

International Journal of Mathematics And its Applications

Odd Vertex-In Magic Total Labeling of Some 2-Regular Digraphs

M. Sindhu^{1,*} and S. Chandra Kumar²

1 Department of Mathematics, Excel Engineering college (Autonomous), Komarapalayam, Namakkal, Tamilnadu, India.

2 Department of Mathematics, Scott Christian College (Autonomous), Nagercoil, Tamilnadu, India.

Abstract:	Let D be a directed graph with p vertices and q arcs. A vertex in-magic total labeling (VIMTL) of a graph D is a bijection $f: V(D) \cup A(D) \to \{1, 2, \dots, p+q\}$ with the property that for every $v \in V(D)$, $f(v) + \sum_{v \in I(v)} f((v, u)) = M$, for some
	constant M. Such labeling is 'Odd' if $f(V(D)) = \{1, 3,, 2p - 1\}$. In this paper, we explore the Odd Vertex In-magic total labeling (OVIMTL) of some 2-regular directed graphs.
MSC	05C78

MSC: 05C78.

Keywords: Digraphs, vertex in-magic labeling, Odd Vertex in-magic total labeling.

1. Introduction

Graph Labeling is one of the most growing areas in graph theory. In graph theory, the labeling of graphs noticed to be a theoretical topic. It is used in countless applications like coding theory, X-Ray crystallography and astronomy etc. Design of graph labeling is helpful to network security, network addressing and social network in communication network. A magic total labeling of a graph is a motivating research area. Let D = (V, A) be a digraph of order p and size q. For a vertex $v \in V(D)$, the set $I(v) = \{u | (v, u) \in A(D)\}$ is called the in-neighbourhood of v. The in-degree of v is defined by $deg^{-}(v) = |I(v)|$. A general reference for graph theoretic notions follow [1]. A labeling of a graph G is a mapping from a set of vertices (edges) into a set of numbers, usually integers. Many kinds of labelings have been studied and an excellent survey of graph labelings can be found in [2]. In 1963, Sedlacek [5] introduced the concept of magic labeling in graphs. A graph G is magic if the edges of G can be labelled by a set of numbers $\{1, 2, \dots q\}$ so that the sum of labels of all the edges incident with any vertex is the same. In 2002, Macdougall [3] introduced the notion of vertex magic total labeling (VMTL) in graphs. Let G(V, E)be a graph with |V(G)| = p and |E(G)| = q. A one-to-one map f from $V(G) \cup E(G)$ onto the integers $\{1, 2, \dots, p+q\}$ is a VTML if there is a constant M so that for every vertex $x \in V(G)$, $f(x) + \sum f(xy) = M$, where the sum is taken over all vertices y adjacent to x. In 2004, Macdougall et [4] defined the super vertex-magic total labeling (SVMTL) in graphs. They call a VTML is super if $f(V(G)) = \{1, 2, \dots, p\}$. In this labeling the smallest labels are assigned to the vertices. In 2008, Bloom [6] extended the idea of magic labeling to digraphs. The V-super vertex out-magic total labeling (V-SVOMTL) in digraph was introduced by Durga Devi [7]. A V-SVOMTL is a bijection $f: V(D) \cup A(D) \rightarrow \{1, 2, \dots, p+q\}$ such that

^{*} E-mail: msindhu0387@gmail.com

 $f(V(D)) = \{1, 2, ..., p\}$ and for every $v \in V(D)$, $f(v) + \sum_{u \in o(v)} f((u, v)) = M$, for some positive integer M. C. T. Nagaraj [8] in introduced the concept of an Odd vertex magic total labeling. A vertex magic total labeling (VMTL) is a bijection $f: V(D) \cup A(D) \rightarrow \{1, 2, ..., p + q\}$ with the property that for every $v \in V(D)$, $f(v) + \sum_{u \in N(v)} f(uv) = M$, for some constant M. Such labeling is 'Odd' if $f(V(D)) = \{1, 3, ..., 2p - 1\}$. A graph is called an odd vertex magic if the graph admits an Odd vertex magic total labeling. C. T. Nagaraj [9] also studied Odd vertex magic total labeling of some 2-regular graphs. In this paper, we define a new labeling called Odd Vertex-In Magic Total Labeling (OVIMTL). An Odd Vertex-In Magic Total Labeling (OVIMTL) of a directed graph D is a bijection $f: V(D) \cup A(D) \rightarrow \{1, 2, ..., p + q\}$ with the property $f(V(D)) = \{1, 3, ..., 2p - 1\}$ and for every $v \in V(D)$, $f(v) + \sum_{u \in I(v)} f((v, u)) = M$, for some constant M. A digraph that admits an OVITML is called an Odd Vertex-In Magic Total(OVIMT). From the definition of OVITML, it is easy to observe that $p \leq q$.

