1}^{n_{1}}\left(\left(x-r_{1}-n_{2}\right)\left(x-r_{1}\right)-\left(x-r_{1}\right) \chi_{L_{2}}(x-1)-\lambda_{1 i}^{2}\right)
\end{aligned}
$$

Since G_{2} is r_{2} - regular graph on n_{2} vertices, using equation (2) we have,

$$
\chi_{L_{2}}(x-1)=\frac{n_{2}}{x-1}
$$

On substituting these values and simplifying we arrive at the following step.

$$
\begin{aligned}
\operatorname{det} S= & \frac{x\left(x^{2}-\left(1+2 r_{1}+n_{2}\right) x+\left(2 r_{1}+n_{2} r_{1}\right)\right)}{(x-1)^{n_{1}}} \\
& \prod_{i=2}^{n_{1}}\left(x^{3}-\left(2 r_{1}+n_{2}+1\right) x^{2}+\left(r_{1}^{2}+2 r_{1}+n_{2} r_{1}-\lambda_{1 i}^{2}\right) x+\lambda_{1 i}^{2}-r_{1}^{2}\right)
\end{aligned}
$$

Since G_{1} is r_{1} - regular, we use the fact that $\lambda_{i}=r_{1}-\mu_{i}$ for $i=2,3, \ldots, n_{1}$ and $\mu_{1}=0$. Hence,

$$
\begin{aligned}
f_{G_{1} \circledast G_{2}}(L: x) & =x\left(x^{2}-\left(1+2 r_{1}+n_{2}\right) x+\left(2 r_{1}+n_{2} r_{1}\right)\right) \prod_{j=2}^{n_{2}}\left(x-1-\mu_{2 j}\right)^{n_{1}} \\
& \prod_{i=2}^{n_{1}}\left(x^{3}-\left(2 r_{1}+n_{2}+1\right) x^{2}+\left(n_{2} r_{1}+2 r_{1}+2 r_{1} \mu_{1 i}-\mu_{1 i}^{2}\right) x+\mu_{1 i}^{2}-2 r_{1} \mu_{1 i}\right)
\end{aligned}
$$

Corollary 3.9.

(1). Let G_{1} and G_{2} be vertex disjoint regular graph which is Laplacian cospectral and H is any arbitrary graph then $G_{1} \circledast H$ and $G_{2} \circledast H$ are Laplacian cospectral.
(2). Let G be a regular graph and H_{1} and H_{2} be two cospectral graphs then $G \circledast H_{1}$ and $G \circledast H_{2}$ are Laplacian cospectral.

Theorem 3.10. Let G_{1} be a r_{1} - regular graph with n_{1} vertices and G_{2} be an arbitrary graph with n_{2} vertices with signless Laplacian spectrum $\nu_{i 1} \leq \nu_{i 2} \leq \cdots \leq \nu_{i n}$ for $i=1,2$. Then

$$
\begin{aligned}
f_{G_{1} \circledast G_{2}}(Q: x) & =\prod_{j=1}^{n_{2}}\left(x-1-\nu_{2 j}\right)^{n_{1}} \\
& \prod_{i=1}^{n_{1}}\left(x^{2}-\left(2 r_{1}+n_{2}+\chi_{Q_{2}}(x-1)\right) x+r_{1}^{2}+n_{2} r_{1}+r_{1} \chi_{Q_{2}}(x-1)-\lambda_{1 i}^{2}\right)
\end{aligned}
$$

Proof. The signless Laplace adjacency matrix of $G_{1} \not{\circledast} G_{2}$ is,

$$
Q=\left[\begin{array}{ccc}
r_{1} I_{n_{1}} & A_{1} & 0 \\
A_{1} & \left(r_{1}+n_{2}\right) I_{n_{1}} & \mathbf{1}_{n_{2}}^{T} \otimes I_{n_{1}} \\
0 & \mathbf{1}_{n_{2}} \otimes I_{n_{1}} & \left(Q_{2}+I_{n_{2}}\right) \otimes I_{n_{1}}
\end{array}\right]
$$

where Q_{2} is the signless Laplacian matrix of G_{2}. The proof of the theorem is similar to Theorem 3.8.

