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Abstract: Let D be a directed graph with p vertices and q arcs. A vertex in-magic total labeling (VIMTL) of a graph D is a bijection

f : V (D) ∪ A (D) → {1, 2, . . . p+ q} with the property that for every v ∈ V (D), f (v) +
∑

u∈I(v)
f((v, u)) = M , for some

constant M. Such labeling is ‘Odd’ if f (V (D)) = {1, 3, . . . , 2p− 1}. In this paper, we explore the Odd Vertex In-magic
total labeling (OVIMTL) of some 2-regular directed graphs.
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1. Introduction

Graph Labeling is one of the most growing areas in graph theory. In graph theory, the labeling of graphs noticed to be a

theoretical topic. It is used in countless applications like coding theory, X-Ray crystallography and astronomy etc. Design of

graph labeling is helpful to network security, network addressing and social network in communication network. A magic total

labeling of a graph is a motivating research area. Let D = (V,A) be a digraph of order p and size q. For a vertex v ∈ V (D),

the set I (v) = {u| (v, u) ∈ A(D)} is called the in-neighbourhood of v. The in-degree of v is defined by deg− (v) = |I(v)|. A

general reference for graph theoretic notions follow [1]. A labeling of a graph G is a mapping from a set of vertices(edges)

into a set of numbers, usually integers. Many kinds of labelings have been studied and an excellent survey of graph labelings

can be found in [2]. In 1963, Sedlacek [5] introduced the concept of magic labeling in graphs. A graph G is magic if the

edges of G can be labelled by a set of numbers {1, 2, . . . q} so that the sum of labels of all the edges incident with any vertex

is the same. In 2002, Macdougall [3] introduced the notion of vertex magic total labeling (VMTL) in graphs. Let G(V,E)

be a graph with |V (G)| = p and |E(G)| = q. A one-to-one map f from V (G) ∪ E(G) onto the integers {1, 2, . . . , p + q} is a

VTML if there is a constant M so that for every vertex x ∈ V (G), f (x) +
∑

f (xy) = M , where the sum is taken over all

vertices y adjacent to x. In 2004, Macdougall et [4] defined the super vertex-magic total labeling (SVMTL) in graphs. They

call a VTML is super if f (V (G)) = {1, 2 . . . , p}. In this labeling the smallest labels are assigned to the vertices. In 2008,

Bloom [6] extended the idea of magic labeling to digraphs. The V-super vertex out-magic total labeling (V-SVOMTL) in

digraph was introduced by Durga Devi [7]. A V-SVOMTL is a bijection f : V (D) ∪ A (D) → {1, 2, . . . , p + q} such that
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f (V (D)) = {1, 2 . . . , p} and for every v ∈ V (D), f (v) +
∑

u∈o(v)
f((u, v)) = M , for some positive integer M. C. T. Nagaraj

[8] in introduced the concept of an Odd vertex magic total labeling. A vertex magic total labeling (VMTL) is a bijection

f : V (D)∪A (D)→ {1, 2, . . . , p + q} with the property that for every v ∈ V (D), f (v)+
∑

u∈N(v)

f(uv) = M , for some constant

M. Such labeling is ‘Odd’ if f (V (D)) = {1, 3, . . . , 2p− 1} . A graph is called an odd vertex magic if the graph admits an

Odd vertex magic total labeling. C. T. Nagaraj [9] also studied Odd vertex magic total labeling of some 2-regular graphs.

In this paper, we define a new labeling called Odd Vertex-In Magic Total Labeling (OVIMTL). An Odd Vertex-In Magic

Total Labeling (OVIMTL) of a directed graph D is a bijection f : V (D) ∪ A (D) → {1, 2, . . . , p + q} with the property

f (V (D)) = {1, 3, . . . , 2p− 1} and for every v ∈ V (D), f (v) +
∑

u∈I(v)
f((v, u)) = M , for some constant M. A digraph that

admits an OVITML is called an Odd Vertex-In Magic Total(OVIMT). From the definition of OVITML, it is easy to observe

that p ≤ q.