2. OVIMTL in Digraphs

Lemma 2.1. If a digraph D(p,q) is an Odd vertex-in magic total (OVIMT), then the magic constant M is given by $M = \frac{(p+q)(p+q+1)}{2p}.$

Proof. Let f be an OVIMTL of D. Note that $M = f(v) + \sum_{u \in I(v)} f((v, u))$ for all $v \in V(D)$. Summing over all $v \in V(D)$, we get

$$pM = \sum_{v \in V(D)} f(v) + \sum_{v \in V(D)} \sum_{u \in I(D)} f(v, u)$$

Since $f(V(D)) = \{1, 3, \dots, 2p - 1\}$ and $f(A(D)) = \{2, 4, \dots, 2p, 2p + 1, 2p + 2, \dots, p + q\},\$

$$pM = [1 + 3 + \dots + 2p - 1] + [2 + 4 + \dots + 2p] + [1 + 2 + \dots + (p + q)] - [1 + 2 + \dots + 2p]$$
$$= [1 + 2 + \dots + (p + q)]$$
$$= \frac{(p + q)(p + q + 1)}{2}$$
$$M = \frac{(p + q)(p + q + 1)}{2p}.$$

Corollary 2.2. Let D be a connected digraph which is OVIMT, then

- (a). $M \ge 2p 1$.
- (b). M = 2p + 1 if q = p.

Proof.

- (a). Since *D* be a connected digraph, $q \ge p 1$. Thus by Lemma 2.1, we have $M = \frac{(p+q)(p+q+1)}{2p} \ge \frac{(p+p-1)(p+p-1+1)}{2p} = \frac{(2p-1)(2p)}{2p} = 2p 1$.
- (b). When q = p, $M = \frac{(p+q)(p+q+1)}{2p} = \frac{(p+p)(p+p+1)}{2p} = \frac{(2p)(2p+1)}{2p} = 2p+1$.

Theorem 2.3. The digraph $D = \overrightarrow{C_3} \cup \overrightarrow{C_{4t}}, t > 1$ admits OVIMTL with the magic constant 8t + 7.

Proof. Let the $V(D) = \{a_i : 1 \le i \le 3\} \cup \{b_i : 1 \le i \le 4t\}$ and $A(D) = \{(a_i, a_i \bigoplus_{3} 1) : 1 \le i \le 3\} \cup \{(b_i, b_i \bigoplus_{4t} 1) : 1 \le i \le 4t\}$ be the vertex set and arc set of D respectively. From Corollary 2.2, we get M = 8t + 7 (Since |V(D)| = |A(D)| = 4t + 3).

Define $f: V(D) \cup A(D) \rightarrow \{1, 2, \dots, 8t + 6\}$ as follows:

$$f(u) = \begin{cases} 8t + 2i - 1 & \text{if } u = a_i \text{ for } 1 \le i \le 3\\ 2i - 1 & \text{if } u = b_i \text{ for } 1 \le i \le 4t \end{cases}$$
$$f(e) = \begin{cases} 8 - 2i & \text{if } e = (a_i, a_i \bigoplus_{3} 1) : 1 \le i \le 3\\ 8t + 8 - 2i & \text{if } e = (b_i, b_i \bigoplus_{4t} 1) : 1 \le i \le 4t \end{cases}$$

Now, we prove f is an OVIMTL with the magic constant M = 8t + 7.

Case 1: Suppose $v = a_i$ for $1 \le i \le 3$. Then $f(v) + \sum_{u \in I(v)} f((v, u)) = f(a_i) + f((a_i, a_i \bigoplus_{3^{-1}})) = [8t + 2i - 1] + [8 - 2i] = 8t + 7$. **Case 2:** Suppose $v = b_i$ for $1 \le i \le 4t$. Then $f(v) + \sum_{u \in I(v)} f((v, u)) = f(b_i) + f((b_i, b_i \bigoplus_{4t^{-1}})) = [2i - 1] + [8t + 8 - 2i] = 8t + 7$.

