Odd Vertex-In Magic Total Labeling of Some 2-Regular Digraphs

M. Sindhu ${ }^{1, *}$ and S. Chandra Kumar ${ }^{2}$
1 Department of Mathematics, Excel Engineering college (Autonomous), Komarapalayam, Namakkal, Tamilnadu, India.
2 Department of Mathematics, Scott Christian College (Autonomous), Nagercoil, Tamilnadu, India.

Abstract

Let D be a directed graph with p vertices and q arcs. A vertex in-magic total labeling (VIMTL) of a graph D is a bijection $f: V(D) \cup A(D) \rightarrow\{1,2, \ldots p+q\}$ with the property that for every $v \in V(D), f(v)+\sum_{u \in I(v)} f((v, u))=M$, for some constant M. Such labeling is 'Odd' if $f(V(D))=\{1,3, \ldots, 2 p-1\}$. In this paper, we explore the Odd Vertex In-magic total labeling (OVIMTL) of some 2-regular directed graphs.

\section*{MSC: 05C78.}

Keywords: Digraphs, vertex in-magic labeling, Odd Vertex in-magic total labeling.
(C) JS Publication.

1. Introduction

Graph Labeling is one of the most growing areas in graph theory. In graph theory, the labeling of graphs noticed to be a theoretical topic. It is used in countless applications like coding theory, X-Ray crystallography and astronomy etc. Design of graph labeling is helpful to network security, network addressing and social network in communication network. A magic total labeling of a graph is a motivating research area. Let $D=(V, A)$ be a digraph of order p and size q. For a vertex $v \in V(D)$, the set $I(v)=\{u \mid(v, u) \in A(D)\}$ is called the in-neighbourhood of v. The in-degree of v is defined by $\operatorname{deg}^{-}(v)=|I(v)|$. A general reference for graph theoretic notions follow [1]. A labeling of a graph G is a mapping from a set of vertices(edges) into a set of numbers, usually integers. Many kinds of labelings have been studied and an excellent survey of graph labelings can be found in [2]. In 1963, Sedlacek [5] introduced the concept of magic labeling in graphs. A graph G is magic if the edges of G can be labelled by a set of numbers $\{1,2, \ldots q\}$ so that the sum of labels of all the edges incident with any vertex is the same. In 2002, Macdougall [3] introduced the notion of vertex magic total labeling (VMTL) in graphs. Let $G(V, E)$ be a graph with $|V(G)|=p$ and $|E(G)|=q$. A one-to-one map f from $V(G) \cup E(G)$ onto the integers $\{1,2, \ldots, p+q\}$ is a VTML if there is a constant M so that for every vertex $x \in V(G), f(x)+\sum f(x y)=M$, where the sum is taken over all vertices y adjacent to x. In 2004, Macdougall et [4] defined the super vertex-magic total labeling (SVMTL) in graphs. They call a VTML is super if $f(V(G))=\{1,2 \ldots, p\}$. In this labeling the smallest labels are assigned to the vertices. In 2008, Bloom [6] extended the idea of magic labeling to digraphs. The V-super vertex out-magic total labeling (V-SVOMTL) in digraph was introduced by Durga Devi [7]. A V-SVOMTL is a bijection $f: V(D) \cup A(D) \rightarrow\{1,2, \ldots, p+q\}$ such that