Corollary 3.11. Let G_{1} be a r_{1} - regular graph with n_{1} vertices and G_{2} be a r_{2}-regular graph with n_{2} vertices. Then

$$
f_{G_{1} \circledast G_{2}}(Q: x)=\prod_{j=1}^{n_{2}-1}\left(x-1-\nu_{2 j}\right)^{n_{1}} \prod_{i=1}^{n_{1}}\left(x^{3}-a x^{2}+b x-c\right),
$$

where, $a=1+2 r_{1}+2 r_{2}+n_{2}, b=2 r_{1}+r_{1}^{2}+n_{2} r_{1}+2 n_{2} r_{2}+4 r_{1} r_{2}-\lambda_{1 i}^{2}$ and $c=r_{1}^{2}+2 r_{1}^{2} r_{2}+2 n_{2} r_{1} r_{2}-2 r_{2} \lambda_{1 i}^{2}-\lambda_{1 i}^{2}$.

Corollary $\mathbf{3 . 1 2}$.

(1). Let G_{1} and G_{2} be vertex disjoint regular graph which is cospectral and H is any arbitrary graph then $G_{1} \circledast H$ and $G_{2} \circledast H$ are Q - cospectral.
(2). Let G be a regular graph and H_{1} and H_{2} be two A - cospectral graphs with $\chi_{Q\left(H_{1}\right)}(x)=\chi_{Q\left(H_{2}\right)}(x)$ then $G \circledast H_{1}$ and $G \circledast H_{2}$ are Q - cospectral.

Proposition 3.13. Let G_{1} be a r_{1} - regular graph with n_{1} vertices and G_{2} be an arbitrary graph with n_{2} vertices then Duplication vertex corona and Duplication add vertex corona, $G_{1} \odot G_{2}$ and $G_{1} \circledast G_{2}$, are A - cospectral.

Proof. Let G_{1} be a r_{1} - regular graph with n_{1} vertices and m_{1} edges. G_{2} be an arbitrary graph with n_{2} vertices. $V\left(G_{1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n_{1}}\right\}$ and $U\left(G_{1}\right)=\left\{x_{1}, x_{2}, \ldots, x_{n_{1}}\right\}$. The vertex in the $i^{\text {th }}$ copy of G_{2} be $\left\{u_{1}^{i}, u_{2}^{i}, \ldots, u_{n_{2}}^{i}\right\}$ and let $W_{j}=\left\{u_{j}^{1}, u_{j}^{2}, \ldots, u_{j}^{n_{2}}\right\}$ for $j=1,2, \ldots, n_{2}$. Then $V\left(G_{1}\right) \cup U\left(G_{1}\right) \cup\left\{W_{1} \cup W_{2} \cup \ldots \cup W_{n_{2}}\right\}$ is a vertex partition of $G_{1} \odot G_{2}$. By these vertex partitioning the adjacency matrix of Duplication vertex corona, $G_{1} \oslash G_{2}$, is

$$
A=\left[\begin{array}{ccc}
0 & A_{1} & \mathbf{1}_{n_{2}}^{T} \otimes I_{n_{1}} \\
A_{1} & 0_{n_{1} \times n_{1}} & 0_{n_{1} \times n_{1} n_{2}} \\
\mathbf{1}_{n_{2}} \otimes I_{n_{1}} & 0_{n_{1} n_{2} \times n_{1}} & A_{2} \otimes I_{n_{1}}
\end{array}\right],
$$

where A_{1} and A_{2} are the adjacency matrix of G_{1} and G_{2} respectively. $\mathbf{1}_{n_{2}}$ is a $n_{2} \times 1$ column vector with all entries equal to 1 and $I_{n_{1}}$ is an identity matrix of order n_{1}. Interchanging the first and second row and then interchange the first and second column of the above determinant. The characteristic polynomial become

$$
\begin{aligned}
f_{G_{1} \circledast G_{2}}(A: x) & =\operatorname{det}(x I-A) \\
& =\left|\begin{array}{rrc}
x I_{n_{1}} & -A_{1} & 0 \\
-A_{1} & x I_{n_{1}} & -\mathbf{1}_{n_{2}}^{T} \otimes I_{n_{1}} \\
0 & -\mathbf{1}_{n_{2}} \otimes I_{n_{1}} & \left(x I_{n_{2}}-A_{2}\right) \otimes I_{n_{1}}
\end{array}\right| \\
& =f_{G_{1} \circledast G_{2}}(A: x) .
\end{aligned}
$$