Thus the graph D is admits OVIMTL with the magic constant M = 8t + 7.

Example 2.4. Consider the digraph $D = \overrightarrow{C_3} \cup \overrightarrow{C_{4t}}$, taking t = 4 admits OVIMTL with magic constant M = 39.

Here $V(D) = \{a_i : 1 \le i \le 3\} \cup \{b_i : 1 \le i \le 16\}$ and $A(D) = \{(a_i, a_i \bigoplus_{3} 1) : 1 \le i \le 3\} \cup \{(b_i, b_i \bigoplus_{16} 1) : 1 \le i \le 16\}$ be the vertex set and arc set of D respectively. From Corollary 2.2, we get M = 39 (Since |V(D)| = |A(D)| = 19). Define $f : V(D) \cup A(D) \to \{1, 2, ..., 38\}$ as follows:

$$f(u) = \begin{cases} 31+2i & \text{if } u = a_i \text{ for } 1 \le i \le 3\\ 2i-1 & \text{if } u = b_i \text{ for } 1 \le i \le 16 \end{cases}$$
$$f(e) = \begin{cases} 8-2i & \text{if } e = (a_i, a_i \bigoplus_{3} 1) : 1 \le i \le 3\\ 40-2i & \text{if } e = (b_i, b_i \bigoplus_{16} 1) : 1 \le i \le 16 \end{cases}$$

Figure 1. $C_3 \cup C_{16}, k = 39$

Now we prove f is an OVIMTL with magic constant M = 39

Case 1: Suppose $v = a_i$ for $1 \le i \le 3$. Then $f(v) + \sum_{\substack{u \in I(v) \\ v \in I(v)}} f((v, u)) = f(a_i) + f((a_i, a_i \bigoplus_{3^{-1}})) = [31 + 2i] + [8 - 2i] = 39.$ **Case 2:** Suppose $v = b_i$ for $1 \le i \le 16$. Then $f(v) + \sum_{\substack{u \in I(v) \\ v \in I(v)}} f((v, u)) = f(b_i) + f((b_i, b_i \bigoplus_{1^{-1}})) = [2i - 1] + [40 - 2i] = 39.$ Thus the graph D is an OVIMT with the magic constant M = 39.

Theorem 2.5. The digraph $D = \overrightarrow{C_3} \cup \overrightarrow{C_{4t+2}}, t > 1$ admits OVIMTL with magic constant M = 8t + 11.

Proof. Let the $V(D) = \{a_i : 1 \le i \le 3\} \cup \{b_i : 1 \le i \le 4t + 2\}$ and $A(D) = \{(a_i, a_i \bigoplus_{3} 1) : 1 \le i \le 3\} \cup \{(b_i, b_i \bigoplus_{4t+2} 1) : 1 \le i \le 4t + 2\}$ be the vertex set and arc set of D respectively. From Corollary 2.2, we get M = 8t + 11 (Since |V(D)| = |A(D)| = 4t + 5).

Define $f: V(D) \cup A(D) \rightarrow \{1, 2, \dots, 8t + 10\}$ as follows:

$$f(u) = \begin{cases} 8t + 2(i-1) + 5 & \text{if } u = a_i \text{ for } 1 \le i \le 3\\ 2i - 1 & \text{if } u = b_i \text{ for } 1 \le i \le 4t + 2 \end{cases}$$
$$f(e) = \begin{cases} 8 - 2i & \text{if } e = (a_i, a_i \bigoplus_{3} 1) : 1 \le i \le 3\\ 8t + 12 - 2i & \text{if } e = (b_i, b_i \bigoplus_{4t+2} 1) : 1 \le i \le 4t + 2 \end{cases}$$

Now, we prove f is an OVIMTL with the magic constant M = 8t + 11.