2. OVIMTL in Digraphs

Lemma 2.1. If a digraph D(p, q) is an Odd vertex-in magic total (OVIMT), then the magic constant M is given by

M = (p+q)(p+q+1)
2p

.

Proof. Let f be an OVIMTL of D. Note that M = f (v) +
∑

u∈I(v)
f((v, u)) for all v ∈ V (D). Summing over all v ∈ V (D),

we get

pM =
∑

v∈V (D)

f (v) +
∑

v∈V (D)

∑
u∈I(D)

f (v, u)

Since f(V (D)) = {1, 3, . . . , 2p− 1} and f(A (D)) = {2, 4, . . . , 2p, 2p + 1, 2p + 2, . . . , p + q},

pM = [1 + 3 + · · ·+ 2p− 1] + [2 + 4 + · · ·+ 2p] + [1 + 2 + · · ·+ (p + q)]− [1 + 2 + · · ·+ 2p]

= [1 + 2 + · · ·+ (p + q)]

=
(p + q) (p + q + 1)

2

M =
(p + q) (p + q + 1)

2p
.

Corollary 2.2. Let D be a connected digraph which is OVIMT, then

(a). M ≥ 2p− 1.

(b). M = 2p + 1 if q = p.

Proof.

(a). Since D be a connected digraph, q ≥ p − 1. Thus by Lemma 2.1, we have M = (p+q)(p+q+1)
2p

≥ (p+p−1)(p+p−1+1)
2p

=

(2p−1)(2p)
2p

= 2p− 1.

(b). When q = p, M = (p+q)(p+q+1)
2p

= (p+p)(p+p+1)
2p

= (2p)(2p+1)
2p

= 2p + 1.

Theorem 2.3. The digraph D =
−→
C3 ∪

−→
C4t, t > 1 admits OVIMTL with the magic constant 8t + 7.
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Proof. Let the V (D) = {ai : 1 ≤ i ≤ 3} ∪ {bi : 1 ≤ i ≤ 4t} and A (D) =
{

(ai, ai
⊕

3 1) : 1 ≤ i ≤ 3
}
∪{

(bi, bi
⊕

4t 1) : 1 ≤ i ≤ 4t
}

be the vertex set and arc set of D respectively. From Corollary 2.2, we get M = 8t + 7

(Since |V (D)| = |A(D)| = 4t + 3).

Define f : V (D) ∪A(D)→ {1, 2, . . . , 8t + 6} as follows:

f (u) =

 8t + 2i− 1 if u = ai for 1 ≤ i ≤ 3

2i− 1 if u = bi for 1 ≤ i ≤ 4t

f (e) =

 8− 2i if e = (ai, ai
⊕

3 1) : 1 ≤ i ≤ 3

8t + 8− 2i if e = (bi, bi
⊕

4t 1) : 1 ≤ i ≤ 4t

Now, we prove f is an OVIMTL with the magic constant M = 8t + 7.

Case 1: Suppose v = ai for 1 ≤ i ≤ 3. Then f (v)+
∑

u∈I(v)
f ((v, u)) = f (ai)+f((ai, ai

⊕
3 1)) = [8t + 2i− 1]+[8− 2i] = 8t+7.

Case 2: Suppose v = bi for 1 ≤ i ≤ 4t. Then f (v) +
∑

u∈I(v)
f ((v, u)) = f (bi) + f((bi, bi⊕4t 1)) = [2i− 1] + [8t + 8− 2i] =

8t + 7.

Thus the graph D is admits OVIMTL with the magic constant M = 8t + 7.

Example 2.4. Consider the digraph D =
−→
C3 ∪

−→
C4t, taking t = 4 admits OVIMTL with magic constant M = 39.

Here V (D) = {ai : 1 ≤ i ≤ 3} ∪ {bi : 1 ≤ i ≤ 16} and A (D) =
{

(ai, ai
⊕

3 1) : 1 ≤ i ≤ 3
}
∪
{

(bi, bi⊕16 1) : 1 ≤ i ≤ 16
}

be the

vertex set and arc set of D respectively. From Corollary 2.2, we get M = 39 (Since |V (D)| = |A(D)| = 19).