Proposition 3.14. Let G_{1} be a r_{1} - regular graph with n_{1} vertices and G_{2} be an arbitrary graph with n_{2} vertices then $G_{1} \odot G_{2}$ and $G_{1} \circledast G_{2}$ are L - cospectral.

Proof. The degree of the vertices of $G_{1} \varrho G_{2}$ are $d_{G_{1} \oslash G_{2}}\left(v_{i}\right)=n_{2}+r_{1}, d_{G_{1} \oslash G_{2}}\left(x_{i}\right)=r_{1}, i=1,2, \ldots, n_{1}$ and $d_{G_{1} \oslash G_{2}}\left(u_{j}^{i}\right)=$ $d_{G_{2}}\left(u_{j}\right)+1, j=1,2, \ldots, n_{2}$. The diagonal degree matrix of $G_{1} \odot G_{2}$ is

$$
D\left(G_{1} \odot G_{2}\right)=\left[\begin{array}{ccc}
\left(r_{1}+n_{2}\right) I_{n_{1}} & 0 & 0 \\
0 & r_{1} I_{n_{1}} & 0 \\
0 & 0 & \left(D\left(G_{2}\right)+I_{n_{2}}\right) \otimes I_{n_{1}}
\end{array}\right]
$$

where $D\left(G_{2}\right)$ be the diagonal degree matrix of the graph G_{2}.

$$
\begin{aligned}
\left(D\left(G_{2}\right)+I_{n_{2}}\right) \otimes I_{n_{1}}-A_{2} \otimes I_{n_{1}} & =\left(D\left(G_{2}\right)+I_{n_{2}}-A_{2}\right) \otimes I_{n_{1}} \\
& =\left(L_{2}+I_{n_{2}}\right) \otimes I_{n_{1}} .
\end{aligned}
$$

The Laplace matrix of $G_{1} \odot G_{2}$ is,

$$
\begin{aligned}
L & =D-A \\
& =\left[\begin{array}{ccc}
\left(r_{1}+n_{2}\right) I_{n_{1}} & -A_{1} & -\mathbf{1}_{n_{2}}^{T} \otimes I_{n_{1}} \\
-A_{1} & r_{1} I_{n_{1}} & 0 \\
-\mathbf{1}_{n_{2}} \otimes I_{n_{1}} & 0 & \left(L_{2}+I_{n_{2}}\right) \otimes I_{n_{1}}
\end{array}\right],
\end{aligned}
$$

where L_{1} and L_{2} are the Laplacian matrix of G_{1} and G_{2} respectively. $\mathbf{1}_{n_{2}}$ is a $n_{2} \times 1$ column vector with all entries equal to 1 . The Laplacian characteristic polynomial of $G_{1} \odot G_{2}$,

$$
f_{G_{1} \oslash G_{2}}(L: x)=\left|\begin{array}{ccc}
\left(x-r_{1}-n_{2}\right) I_{n_{1}} & A_{1} & \mathbf{1}_{n_{2}}^{T} \otimes I_{n_{1}} \\
A_{1} & 0 \\
A_{1} & \left(x-r_{1}\right) I_{n_{1}} & 0 \\
\mathbf{1}_{n_{2}} \otimes I_{n_{1}} & 0 & \left((x-1) I_{n_{2}}-L_{2}\right) \otimes I_{n_{1}}
\end{array}\right|
$$