Case 1: Suppose $v = a_i$ for $1 \le i \le 3$. Then $f(v) + \sum_{u \in I(v)} f((v, u)) = f(a_i) + f((a_i, a_i \bigoplus_{3} 1)) = [8t + 2(i - 1) + 5] + [8 - 2i] = 8t + 11.$

Case 2: Suppose $v = b_i$ for $1 \le i \le 4t + 2$. Then $f(v) + \sum_{u \in I(v)} f((v, u)) = f(b_i) + f((b_i, b_i \bigoplus_{4t+2} 1)) = [2i-1] + [8t+12-2i] = 8t+11.$

Thus the digraph D admits OVIMTL with the magic constant M = 8t + 11.

Example 2.6. Consider the digraph $D = \overrightarrow{C_3} \cup \overrightarrow{C_{4t+2}}$, taking t = 4 admits OVIMTL with magic constant M = 43.

Here $V(D) = \{a_i : 1 \le i \le 3\} \cup \{b_i : 1 \le i \le 18\}$ and $A(D) = \{(a_i, a_i \bigoplus_{3} 1) : 1 \le i \le 3\} \cup \{(b_i, b_i \bigoplus_{18} 1) : 1 \le i \le 18\}$ be the vertex set and arc set of D respectively. From Corollary 2.2, we get M = 43 (Since |V(D)| = |A(D)| = 21). Define $f : V(D) \cup A(D) \to \{1, 2, ..., 42\}$ as follows

$$f(u) = \begin{cases} 37 + 2(i-1) & \text{if } u = a_i \text{ for } 1 \le i \le 3\\ 2i-1 & \text{if } u = b_i \text{ for } 1 \le i \le 18 \end{cases}$$
$$f(e) = \begin{cases} 8 - 2i & \text{if } e = (a_i, a_i \bigoplus_{3} 1) \text{ for } 1 \le i \le 3\\ 44 - 2i & \text{if } e = (b_i, b_i \bigoplus_{18} 1) \text{ for } 1 \le i \le 18 \end{cases}$$

Figure 2. $C_3 \cup C_{18}, k = 43$

Now, we prove f is an OVIMTL.

Case 1: Suppose $v = a_i$ for $1 \le i \le 3$. Then $f(v) + \sum_{u \in I(v)} f((v, u)) = f(a_i) + f(a_i, a_i \bigoplus_{3^{-1}}) = [37 + 2(i - 1)] + [8 - 2i] = 43$. **Case 2:** Suppose $v = b_i$ for $1 \le i \le 18$. Then $f(v) + \sum_{u \in I(v)} f((v, u)) = f(b_i) + f((b_i, b_i \bigoplus_{1^{-1}})) = [2i - 1] + [44 - 2i] = 43$. Thus the graph D is an OVIMT with the magic constant M = 43.

Theorem 2.7. The digraph $D = \overrightarrow{C_4} \cup \overrightarrow{C_{4t+3}}, t \ge 1$ admits OVIMTL with magic constant M = 8t + 15.

Proof. Let the $V(D) = \{a_i : 1 \le i \le 4\} \cup \{b_i : 1 \le i \le 4t + 3\}$ and $A(D) = \{(a_i, a_i \bigoplus_{i=1} 1) : 1 \le i \le 4\} \cup \{(b_i, b_i \bigoplus_{4t+3} 1) : 1 \le i \le 4t + 3\}$ be the vertex set and arc set of D respectively. From Corollary 2.2, we get M = 8t + 15 (Since |V(D)| = |A(D)| = 4t + 7).

Define $f: V(D) \cup A(D) \rightarrow \{1, 2, \dots, 8t + 14\}$ as follows:

$$f(u) = \begin{cases} 8t + 2i + 5 & \text{if } u = a_i \text{ for } 1 \le i \le 4\\ 2i - 1 & \text{if } u = b_i \text{ for } 1 \le i \le 4t + 3 \end{cases}$$
$$f(e) = \begin{cases} 10 - 2i & \text{if } e = (a_i, a_i \bigoplus_{4^1}) : 1 \le i \le 4\\ 8t + 16 - 2i & \text{if } e = (b_i, b_i \bigoplus_{4t+3^1}) : 1 \le i \le 4t + 3 \end{cases}$$

Now, we prove f is an OVIMTL with the magic constant M = 8t + 15.