[^0]$f(V(D))=\{1,2 \ldots, p\}$ and for every $v \in V(D), f(v)+\sum_{u \in o(v)} f((u, v))=M$, for some positive integer M. C. T. Nagaraj [8] in introduced the concept of an Odd vertex magic total labeling. A vertex magic total labeling (VMTL) is a bijection $f: V(D) \cup A(D) \rightarrow\{1,2, \ldots, p+q\}$ with the property that for every $v \in V(D), f(v)+\sum_{u \in N(v)} f(u v)=M$, for some constant M. Such labeling is 'Odd' if $f(V(D))=\{1,3, \ldots, 2 p-1\}$. A graph is called an odd vertex magic if the graph admits an Odd vertex magic total labeling. C. T. Nagaraj [9] also studied Odd vertex magic total labeling of some 2-regular graphs. In this paper, we define a new labeling called Odd Vertex-In Magic Total Labeling (OVIMTL). An Odd Vertex-In Magic Total Labeling (OVIMTL) of a directed graph D is a bijection $f: V(D) \cup A(D) \rightarrow\{1,2, \ldots, p+q\}$ with the property $f(V(D))=\{1,3, \ldots, 2 p-1\}$ and for every $v \in V(D), f(v)+\sum_{u \in I(v)} f((v, u))=M$, for some constant M. A digraph that admits an OVITML is called an Odd Vertex-In Magic Total(OVIMT). From the definition of OVITML, it is easy to observe that $p \leq q$.

2. OVIMTL in Digraphs

Lemma 2.1. If a digraph $D(p, q)$ is an Odd vertex-in magic total (OVIMT), then the magic constant M is given by $M=\frac{(p+q)(p+q+1)}{2 p}$.

Proof. Let f be an OVIMTL of D. Note that $M=f(v)+\sum_{u \in I(v)} f((v, u))$ for all $v \in V(D)$. Summing over all $v \in V(D)$, we get

$$
p M=\sum_{v \in V(D)} f(v)+\sum_{v \in V(D)} \sum_{u \in I(D)} f(v, u)
$$

Since $f(V(D))=\{1,3, \ldots, 2 p-1\}$ and $f(A(D))=\{2,4, \ldots, 2 p, 2 p+1,2 p+2, \ldots, p+q\}$,

$$
\begin{aligned}
p M & =[1+3+\cdots+2 p-1]+[2+4+\cdots+2 p]+[1+2+\cdots+(p+q)]-[1+2+\cdots+2 p] \\
& =[1+2+\cdots+(p+q)] \\
& =\frac{(p+q)(p+q+1)}{2} \\
M & =\frac{(p+q)(p+q+1)}{2 p}
\end{aligned}
$$

Corollary 2.2. Let D be a connected digraph which is OVIMT, then
(a). $M \geq 2 p-1$.
(b). $M=2 p+1$ if $q=p$.

Proof.
(a). Since D be a connected digraph, $q \geq p-1$. Thus by Lemma 2.1, we have $M=\frac{(p+q)(p+q+1)}{2 p} \geq \frac{(p+p-1)(p+p-1+1)}{2 p}=$ $\frac{(2 p-1)(2 p)}{2 p}=2 p-1$.
(b). When $q=p, M=\frac{(p+q)(p+q+1)}{2 p}=\frac{(p+p)(p+p+1)}{2 p}=\frac{(2 p)(2 p+1)}{2 p}=2 p+1$.

Theorem 2.3. The digraph $D=\overrightarrow{C_{3}} \cup \overrightarrow{C_{4 t}}, t>1$ admits OVIMTL with the magic constant $8 t+7$.

Proof. Let the $V(D)=\left\{a_{i}: 1 \leq i \leq 3\right\} \cup\left\{b_{i}: 1 \leq i \leq 4 t\right\}$ and $A(D)=\left\{\left(a_{i}, a_{i} \oplus_{3} 1\right): 1 \leq i \leq 3\right\} \cup$ $\left\{\left(b_{i}, b_{i} \oplus_{4 t}\right): 1 \leq i \leq 4 t\right\}$ be the vertex set and arc set of D respectively. From Corollary 2.2, we get $M=8 t+7$ (Since $|V(D)|=|A(D)|=4 t+3$).