Interchanging the first and second row and then interchange the first and second column of the above determinant. The Laplacian charcteristic polynomial become

$$
\begin{aligned}
f_{G_{1} \circledast G_{2}}(L: x) & =\left[\begin{array}{ccc}
\left(x-r_{1}\right) I_{n_{1}} & -A_{1} & 0 \\
-A_{1} & \left(x-r_{1}-n_{2}\right) I_{n_{1}} & -\mathbf{1}_{n_{2}}^{T} \otimes I_{n_{1}} \\
0 & -\mathbf{1}_{n_{2}} \otimes I_{n_{1}} & \left(L_{2}+I_{n_{2}}\right) \otimes I_{n_{1}}
\end{array}\right] \\
& =f_{G_{1} \circledast G_{2}}(L: x) .
\end{aligned}
$$

Proposition 3.15. Let G_{1} be an r_{1} - regular graph on n_{1} vertices and G_{2} be an arbitrary graph on n_{2} vertices then $G_{1} \odot G_{2}$ and $G_{1} \circledast G_{2}$ are Q - cospectral.

Proof. The proof of the Proposition is exactly same as that of the above Proposition.

4. Applications

Klein and Randić in [8] introduced a new notion named resistance distance based on electric resistance in a network corresponding to a graph, in which the resistance distance between any two adjacent vertices is 1 ohm . The sum of the resistance distance between all pairs of the vertices of a graph was conceived as a new graph invariant. The electric resistance is calculated by means of the Kirchhoff laws called kirchhoff index. For a graph G with $n(n \geq 2)$ vertices the Kirchhoff index, $K f(G)$, is defined as

$$
\begin{equation*}
K f(G)=n \sum_{i=2}^{n} \frac{1}{\mu_{i}} . \tag{10}
\end{equation*}
$$

Theorem 4.1. Let G_{1} be a r_{1} - regular graph with n_{1} vertices and G_{2} be an arbitrary graph with n_{2} vertices with Laplacian spectrum $0=\mu_{j 1} \leq \mu_{j 2} \leq \cdots \leq \mu_{j n}, j=1,2$. Then

$$
K f\left(G_{1} \circledast G_{2}\right)=n_{1}\left(n_{2}+2\right)\left[\sum_{i=2}^{n_{2}} \frac{1}{1+\mu_{2 i}}+\sum_{i=2}^{n_{1}} \frac{n_{2} r_{1}+2 r_{1}+2 r_{1} \mu_{1 i}-\mu_{1 i}^{2}}{2 r_{1} \mu_{1 i}-\mu_{1 i}^{2}}\right]+\frac{n_{1}\left(1+n_{2}+2 r_{1}\right)}{r_{1}} .
$$

Proof. Let y_{1} and y_{2} be the roots of the equation $x^{2}-\left(2 r_{1}+n_{2}+1\right) x+2 r_{1}+n_{2} r_{1}=0$,

$$
\begin{aligned}
\frac{1}{y_{1}}+\frac{1}{y_{2}} & =\frac{y_{1}+y_{2}}{y_{1} y_{2}} \\
& =\frac{2 r_{1}+n_{2} r_{1}}{r_{1}\left(n_{2}+2\right)}
\end{aligned}
$$

Let $y_{i 1}, y_{i 2}$ and $y_{i 3}$ be the roots of the cubic equation $x^{3}-\left(2 r_{1}+n_{2}+1\right) x^{2}+\left(n_{2} r_{1}+2 r_{1}+2 r_{1} \mu_{1 i}-\mu_{1 i}^{2}\right) x+\left(\mu_{1 i}^{2}-2 r_{1} \mu_{1 i}\right)=$ $0, i=2,3, \ldots, n_{1}$. Then

$$
\begin{aligned}
\frac{1}{y_{i 1}}+\frac{1}{y_{i 2}}+\frac{1}{y_{i 3}} & =\frac{y_{i 2} y_{i 3}+y_{i 1} y_{i 3}+y_{i 1} y_{i 2}}{y_{i 1} y_{i 2} y_{i 3}} \\
& =\frac{n_{2} r_{1}+2 r_{1}+2 r_{1} \mu_{1 i}-\mu_{1 i}^{2}}{2 r_{1} \mu_{1 i}-\mu_{1 i}^{2}} .
\end{aligned}
$$

