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1. Introduction and Preliminaries

The stability problem of functional equations originated from a question of S.M. Ulam [40] concerning the stability of group

homomorphisms. D.H. Hyers [15] gave a first affirmative partial answer to the question of Ulam for Banach spaces.

Hyers’ theorem was generalized by T. Aoki [2] for additive mappings and by Th.M. Rassias [35] for linear mappings by

considering an unbounded Cauchy difference. The paper of Th.M. Rassias [35] has provided a lot of influence in the

development of what we call generalized Hyers-Ulam stability of functional equations. A generalization of the Th.M. Rassias

theorem was obtained by P. Gavruta [14] by replacing the unbounded Cauchy difference by a general control function in the

spirit of Rassias approach. In 1982, J.M. Rassias [32] followed the innovative approach of the Th.M. Rassias theorem [35]

in which he replaced the factor ||x||p + ||y||p by ||x||p||y||q for p, q ∈ R with p+ q = 1.

In 2008, a special case of Gavruta’s theorem for the unbounded Cauchy difference was obtained by Ravi etal., [37] by

considering the summation of both the sum and the product of two p− norms in the sprit of Rassias approach. The stability

problems of several functional equations have been extensively investigated by a number of authors and there are many

interesting results concerning this problem (see [1, 12, 16, 20]).

A.K. Katsaras [22] defined a fuzzy norm on a vector space to construct a fuzzy vector topological structure on the space.
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Some mathematicians have defined fuzzy norms on a vector space from various points of view [13, 24, 41]. In particular,

T. Bag and S.K. Samanta [8], following S.C. Cheng and J.N. Mordeson [10], gave an idea of fuzzy norm in such a manner

that the corresponding fuzzy metric is of Kramosil and Michalek type [23]. They established a decomposition theorem of a

fuzzy norm into a family of crisp norms and investigated some properties of fuzzy normed spaces [9]. We use the definition

of fuzzy normed spaces given in [8] and [27–30].

Definition 1.1. Let X be a real linear space. A function N : X ×R→ [0, 1](the so-called fuzzy subset) is said to be a fuzzy

norm on X if for all x, y ∈ X and all s, t ∈ R,

(F1) N(x, c) = 0 for c ≤ 0;

(F2) x = 0 if and only if N(x, c) = 1 for all c > 0;

(F3) N(cx, t) = N
(
x, t
|c|

)
if c 6= 0;

(F4) N(x+ y, s+ t) ≥ min{N(x, s), N(y, t)};

(F5) N(x, ·) is a non-decreasing function on R and limt→∞N(x, t) = 1;

(F6) for x 6= 0, N(x, ·) is (upper semi) continuous on R.

The pair (X,N) is called a fuzzy normed linear space. One may regard N(X, t) as the truth-value of the statement the norm

of x is less than or equal to the real number t’.

Example 1.2. Let (X, || · ||) be a normed linear space. Then

N (x, t) =


t

t+ ‖x‖ , t > 0, x ∈ X,

0, t ≤ 0, x ∈ X

is a fuzzy norm on X.

Definition 1.3. Let (X,N) be a fuzzy normed linear space. Let xn be a sequence in X. Then xn is said to be convergent

if there exists x ∈ X such that lim
n→∞

N(xn − x, t) = 1 for all t > 0. In that case, x is called the limit of the sequence xn and

we denote it by N − lim
n→∞

xn = x.

Definition 1.4. A sequence xn in X is called Cauchy if for each ε > 0 and each t > 0 there exists n0 such that for all

n ≥ n0 and all p > 0, we have N(xn+p − xn, t) > 1− ε.

Definition 1.5. Every convergent sequence in a fuzzy normed space is Cauchy. If each Cauchy sequence is convergent, then

the fuzzy norm is said to be complete and the fuzzy normed space is called a fuzzy Banach space.

The stability of various functional equations in fuzzy normed spaces was investigated in [3, 4, 6, 17, 26–30, 38]. In this

paper, the authors investigate the generalized Hyers-Ulam-Aoki-Rassias stability AQCQ functional equation

f(x+ 2y) + f(x− 2y) = 4f(x+ y)− 4f(x− y)− 6f(x) + f(2y) + f(−2y)− 4f(y)− 4f(−y) (1)

in the fuzzy normed vector space by direct method.