Define $f: V(D) \cup A(D) \rightarrow\{1,2, \ldots, 8 t+6\}$ as follows:

$$
\begin{aligned}
& f(u)= \begin{cases}8 t+2 i-1 & \text { if } u=a_{i} \text { for } 1 \leq i \leq 3 \\
2 i-1 & \text { if } u=b_{i} \text { for } 1 \leq i \leq 4 t\end{cases} \\
& f(e)= \begin{cases}8-2 i & \text { if } e=\left(a_{i}, a_{i} \oplus_{3} 1\right): 1 \leq i \leq 3 \\
8 t+8-2 i & \text { if } e=\left(b_{i}, b_{i} \oplus_{4 t}\right): 1 \leq i \leq 4 t\end{cases}
\end{aligned}
$$

Now, we prove f is an OVIMTL with the magic constant $M=8 t+7$.
Case 1: Suppose $v=a_{i}$ for $1 \leq i \leq 3$. Then $f(v)+\sum_{u \in I(v)} f((v, u))=f\left(a_{i}\right)+f\left(\left(a_{i}, a_{i} \oplus_{3} 1\right)\right)=[8 t+2 i-1]+[8-2 i]=8 t+7$.
Case 2: Suppose $v=b_{i}$ for $1 \leq i \leq 4 t$. Then $f(v)+\sum_{u \in I(v)} f((v, u))=f\left(b_{i}\right)+f\left(\left(b_{i}, b_{i} \oplus_{4 t} 1\right)\right)=[2 i-1]+[8 t+8-2 i]=$ $8 t+7$.

Thus the graph D is admits OVIMTL with the magic constant $M=8 t+7$.
Example 2.4. Consider the digraph $D=\overrightarrow{C_{3}} \cup \overrightarrow{C_{4 t}}$, taking $t=4$ admits OVIMTL with magic constant $M=39$.
Here $V(D)=\left\{a_{i}: 1 \leq i \leq 3\right\} \cup\left\{b_{i}: 1 \leq i \leq 16\right\}$ and $A(D)=\left\{\left(a_{i}, a_{i \oplus_{3} 1}\right): 1 \leq i \leq 3\right\} \cup\left\{\left(b_{i}, b_{i} \oplus_{16}\right): 1 \leq i \leq 16\right\}$ be the vertex set and arc set of D respectively. From Corollary 2.2, we get $M=39$ (Since $|V(D)|=|A(D)|=19)$.

Define $f: V(D) \cup A(D) \rightarrow\{1,2, \ldots, 38\}$ as follows:

$$
\begin{aligned}
& f(u)= \begin{cases}31+2 i & \text { if } u=a_{i} \text { for } 1 \leq i \leq 3 \\
2 i-1 & \text { if } u=b_{i} \text { for } 1 \leq i \leq 16\end{cases} \\
& f(e)= \begin{cases}8-2 i & \text { if } e=\left(a_{i}, a_{i} \oplus_{3} 1\right): 1 \leq i \leq 3 \\
40-2 i & \text { if } e=\left(b_{i}, b_{i} \oplus_{16} 1\right): 1 \leq i \leq 16\end{cases}
\end{aligned}
$$

Figure 1. $C_{3} \cup C_{16}, k=39$
Now we prove f is an OVIMTL with magic constant $M=39$
Case 1: Suppose $v=a_{i}$ for $1 \leq i \leq 3$. Then $f(v)+\sum_{u \in I(v)} f((v, u))=f\left(a_{i}\right)+f\left(\left(a_{i}, a_{i} \oplus_{3} 1\right)\right)=[31+2 i]+[8-2 i]=39$.
Case 2: Suppose $v=b_{i}$ for $1 \leq i \leq 16$. Then $f(v)+\sum_{u \in I(v)} f((v, u))=f\left(b_{i}\right)+f\left(\left(b_{i}, b_{i} \oplus_{16}{ }^{1}\right)\right)=[2 i-1]+[40-2 i]=39$.
Thus the graph D is an OVIMT with the magic constant $M=39$.
Theorem 2.5. The digraph $D=\overrightarrow{C_{3}} \cup \overrightarrow{C_{4 t+2}}, t>1$ admits OVIMTL with magic constant $M=8 t+11$.
Proof. Let the $V(D)=\left\{a_{i}: 1 \leq i \leq 3\right\} \cup\left\{b_{i}: 1 \leq i \leq 4 t+2\right\}$ and $A(D)=\left\{\left(a_{i}, a_{i} \oplus_{3} 1\right): 1 \leq i \leq 3\right\} \cup$ $\left\{\left(b_{i}, b_{i} \oplus_{4 t+2}{ }^{1}\right): 1 \leq i \leq 4 t+2\right\}$ be the vertex set and arc set of D respectively. From Corollary 2.2 , we get $M=8 t+11$ (Since $|V(D)|=|A(D)|=4 t+5)$.