Define f : V (D) ∪A(D)→ {1, 2, . . . , 38} as follows:

f (u) =

 31 + 2i if u = ai for 1 ≤ i ≤ 3

2i− 1 if u = bi for 1 ≤ i ≤ 16

f (e) =

 8− 2i if e = (ai, ai
⊕

3 1) : 1 ≤ i ≤ 3

40− 2i if e = (bi, bi⊕16 1) : 1 ≤ i ≤ 16

Figure 1. C3 ∪ C16, k = 39

Now we prove f is an OVIMTL with magic constant M = 39

Case 1: Suppose v = ai for 1 ≤ i ≤ 3. Then f (v) +
∑

u∈I(v)
f ((v, u)) = f (ai) + f((ai, ai

⊕
3 1)) = [31 + 2i] + [8− 2i] = 39.

Case 2: Suppose v = bi for 1 ≤ i ≤ 16. Then f (v) +
∑

u∈I(v)
f ((v, u)) = f (bi) + f((bi, bi⊕16 1)) = [2i− 1] + [40− 2i] = 39.

Thus the graph D is an OVIMT with the magic constant M = 39.

Theorem 2.5. The digraph D =
−→
C3 ∪

−−−→
C4t+2, t > 1 admits OVIMTL with magic constant M = 8t + 11.

Proof. Let the V (D) = {ai : 1 ≤ i ≤ 3} ∪ {bi : 1 ≤ i ≤ 4t + 2} and A (D) =
{

(ai, ai
⊕

3 1) : 1 ≤ i ≤ 3
}
∪{

(bi, bi⊕4t+2 1) : 1 ≤ i ≤ 4t + 2
}

be the vertex set and arc set of D respectively. From Corollary 2.2, we get M = 8t + 11

(Since |V (D)| = |A(D)| = 4t + 5).

61



Odd Vertex-In Magic Total Labeling of Some 2-Regular Digraphs

Define f : V (D) ∪A(D)→ {1, 2, . . . , 8t + 10} as follows:

f (u) =

 8t + 2(i− 1) + 5 if u = ai for 1 ≤ i ≤ 3

2i− 1 if u = bi for 1 ≤ i ≤ 4t + 2

f (e) =

 8− 2i if e = (ai, ai
⊕

3 1) : 1 ≤ i ≤ 3

8t + 12− 2i if e = (bi, bi
⊕

4t+2 1) : 1 ≤ i ≤ 4t + 2

Now, we prove f is an OVIMTL with the magic constant M = 8t + 11.

Case 1: Suppose v = ai for 1 ≤ i ≤ 3. Then f (v)+
∑

u∈I(v)
f ((v, u)) = f (ai)+f((ai, ai

⊕
3 1)) = [8t + 2(i− 1) + 5]+[8− 2i] =

8t + 11.

Case 2: Suppose v = bi for 1 ≤ i ≤ 4t + 2. Then f (v) +
∑

u∈I(v)
f ((v, u)) = f (bi) + f((bi, bi⊕4t+2 1)) = [2i− 1] +

[8t + 12− 2i] = 8t + 11.

Thus the digraph D admits OVIMTL with the magic constant M = 8t + 11.

Example 2.6. Consider the digraph D =
−→
C3 ∪

−−−→
C4t+2 ,taking t = 4 admits OVIMTL with magic constant M = 43.

Here V (D) = {ai : 1 ≤ i ≤ 3} ∪ {bi : 1 ≤ i ≤ 18} and A (D) =
{

(ai, ai
⊕

3 1) : 1 ≤ i ≤ 3
}
∪
{

(bi, bi⊕18 1) : 1 ≤ i ≤ 18
}

be the

vertex set and arc set of D respectively. From Corollary 2.2, we get M = 43 (Since |V (D)| = |A(D)| = 21).

Define f : V (D) ∪A(D)→ {1, 2, . . . , 42} as follows

f (u) =

 37 + 2(i− 1) if u = ai for 1 ≤ i ≤ 3

2i− 1 if u = bi for 1 ≤ i ≤ 18

f (e) =

 8− 2i if e = (ai, ai
⊕

3 1) for 1 ≤ i ≤ 3

44− 2i if e = (bi, bi⊕18 1) for 1 ≤ i ≤ 18

Figure 2. C3 ∪ C18, k = 43

Now, we prove f is an OVIMTL.