2. Fuzzy Stability Results: Direct Method

Throughout this section, assume that X, (Z,N ′) and (Y,N ′) are linear space, fuzzy normed space and fuzzy Banach space,

respectively. Now use the following notation for a given mapping f : X → Y

D f(x, y) = f(x+ 2y) + f(x− 2y)− 4f(x+ y) + 4f(x− y) + 6f(x)− f(2y)− f(−2y) + 4f(y) + 4f(−y)
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for all x, y ∈ X. Now, we investigate the generalized Ulam-Hyers stability of AQCQ functional equation (1).

Theorem 2.1. Let β ∈ {−1, 1} be fixed and let α : X2 → Z be a mapping such that for some d with 0 <

(
d

2

)β
< 1

N ′
(
α
(

2βy, 2βy
)
, r
)
≥ N ′

(
dβα (y, y) , r

)
(2)

for all y ∈ X and all r > 0, d > 0, and

lim
k→∞

N ′
(
α
(

2βkx, 2βky
)
, 2βkr

)
= 1 (3)

for all x, y ∈ X and all r > 0. Suppose that a function f : X → Y satisfies the inequality

N (D f(x, y), r) ≥ N ′ (α(x, y), r) (4)

for all r > 0 and all x, y ∈ X. Then the limit

A(y) = N − lim
k→∞

f(2βky)

2βk
(5)

exists for all y ∈ X and the mapping A : X → Y is a unique additive mapping such that

N (f(2y)− 8f(y)−A(y), r) ≥ min
{
N ′
(
α(y, y),

(2− d)r

8

)
, N ′

(
α(2y, y),

(2− d)r

4

)}
(6)

for all y ∈ X and all r > 0.

Proof. First assume β = 1. Replacing (x, y) by (y, y) in (4), we get

N (f(3y)− 4f(2y) + 5f(y), r) ≥ N ′ (α(y, y), r) (7)

for all y ∈ X and all r > 0. Replacing x by 2y in (4), we obtain

N (f(4y)− 4f(3y) + 6f(2y)− 4f(y), r) ≥ N ′ (α(2y, y), r) (8)

for all y ∈ X and all r > 0. Now, from (7) and (8), we have

N (f(4y)− 10f(2y) + 16f(y), r) ≥ min
{
N
(

4 (f(3y)− 4f(2y) + 5f(y)) ,
r

2

)
, N
(
f(4y)− 4f(3y) + 6f(2y)− 4f(y),

r

2

)}
≥ min

{
N ′
(
α(y, y),

r

8

)
, N ′

(
α(2y, y),

r

2

)}
(9)

for all y ∈ X and all r > 0. Let a : X → Y be a mapping defined by a(y) = f(2y)− 8f(y). Then we conclude that

N (a(2y)− 2a(y), r) ≥ min
{
N ′
(
α(y, y),

r

8

)
, N ′

(
α(2y, y),

r

2

)}
(10)

for all y ∈ X and all r > 0. Thus, we have

N

(
a(2y)

2
− a(y),

r

2

)
≥ min

{
N ′
(
α(y, y),

r

8

)
, N ′

(
α(2y, y),

r

4

)}
(11)
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for all y ∈ X and all r > 0. Replace y by 2ky in (11), we get

N

(
a(2k+1y)

2k+1
− f(2ky)

2k
,
r

2k2

)
≥ min

{
N ′
(
α(2ky, 2ky),

r

8

)
, N ′

(
α(2k+1y, 2ky),

r

4

)}
(12)

for all y ∈ X and all r > 0. Using (2), (F3) in (12), we arrive

N

(
a(2k+1y)

2k+1
− a(2ky)

2k
,
r

2k2

)
≥ min

{
N ′
(
α(y, y),

r

8dk

)
, N ′

(
α(2y, y),

r

4dk

)}
(13)

for all y ∈ X and all r > 0. Replacing r by dkr in (13), we get

N

(
a(2k+1y)

2k+1
− a(2ky)

2k
,
dkr

2k2

)
≥ min

{
N ′
(
α(y, y),

r

8

)
, N ′

(
α(2y, y),

r

4

)}
(14)

for all y ∈ X and all r > 0. It is easy to see that

a(2ky)

2k
− a(y) =

k−1∑
i=0

[
a(2i+1y)

2i+1
− a(2iy)

2i

]
(15)

for all y ∈ X. From equations (14) and (15), we have

N

(
a(2ky)

2k
− a(y),

k−1∑
i=0

dir

2i2

)
≥ min

k−1⋃
i=0

N

{
a(2i+1y)

2i+1
− a(2iy)