Define $f: V(D) \cup A(D) \rightarrow\{1,2, \ldots, 8 t+10\}$ as follows:

$$
\begin{aligned}
& f(u)= \begin{cases}8 t+2(i-1)+5 & \text { if } u=a_{i} \text { for } 1 \leq i \leq 3 \\
2 i-1 & \text { if } u=b_{i} \text { for } 1 \leq i \leq 4 t+2\end{cases} \\
& f(e)= \begin{cases}8-2 i & \text { if } e=\left(a_{i}, a_{i} \oplus_{3} 1\right): 1 \leq i \leq 3 \\
8 t+12-2 i & \text { if } e=\left(b_{i}, b_{i} \oplus_{4 t+2} 1\right): 1 \leq i \leq 4 t+2\end{cases}
\end{aligned}
$$

Now, we prove f is an OVIMTL with the magic constant $M=8 t+11$.
Case 1: Suppose $v=a_{i}$ for $1 \leq i \leq 3$. Then $f(v)+\sum_{u \in I(v)} f((v, u))=f\left(a_{i}\right)+f\left(\left(a_{i}, a_{i} \oplus_{3} 1\right)\right)=[8 t+2(i-1)+5]+[8-2 i]=$ $8 t+11$.

Case 2: Suppose $v=b_{i}$ for $1 \leq i \leq 4 t+2$. Then $f(v)+\sum_{u \in I(v)} f((v, u))=f\left(b_{i}\right)+f\left(\left(b_{i}, b_{i} \oplus_{4 t+2} 1\right)\right)=[2 i-1]+$ $[8 t+12-2 i]=8 t+11$.

Thus the digraph D admits OVIMTL with the magic constant $M=8 t+11$.
Example 2.6. Consider the digraph $D=\overrightarrow{C_{3}} \cup \overrightarrow{C_{4 t+2}}$, taking $t=4$ admits OVIMTL with magic constant $M=43$.

Here $V(D)=\left\{a_{i}: 1 \leq i \leq 3\right\} \cup\left\{b_{i}: 1 \leq i \leq 18\right\}$ and $A(D)=\left\{\left(a_{i}, a_{i} \oplus_{3} 1\right): 1 \leq i \leq 3\right\} \cup\left\{\left(b_{i}, b_{i \oplus_{18} 1}\right): 1 \leq i \leq 18\right\}$ be the vertex set and arc set of D respectively. From Corollary 2.2, we get $M=43$ (Since $|V(D)|=|A(D)|=21$).
Define $f: V(D) \cup A(D) \rightarrow\{1,2, \ldots, 42\}$ as follows

$$
\begin{aligned}
& f(u)= \begin{cases}37+2(i-1) & \text { if } u=a_{i} \text { for } 1 \leq i \leq 3 \\
2 i-1 & \text { if } u=b_{i} \text { for } 1 \leq i \leq 18\end{cases} \\
& f(e)= \begin{cases}8-2 i & \text { if } e=\left(a_{i}, a_{i} \oplus_{3} 1\right) \text { for } 1 \leq i \leq 3 \\
44-2 i & \text { if } e=\left(b_{i}, b_{i} \oplus_{18} 1\right) \text { for } 1 \leq i \leq 18\end{cases}
\end{aligned}
$$

Figure 2. $C_{3} \cup C_{18}, k=43$
Now, we prove f is an OVIMTL.
Case 1: Suppose $v=a_{i}$ for $1 \leq i \leq 3$. Then $f(v)+\sum_{u \in I(v)} f((v, u))=f\left(a_{i}\right)+f\left(a_{i}, a_{i} \oplus_{3} 1\right)=[37+2(i-1)]+[8-2 i]=43$.
Case 2: Suppose $v=b_{i}$ for $1 \leq i \leq 18$. Then $f(v)+\sum_{u \in I(v)} f((v, u))=f\left(b_{i}\right)+f\left(\left(b_{i}, b_{i} \oplus_{18} 1\right)\right)=[2 i-1]+[44-2 i]=43$. Thus the graph D is an OVIMT with the magic constant $M=43$.