Case 1: Suppose $v = a_i$ for $1 \le i \le 4$. Then $f(v) + \sum_{u \in I(v)} f((v, u)) = f(a_i) + f((a_i, a_i \bigoplus_{i \ge 4} 1)) = [8t + 2i + 5] + [10 - 2i] = 8t + 15.$

Case 2: Suppose $v = b_i$ for $1 \le i \le 4t+3$. Then $f(v) + \sum_{u \in I(v)} f((v,u)) = f(b_i) + f((b_i, b_i \bigoplus_{4t+2} 1)) = [2i-1] + [8t+16-2i] = 8t+15$.

Thus the digraph D is admits OVIMTL with the magic constant M = 8t + 15.

Example 2.8. Consider the digraph $D = \overrightarrow{C_4} \cup \overrightarrow{C_{4t+3}}$ taking t = 3 admits OVIMTL with magic constant M = 39.

Here $V(D) = \{a_i : 1 \le i \le 4\} \cup \{b_i : 1 \le i \le 15\}$ and $A(D) = \{(a_i, a_i \bigoplus_{4} 1) : 1 \le i \le 4\} \cup \{(b_i, b_i \bigoplus_{15} 1) : 1 \le i \le 15\}$ be the vertex set and arc set of D respectively. From Corollary 2.2, we get M = 39 (Since |V(D)| = |A(D)| = 19). Define $f : V(D) \cup A(D) \to \{1, 2, ..., 38\}$ as follows:

$$f(u) = \begin{cases} 29 + 2i & \text{if } u = a_i \text{ for } 1 \le i \le 4\\ 2i - 1 & \text{if } u = b_i \text{ for } 1 \le i \le 15 \end{cases}$$
$$f(e) = \begin{cases} 10 - 2i & \text{if } e = (a_i, a_i \bigoplus_{i \ge 1}) : 1 \le i \le 4\\ 40 - 2i & \text{if } e = (b_i, b_i \bigoplus_{1 \le 1}) : 1 \le i \le 15 \end{cases}$$

Figure 3. $C_4 \cup C_{15}, k = 39$

Now, we prove f is an OVIMTL.

Case 1: Suppose $v = a_i$ for $1 \le i \le 4$. Then $f(v) + \sum_{u \in I(v)} f((v, u)) = f(a_i) + f((a_i, a_i \bigoplus_{i=1}^{4} 1)) = [29 + 2i] + [10 - 2i] = 39$. **Case 2:** Suppose $v = b_i$ for $1 \le i \le 15$. Then $f(v) + \sum_{u \in I(v)} f((v, u)) = f(b_i) + f((b_i, b_i \bigoplus_{i=1}^{4} 1)) = [2i - 1] + [40 - 2i] = 39$. Thus the graph D is an OVIMT with the magic constant M = 39.

Theorem 2.9. The digraph $D = \overrightarrow{C_4} \cup \overrightarrow{C_{4t+1}}, t \ge 1$ admits OVIMTL with magic constant M = 8t + 11.

Proof. Let the $V(D) = \{a_i : 1 \le i \le 4\} \cup \{b_i : 1 \le i \le 4t+1\}$ and $A(D) = \{(a_i, a_i \bigoplus_{i=1} 1) : 1 \le i \le 4\} \cup \{(b_i, b_i \bigoplus_{4t+1} 1) : 1 \le i \le 4t+1\}$ be the vertex set and arc set of D respectively. From Corollary 2.2, we get M = 8t+11 (Since |V(D)| = |A(D)| = 4t+5).

Define $f: V(D) \cup A(D) \rightarrow \{1, 2, \dots, 8t + 10\}$ as follows:

$$f(u) = \begin{cases} 8t + 2i + 1 & \text{if } u = a_i \text{ for } 1 \le i \le 4\\ 2i - 1 & \text{if } u = b_i \text{ for } 1 \le i \le 4t + 1 \end{cases}$$
$$f(e) = \begin{cases} 10 - 2i & \text{if } e = (a_i, a_i \bigoplus_4 1) : 1 \le i \le 4\\ 8t + 12 - 2i & \text{if } e = (b_i, b_i \bigoplus_{4t+1} 1) : 1 \le i \le 4t + 1 \end{cases}$$

Now, we prove f is an OVIMTL with the magic constant M = 8t + 11.