Case 1: Suppose v = ai for 1 ≤ i ≤ 3. Then f (v) +
∑

u∈I(v)
f ((v, u)) = f (ai) +f(ai, ai

⊕
3 1) = [37 + 2(i− 1)] + [8− 2i] = 43.

Case 2: Suppose v = bi for 1 ≤ i ≤ 18. Then f (v) +
∑

u∈I(v)
f ((v, u)) = f (bi) + f((bi, bi⊕18 1)) = [2i− 1] + [44− 2i] = 43.

Thus the graph D is an OVIMT with the magic constant M = 43.

Theorem 2.7. The digraph D =
−→
C4 ∪

−−−→
C4t+3, t ≥ 1 admits OVIMTL with magic constant M = 8t + 15.

Proof. Let the V (D) = {ai : 1 ≤ i ≤ 4} ∪ {bi : 1 ≤ i ≤ 4t + 3} and A (D) =
{

(ai, ai
⊕

4 1) : 1 ≤ i ≤ 4
}
∪{

(bi, bi
⊕

4t+3 1) : 1 ≤ i ≤ 4t + 3
}

be the vertex set and arc set of D respectively. From Corollary 2.2, we get M = 8t + 15

(Since |V (D)| = |A(D)| = 4t + 7).
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Define f : V (D) ∪A(D)→ {1, 2, . . . , 8t + 14} as follows:

f (u) =

 8t + 2i + 5 if u = ai for 1 ≤ i ≤ 4

2i− 1 if u = bi for 1 ≤ i ≤ 4t + 3

f (e) =

 10− 2i if e = (ai, ai
⊕

4 1) : 1 ≤ i ≤ 4

8t + 16− 2i if e = (bi, bi
⊕

4t+3 1) : 1 ≤ i ≤ 4t + 3

Now, we prove f is an OVIMTL with the magic constant M = 8t + 15.

Case 1: Suppose v = ai for 1 ≤ i ≤ 4. Then f (v) +
∑

u∈I(v)
f ((v, u)) = f (ai) + f((ai, ai

⊕
4 1)) = [8t + 2i + 5] + [10− 2i] =

8t + 15.

Case 2: Suppose v = bi for 1 ≤ i ≤ 4t+3. Thenf (v)+
∑

u∈I(v)
f ((v, u)) = f (bi)+f((bi, bi⊕4t+2 1)) = [2i− 1]+[8t + 16− 2i] =

8t + 15.

Thus the digraph D is admits OVIMTL with the magic constant M = 8t + 15.

Example 2.8. Consider the digraph D =
−→
C4 ∪

−−−→
C4t+3 taking t = 3 admits OVIMTL with magic constant M = 39.

Here V (D) = {ai : 1 ≤ i ≤ 4} ∪ {bi : 1 ≤ i ≤ 15} and A (D) =
{

(ai, ai
⊕

4 1) : 1 ≤ i ≤ 4
}
∪
{

(bi, bi⊕15 1) : 1 ≤ i ≤ 15
}

be the

vertex set and arc set of D respectively. From Corollary 2.2, we get M = 39 (Since |V (D)| = |A(D)| = 19).

Define f : V (D) ∪A(D)→ {1, 2, . . . , 38} as follows:

f (u) =

 29 + 2i if u = ai for 1 ≤ i ≤ 4

2i− 1 if u = bi for 1 ≤ i ≤ 15

f (e) =

 10− 2i if e = (ai, ai
⊕

4 1) : 1 ≤ i ≤ 4

40− 2i if e = (bi, bi⊕15 1) : 1 ≤ i ≤ 15.

Figure 3. C4 ∪ C15, k = 39

Now, we prove f is an OVIMTL.

Case 1: Suppose v = ai for 1 ≤ i ≤ 4. Then f (v) +
∑

u∈I(v)
f ((v, u)) = f (ai) + f((ai, ai

⊕
4 1)) = [29 + 2i] + [10− 2i] = 39.