Theorem 2.7. The digraph $D=\overrightarrow{C_{4}} \cup \overrightarrow{C_{4 t+3}}, t \geq 1$ admits OVIMTL with magic constant $M=8 t+15$.
Proof. Let the $V(D)=\left\{a_{i}: 1 \leq i \leq 4\right\} \cup\left\{b_{i}: 1 \leq i \leq 4 t+3\right\}$ and $A(D)=\left\{\left(a_{i}, a_{i} \oplus_{4} 1\right): 1 \leq i \leq 4\right\} \cup$ $\left\{\left(b_{i}, b_{i} \oplus_{4 t+3}\right): 1 \leq i \leq 4 t+3\right\}$ be the vertex set and arc set of D respectively. From Corollary 2.2, we get $M=8 t+15$ (Since $|V(D)|=|A(D)|=4 t+7)$.

Define $f: V(D) \cup A(D) \rightarrow\{1,2, \ldots, 8 t+14\}$ as follows:

$$
\begin{aligned}
& f(u)= \begin{cases}8 t+2 i+5 & \text { if } u=a_{i} \text { for } 1 \leq i \leq 4 \\
2 i-1 & \text { if } u=b_{i} \text { for } 1 \leq i \leq 4 t+3\end{cases} \\
& f(e)= \begin{cases}10-2 i & \text { if } e=\left(a_{i}, a_{i} \oplus_{4} 1\right): 1 \leq i \leq 4 \\
8 t+16-2 i & \text { if } e=\left(b_{i}, b_{i} \oplus_{4 t+3}\right): 1 \leq i \leq 4 t+3\end{cases}
\end{aligned}
$$

Now, we prove f is an OVIMTL with the magic constant $M=8 t+15$.
Case 1: Suppose $v=a_{i}$ for $1 \leq i \leq 4$. Then $f(v)+\sum_{u \in I(v)} f((v, u))=f\left(a_{i}\right)+f\left(\left(a_{i}, a_{i} \oplus_{4} 1\right)\right)=[8 t+2 i+5]+[10-2 i]=$ $8 t+15$.

Case 2: Suppose $v=b_{i}$ for $1 \leq i \leq 4 t+3$. Then $f(v)+\sum_{u \in I(v)} f((v, u))=f\left(b_{i}\right)+f\left(\left(b_{i}, b_{i} \oplus_{4 t+2}\right)\right)=[2 i-1]+[8 t+16-2 i]=$ $8 t+15$.

Thus the digraph D is admits OVIMTL with the magic constant $M=8 t+15$.
Example 2.8. Consider the digraph $D=\overrightarrow{C_{4}} \cup \overrightarrow{C_{4 t+3}}$ taking $t=3$ admits OVIMTL with magic constant $M=39$.

Here $V(D)=\left\{a_{i}: 1 \leq i \leq 4\right\} \cup\left\{b_{i}: 1 \leq i \leq 15\right\}$ and $A(D)=\left\{\left(a_{i}, a_{i} \oplus_{4} 1\right): 1 \leq i \leq 4\right\} \cup\left\{\left(b_{i}, b_{i} \oplus_{15}\right): 1 \leq i \leq 15\right\}$ be the vertex set and arc set of D respectively. From Corollary 2.2, we get $M=39$ (Since $|V(D)|=|A(D)|=19)$.
Define $f: V(D) \cup A(D) \rightarrow\{1,2, \ldots, 38\}$ as follows:

$$
\begin{aligned}
& f(u)= \begin{cases}29+2 i & \text { if } u=a_{i} \text { for } 1 \leq i \leq 4 \\
2 i-1 & \text { if } u=b_{i} \text { for } 1 \leq i \leq 15\end{cases} \\
& f(e)= \begin{cases}10-2 i & \text { if } e=\left(a_{i}, a_{i} \oplus_{4} 1\right): 1 \leq i \leq 4 \\
40-2 i & \text { if } e=\left(b_{i}, b_{i} \oplus_{15} 1\right): 1 \leq i \leq 15\end{cases}
\end{aligned}
$$