Substituting these result in the equation (10) we get

$$
K f\left(G_{1} \circledast G_{2}\right)=n_{1}\left(n_{2}+2\right)\left[\sum_{j=2}^{n_{2}} \frac{1}{1+\mu_{2 j}}+\sum_{i=2}^{n_{1}} \frac{n_{2} r_{1}+2 r_{1}+2 r_{1} \mu_{1 i}-\mu_{1 i}^{2}}{2 r_{1} \mu_{1 i}-\mu_{1 i}^{2}}\right]+\frac{n_{1}\left(1+n_{2}+2 r_{1}\right)}{r_{1}} .
$$

Spanning tree of a graph is a subgraph of it which is also a tree. The number of spanning tree of a graph G is denoted by $t(G)$. If G is a connected graph with n vertices and the Laplacian spectrum $0=\mu_{1}(G) \leq \mu_{2}(G) \cdots \leq \mu_{n}(G)$ then [4] the number of spanning tree

$$
\begin{equation*}
t(G)=\frac{\mu_{2}(G) \mu_{3}(G) \cdots \mu_{n}(G)}{n} . \tag{11}
\end{equation*}
$$

Theorem 4.2. Let G_{1} be a r_{1} - regular graph with n_{1} vertices and G_{2} be an arbitrary graph on n_{2} vertices with Laplacian spectrum $0=\mu_{j 1} \leq \mu_{j 2} \leq \cdots \leq \mu_{j n}, j=1,2$. Then

$$
t\left(G_{1} \circledast G_{2}\right)=\frac{r_{1}}{n_{1}} \prod_{i=2}^{n_{2}}\left(1+\mu_{2 i}\right)^{n_{1}} \prod_{i=2}^{n_{2}}\left(\mu_{1 i}^{2}-2 r_{1} \mu_{1 i}\right) .
$$

Proof. Referring the notations used in Theorem 3.8. Let y_{1} and y_{2} be the roots of the equation $x^{2}-\left(2 r_{1}+n_{2}+1\right) x+$ $2 r_{1}+n_{2} r_{1}=0$. Product of the roots $=y_{1} y_{2}=2 r_{1}+n_{2} r_{1}$. Let $y_{i 1}, y_{i 2}$ and $y_{i 3}$ be the roots of the cubic equation $x^{3}-\left(2 r_{1}+n_{2}+1\right) x^{2}+\left(n_{2} r_{1}+2 r_{1}+2 r_{1} \mu_{1 i}-\mu_{1 i}^{2}\right) x+\left(\mu_{1 i}^{2}-2 r_{1} \mu_{1 i}\right)=0, i=2,3, \ldots, n_{1}$. Then,

$$
\begin{aligned}
\text { Product of the roots } & =y_{i 1} y_{i 2} y_{i 3} \\
& =-\left(\mu_{1 i}^{2}-2 r_{1} \mu_{1 i}\right) \\
& =2 r_{1} \mu_{1 i}-\mu_{1 i}^{2} .
\end{aligned}
$$

Substituting these result in the equation (11) we get

$$
t\left(G_{1} \circledast G_{2}\right)=\frac{r_{1}}{n_{1}} \prod_{i=2}^{n_{2}}\left(1+\mu_{2 i}\right)^{n_{1}} \prod_{i=2}^{n_{2}}\left(\mu_{1 i}^{2}-2 r_{1} \mu_{1 i}\right) .
$$

Corollary 4.3. $t\left(K_{n_{1}} \circledast K_{n_{2}}\right)=\left(n_{1}-1\right) n_{1}^{n_{1}-2}\left(n_{1}+1\right)^{n_{1}\left(n_{2}-1\right)}\left(n_{1}-2\right)^{n_{1}-1}$.
Proof. The notations are same as exactly defined in Theorem 4.2. If $G_{1}=K_{n_{1}}$ and $G_{2}=K_{n_{2}}$, then $r_{1}=n_{1}-1$, $\mu_{1 i}=n_{1}, i=2,3, \ldots, n_{1}$ and $\mu_{2 j}=n_{2}, j=2,3, \ldots, n_{2}$. Proof follows by substituting these values in Theorem 4.2.