Case 2: Suppose v = bi for 1 ≤ i ≤ 15. Then f (v) +
∑

u∈I(v)
f ((v, u)) = f (bi) + f((bi, bi⊕15 1)) = [2i− 1] + [40− 2i] = 39.

Thus the graph D is an OVIMT with the magic constant M = 39.

Theorem 2.9. The digraph D =
−→
C4 ∪

−−−→
C4t+1, t ≥ 1 admits OVIMTL with magic constant M = 8t + 11.

Proof. Let the V (D) = {ai : 1 ≤ i ≤ 4} ∪ {bi : 1 ≤ i ≤ 4t + 1} and A (D) =
{

(ai, ai
⊕

4 1) : 1 ≤ i ≤ 4
}
∪{

(bi, bi⊕4t+1 1) : 1 ≤ i ≤ 4t + 1
}

be the vertex set and arc set of D respectively. From Corollary 2.2, we get M = 8t + 11

(Since |V (D)| = |A(D)| = 4t + 5).

Define f : V (D) ∪A(D)→ {1, 2, . . . , 8t + 10} as follows:
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f (u) =

 8t + 2i + 1 if u = ai for 1 ≤ i ≤ 4

2i− 1 if u = bi for 1 ≤ i ≤ 4t + 1

f (e) =

 10− 2i if e = (ai, ai
⊕

4 1) : 1 ≤ i ≤ 4

8t + 12− 2i if e = (bi, bi⊕4t+1 1) : 1 ≤ i ≤ 4t + 1

Now, we prove f is an OVIMTL with the magic constant M = 8t + 11.

Case 1: Suppose v = ai for 1 ≤ i ≤ 4. Then f (v) +
∑

u∈I(v)
f ((v, u)) = f (ai) + f((ai, ai

⊕
4 1)) = [8t + 2i + 1] + [10− 2i] =

8t + 11.

Case 2: Suppose v = bi for 1 ≤ i ≤ 4t + 1. Then f (v) +
∑

u∈I(v)
f ((v, u)) = f (bi) + f((bi, bi⊕4t+1 1)) = [2i− 1] +

[8t + 12− 2i] = 8t + 11. Thus the digraph D is admits OVIMTL with the magic constant M = 8t + 11.

Example 2.10. Consider the digraph D =
−→
C4 ∪

−−−→
C4t+1, taking t = 3 admits OVIMTL with magic constant M = 35.

Here V (D) = {ai : 1 ≤ i ≤ 4} ∪ {bi : 1 ≤ i ≤ 13} and A (D) =
{

(ai, ai
⊕

4 1) : 1 ≤ i ≤ 4
}
∪
{

(bi, bi
⊕

13 1) : 1 ≤ i ≤ 13
}

be the

vertex set and arc set of D respectively. From Corollary 2.2, we get M = 35 (Since |V (D)| = |A(D)| = 17).

Define f : V (D) ∪A(D)→ {1, 2, . . . , 34} as follows:

f (u) =

 25 + 2i if u = ai for 1 ≤ i ≤ 4

2i− 1 if u = bi for 1 ≤ i ≤ 13

f (e) =

 10− 2i if e = (ai, ai
⊕

4 1) : 1 ≤ i ≤ 4

36− 2i if e = (bi, bi⊕13 1) : 1 ≤ i ≤ 13

Figure 4. C4 ∪ C13, k = 35

Now, we prove f is an OVIMTL.

Case 1: Suppose v = ai for 1 ≤ i ≤ 4. Then f (v) +
∑

u∈I(v)
f ((v, u)) = f (ai) + f((ai, ai

⊕
4 1)) = [25 + 2i] + [10− 2i] = 35.

Case 2: Suppose v = bi for 1 ≤ i ≤ 13. Then f (v) +
∑

u∈I(v)
f ((v, u)) = f (bi) + f((bi, bi⊕13 1)) = [2i− 1] + [36− 2i] = 35.

Thus the graph D is an OVIMT with the magic constant M = 35.

3. Conclusion

In this paper we have discussed some cycles of graphs that admits OVIMTL. In future we can prove different families of

graphs which satisfy OVIMTL.
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