Figure 3. $C_{4} \cup C_{15}, k=39$
Now, we prove f is an OVIMTL.
Case 1: Suppose $v=a_{i}$ for $1 \leq i \leq 4$. Then $f(v)+\sum_{u \in I(v)} f((v, u))=f\left(a_{i}\right)+f\left(\left(a_{i}, a_{i} \oplus_{4} 1\right)\right)=[29+2 i]+[10-2 i]=39$.
Case 2: Suppose $v=b_{i}$ for $1 \leq i \leq 15$. Then $f(v)+\sum_{u \in I(v)} f((v, u))=f\left(b_{i}\right)+f\left(\left(b_{i}, b_{i} \oplus_{15}{ }^{1}\right)\right)=[2 i-1]+[40-2 i]=39$.
Thus the graph D is an OVIMT with the magic constant $M=39$.
Theorem 2.9. The digraph $D=\overrightarrow{C_{4}} \cup \overrightarrow{C_{4 t+1}}, t \geq 1$ admits OVIMTL with magic constant $M=8 t+11$.
Proof. Let the $V(D)=\left\{a_{i}: 1 \leq i \leq 4\right\} \cup\left\{b_{i}: 1 \leq i \leq 4 t+1\right\}$ and $A(D)=\left\{\left(a_{i}, a_{i} \oplus_{4} 1\right): 1 \leq i \leq 4\right\} \cup$ $\left\{\left(b_{i}, b_{i} \oplus_{4 t+1^{1}}\right): 1 \leq i \leq 4 t+1\right\}$ be the vertex set and arc set of D respectively. From Corollary 2.2, we get $M=8 t+11$ (Since $|V(D)|=|A(D)|=4 t+5)$.

Define $f: V(D) \cup A(D) \rightarrow\{1,2, \ldots, 8 t+10\}$ as follows:

$$
\begin{aligned}
& f(u)= \begin{cases}8 t+2 i+1 & \text { if } u=a_{i} \text { for } 1 \leq i \leq 4 \\
2 i-1 & \text { if } u=b_{i} \text { for } 1 \leq i \leq 4 t+1\end{cases} \\
& f(e)= \begin{cases}10-2 i & \text { if } e=\left(a_{i}, a_{i} \oplus_{4} 1\right): 1 \leq i \leq 4 \\
8 t+12-2 i & \text { if } e=\left(b_{i}, b_{i} \oplus_{4 t+1} 1\right): 1 \leq i \leq 4 t+1\end{cases}
\end{aligned}
$$

Now, we prove f is an OVIMTL with the magic constant $M=8 t+11$.
Case 1: Suppose $v=a_{i}$ for $1 \leq i \leq 4$. Then $f(v)+\sum_{u \in I(v)} f((v, u))=f\left(a_{i}\right)+f\left(\left(a_{i}, a_{i} \oplus_{4} 1\right)\right)=[8 t+2 i+1]+[10-2 i]=$ $8 t+11$.

Case 2: Suppose $v=b_{i}$ for $1 \leq i \leq 4 t+1$. Then $f(v)+\sum_{u \in I(v)} f((v, u))=f\left(b_{i}\right)+f\left(\left(b_{i}, b_{i} \oplus_{4 t+1} 1\right)\right)=[2 i-1]+$ $[8 t+12-2 i]=8 t+11$. Thus the digraph D is admits OVIMTL with the magic constant $M=8 t+11$.