Case 1: Suppose $v = a_i$ for $1 \le i \le 4$. Then $f(v) + \sum_{u \in I(v)} f((v, u)) = f(a_i) + f((a_i, a_i \bigoplus_{i \ge 4} 1)) = [8t + 2i + 1] + [10 - 2i] = 8t + 11.$

Case 2: Suppose $v = b_i$ for $1 \le i \le 4t + 1$. Then $f(v) + \sum_{u \in I(v)} f((v, u)) = f(b_i) + f((b_i, b_{i \bigoplus_{4t+1} 1})) = [2i-1] + [8t+12-2i] = 8t+11$. Thus the digraph D is admits OVIMTL with the magic constant M = 8t + 11.

Example 2.10. Consider the digraph $D = \overrightarrow{C_4} \cup \overrightarrow{C_{4t+1}}$, taking t = 3 admits OVIMTL with magic constant M = 35.

Here $V(D) = \{a_i : 1 \le i \le 4\} \cup \{b_i : 1 \le i \le 13\}$ and $A(D) = \{(a_i, a_i \bigoplus_{4} 1) : 1 \le i \le 4\} \cup \{(b_i, b_i \bigoplus_{13} 1) : 1 \le i \le 13\}$ be the vertex set and arc set of D respectively. From Corollary 2.2, we get M = 35 (Since |V(D)| = |A(D)| = 17). Define $f : V(D) \cup A(D) \to \{1, 2, ..., 34\}$ as follows:

$$f(u) = \begin{cases} 25 + 2i & \text{if } u = a_i \text{ for } 1 \le i \le 4\\ 2i - 1 & \text{if } u = b_i \text{ for } 1 \le i \le 13 \end{cases}$$
$$f(e) = \begin{cases} 10 - 2i & \text{if } e = (a_i, a_i \bigoplus_{i \ge 1}) : 1 \le i \le 4\\ 36 - 2i & \text{if } e = (b_i, b_i \bigoplus_{13} 1) : 1 \le i \le 13 \end{cases}$$

Figure 4. $C_4 \cup C_{13}, k = 35$

Now, we prove f is an OVIMTL.

Case 1: Suppose $v = a_i$ for $1 \le i \le 4$. Then $f(v) + \sum_{\substack{u \in I(v) \\ v \in I(v)}} f((v, u)) = f(a_i) + f((a_i, a_i \bigoplus_{i \oplus_4 1})) = [25 + 2i] + [10 - 2i] = 35$. **Case 2:** Suppose $v = b_i$ for $1 \le i \le 13$. Then $f(v) + \sum_{\substack{u \in I(v) \\ v \in I(v)}} f((v, u)) = f(b_i) + f((b_i, b_i \bigoplus_{13} 1)) = [2i - 1] + [36 - 2i] = 35$. Thus the graph D is an OVIMT with the magic constant M = 35.

3. Conclusion

In this paper we have discussed some cycles of graphs that admits OVIMTL. In future we can prove different families of graphs which satisfy OVIMTL.

References

- [1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Elsevier, North Holland, New York, (1986).
- [2] J. A. Gallian, A dynamic survey of graph labeling electronic, J. Combinatorics, 5(2002), #D56.
- [3] J. A. MacDougall, M. Miller and W. D. Wallis, Vertex magic total labeling of graphs, Util. Math., 61(2002), 3-21.
- [4] J. A. MacDougall, M. Miller and K. A. Sugeng, Super vertex-magic total labelings of graphs, in: Proceedings of the 15th Australian Workshop on Combinatorial Algorithms, (2004), 222-229.
- [5] J. Sedlacek, Problem 27, in Theory of Graphs and its Applications, Proc. Symposium Smolenice, (1963), 163-167.
- [6] G. S. Bloom, A. Marr and W. D. Wallis, Magic Digraphs, J. Combin. Math. Combin. Comput., 65(2008), 205-212.
- [7] G. Durga Devi, M. Durga and G. Marimuthu, V-Super Vertex Out-Magic Total Labelings of Digraphs, Commun. Korean Math. Soc., 32(2)(2017), 435-445.
- [8] C. T. Nagaraj, C. Y. Ponnappan and G. Prabakaran, Odd vertex magic total labeling of some graphs, International Journal of Pure and Applied Mathematics, 118(10)(2018), 97-109.
- C. T.Nagaraj, C. Y. Ponnappan and G. Prabakaran, Odd vertex magic total labeling of some 2-regular graphs, International Journal of Mathematics Trends and Technology, 54(1)(2018), 34-41.