4.1. Infinite Families of Integral Graphs

A graph is said to be an integral graph if the spectrum consists only of integers [1, 7]. The following propositions shows the essential conditions for $G_{1} \circledast G_{2}$ and $G_{1} \odot G_{2}$ to be an integral graph.

Proposition 4.4. Let G_{1} be a r_{1} - regular graph with n_{1} vertices and G_{2} be r_{2} - regular graph with n_{2} vertices. $G_{1} \circledast G_{2}$ (respectively $G_{1} \odot G_{2}$) is an integral graph if and only if G_{1} and G_{2} are integral graphs and the roots of the equation, $\left.x^{3}-r_{2} x^{2}-\left(\lambda_{1 i}^{2}\right)+n_{2}\right) x+r_{2} \lambda_{1 i}^{2}=0$ for $i=2,3, \ldots, n_{1}$ are integers.

In particular if $G_{2}=\overline{K_{n}}$ (totally disconnected) then $G_{1} \circledast G_{2}$ (respectively $G_{1} \odot G_{2}$) is an integral graph iff G_{1} is an integral graph and $n_{2}+\lambda_{1 i}^{2}$ for $i=2,3, \ldots, n_{1}$ are perfect squares.

Proposition 4.5. Let G_{i} be r_{i} - regular graph on n_{i} vertices then, $G_{1} \circledast K_{p, q}$ (respectively $G_{1} \odot K_{p, q}$) is an integral graph if and only if $p=q$ and the the roots of the equation $x^{4}-\left(p+q+p q+\lambda_{1 i}^{2}\right) x^{2}-2 p q+\lambda_{1 i}^{2}+p q=0$ for $i=1,2, \ldots, n_{1}$, are integers.

5. Conclusion and Future Research

The concept of corona product of graph has many application in real life. In this paper we introduced two types of corona product of graphs. Also we discussed some applications such as Kirchhoff index and number of spanning trees. We also discuss some infinite family of integral graphs and some class of cospectral graphs. In this paper we are mainly focused on the vertices and define the new corona product. But in future we can define the neighborhood corona and edge corona using the duplication graph and can find the corresponding spectrum.

Acknowledgments

The author thankful to the University Grants Commission of Government of India for providing fellowship under the FDP in the $X I I^{\text {th }}$ plan.

References

[1] K.Balinska, D.Cvetkovic, Z.Radosavljevic, S.Simic and D.Stevanovic, A survey on integral graphs, Publ. Elektrotehn. Fak. Ser. Mat., 13(2002), 42-65.
[2] S.Barik, S.Pathi and B.K.Sharma, The spectrum of corona of two graphs, SIAM J. Discrete Math., 21(1)(2007), 47-56.
[3] A.E.Brouwer and W.H.Haemers, Spectra of Graphs, Springer, (2012).
[4] D.M.Cvetković, M.Doob and H.Sachs, Spectra of Graphs, Theory and Applications, Third edition, Johann Ambrosius Barth Heidelberg, (1995).
[5] H.Frucht and F.Harary, On the corona of two graphs, Acquationes Math., 4(1970), 322-325.
[6] I.Gopalapillai, The spectrum of neighborhood corona of graphs, Kragujevac J. Math., 35(2011), 493-500.
[7] G.Indulal, Spectrum of two new joins of graphs and infinite families of integral graphs, Kragujevac J. Math., 36(2012), 133-139.
[8] D.J.Klein and M.Randić, Resistance distance, J. Math. Chem., 12(1993), 81-95.
[9] C.McLeman and E.McNicholas, Spectra of coronae, Linear Algebra Appl., 435(2011), 998-1007.
[10] E.Sampathkumar, On Duplicate Graphs, J. of the Indian Math. Soc., 37(1973), 285-293.
[11] R.P.Varghese and D.Susha, Spectrum of some new product of graphs and its applications, Global J. of Pure and App. Math., 13(9)(2017), 4493-4504.

[^0]: * E-mail: rennypv1@gmail.com