Example 2.10. Consider the digraph $D=\overrightarrow{C_{4}} \cup \overrightarrow{C_{4 t+1}}$, taking $t=3$ admits OVIMTL with magic constant $M=35$.

Here $V(D)=\left\{a_{i}: 1 \leq i \leq 4\right\} \cup\left\{b_{i}: 1 \leq i \leq 13\right\}$ and $A(D)=\left\{\left(a_{i}, a_{i} \oplus_{4} 1\right): 1 \leq i \leq 4\right\} \cup\left\{\left(b_{i}, b_{i} \oplus_{13} 1\right): 1 \leq i \leq 13\right\}$ be the vertex set and arc set of D respectively. From Corollary 2.2 , we get $M=35$ (Since $|V(D)|=|A(D)|=17$).
Define $f: V(D) \cup A(D) \rightarrow\{1,2, \ldots, 34\}$ as follows:

$$
\begin{aligned}
& f(u)= \begin{cases}25+2 i & \text { if } u=a_{i} \text { for } 1 \leq i \leq 4 \\
2 i-1 & \text { if } u=b_{i} \text { for } 1 \leq i \leq 13\end{cases} \\
& f(e)= \begin{cases}10-2 i & \text { if } e=\left(a_{i}, a_{i} \oplus_{4} 1\right): 1 \leq i \leq 4 \\
36-2 i & \text { if } e=\left(b_{i}, b_{i} \oplus_{13} 1\right): 1 \leq i \leq 13\end{cases}
\end{aligned}
$$

Figure 4. $C_{4} \cup C_{13}, k=35$

Now, we prove f is an OVIMTL.
Case 1: Suppose $v=a_{i}$ for $1 \leq i \leq 4$. Then $f(v)+\sum_{u \in I(v)} f((v, u))=f\left(a_{i}\right)+f\left(\left(a_{i}, a_{i} \oplus_{4} 1\right)\right)=[25+2 i]+[10-2 i]=35$.
Case 2: Suppose $v=b_{i}$ for $1 \leq i \leq 13$. Then $f(v)+\sum_{u \in I(v)} f((v, u))=f\left(b_{i}\right)+f\left(\left(b_{i}, b_{i} \oplus_{13} 1\right)\right)=[2 i-1]+[36-2 i]=35$. Thus the graph D is an OVIMT with the magic constant $M=35$.

3. Conclusion

In this paper we have discussed some cycles of graphs that admits OVIMTL. In future we can prove different families of graphs which satisfy OVIMTL.

References

[1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Elsevier, North Holland, New York, (1986).
[2] J. A. Gallian, A dynamic survey of graph labeling electronic, J. Combinatorics, 5(2002), \#D56.
[3] J. A. MacDougall, M. Miller and W. D. Wallis, Vertex magic total labeling of graphs, Util. Math., 61(2002), 3-21.
[4] J. A. MacDougall, M. Miller and K. A. Sugeng, Super vertex-magic total labelings of graphs, in: Proceedings of the 15th Australian Workshop on Combinatorial Algorithms, (2004), 222-229.
[5] J. Sedlacek, Problem 27, in Theory of Graphs and its Applications, Proc. Symposium Smolenice, (1963), 163-167.
[6] G. S. Bloom, A. Marr and W. D. Wallis, Magic Digraphs, J. Combin. Math. Combin. Comput., 65(2008), 205-212.
[7] G. Durga Devi, M. Durga and G. Marimuthu, V-Super Vertex Out-Magic Total Labelings of Digraphs, Commun. Korean Math. Soc., 32(2)(2017), 435-445.
[8] C. T. Nagaraj, C. Y. Ponnappan and G. Prabakaran, Odd vertex magic total labeling of some graphs, International Journal of Pure and Applied Mathematics, 118(10)(2018), 97-109.
[9] C. T.Nagaraj, C. Y. Ponnappan and G. Prabakaran, Odd vertex magic total labeling of some 2-regular graphs, International Journal of Mathematics Trends and Technology, 54(1)(2018), 34-41.

[^0]: * E-mail: msindhu0387@gmail.com