2i
,

k−1∑
i=0

dir

2i2

}

≥ min
k−1⋃
i=0

{
N ′
(
α(y, y),

r

8

)
, N ′

(
α(2y, y),

r

4

)}
≥ min

{
N ′
(
α(y, y),

r

8

)
, N ′

(
α(2y, y),

r

4

)}
(16)

for all y ∈ X and all r > 0. Replacing x by 2mx in (16) and using (2), (F3), we obtain

N

(
a(2k+mx)

2(k+m)
− a(2mx)

2m
,

k−1∑
i=0

di r

2i+m2

)
≥ min

{
N ′
(
α(y, y),

r

8dm

)
, N ′

(
α(2y, y),

r

4dm

)}
(17)

for all y ∈ X and all r > 0 and all m, k ≥ 0. Replacing r by dmr in (17), we get

N

(
a(2k+my)

2(k+m)
− a(2my)

2m
,

m+k−1∑
i=0

di+m r

2i+m2

)
≥ min

{
N ′
(
α(y, y),

r

8

)
, N ′

(
α(2y, y),

r

4

)}
(18)

for all y ∈ X and all r > 0 and all m, k ≥ 0. Using (F3) in (18), we obtain

N

(
a(2k+my)

2(k+m)
− a(2my)

2m
, r

)
≥ min

{
N ′
(
α(y, y),

r

8
∑m+k−1
i=m

di

2i2

)
, N ′

(
α(2y, y),

r

4
∑m+k−1
i=m

di

2i2

)}
(19)

for all y ∈ X and all r > 0 and all m, k ≥ 0. Since 0 < d < 2 and

k∑
i=0

(
d

2

)i
<∞, the cauchy criterion for convergence and

(F5) implies that {a(2ky)

2k
} is a Cauchy sequence in (Y,N). Since (Y,N) is a fuzzy Banach space, this sequence converges

to some point A(y) ∈ Y . So one can define the mapping A : X → Y by A(y) = N − limk→∞
a(2ky)

2k
for all y ∈ X. Letting

m = 0 in (19), we get

N

(
a(2ky)

2k
− a(y), r

)
≥ min

{
N ′
(
α(y, y),

r

8
∑k−1
i=0

di

2i2

)
, N ′

(
α(2y, y),

r

4
∑k−1
i=0

di

2i2

)}
(20)
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for all y ∈ X and all r > 0. Letting k →∞ in (20) and using (F6), we arrive

N (a(y)−A(y), r) ≥ min
{
N ′
(
α(y, y),

(2− d)r

8

)
, N ′

(
α(2y, y),

(2− d)r

4

)}

for all y ∈ X and all r > 0. To prove A satisfies the (1), replacing (x, y) by (2kx, 2ky) in (4), respectively , we obtain

N

(
1

2k
Df(2kx, 2ky), r

)
≥ N ′

(
α(2kx, 2ky), 2kr

)
(21)

for all r > 0 and all x, y ∈ X. Now,

N (A(x+ 2y) +A(x− 2y)− 4A(x+ y) + 4A(x− y) + 6A(x)−A(2y)−A(−2y) + 4A(y) + 4A(−y), r)

≥ min
{
N

(
A(x+ 2y)− 1

2k
f(x+ 2y),

r

10

)
, N

(
A(x− 2y)− 1

2k
f(x− 2y),

r

10

)
,

N

(
−4A(x+ y) + 4

1

2k
f(x+ y),

r

10

)
, N

(
4A(x− y)− 4

1

2k
f(x− y),

r

10

)
,

N

(
6A(x)− 6

1

2k
f(x),

r

10

)
, N

(
−A(2y) +

1

2k
f(2y),

r

10

)
,

N

(
−A(−2y) +

1

2k
f(−2y),

r

10

)
, N

(
4A(y)− 4

1

2k
f(y),

r

10

)
,

N

(
4A(−y)− 4

1

2k
f(−y),

r

10

)
, N

(
1

2k
f(x+ 2y) +

1

2k
f(x− 2y)− 1

2k
4f(x+ y)

+
1

2k
4f(x− y) +

1

2k
6f(x)− 1

2k
f(2y)− 1

2k
f(−2y) +

1

2k
4f(y) +

1

2k
4f(−y),

r

10

)}
(22)

for all x, y ∈ X and all r > 0. Using (21) and (F5) in (22), we arrive

N (A(x+ 2y) +A(x− 2y)− 4A(x+ y) + 4A(x− y) + 6A(x)−A(2y)−A(−2y) + 4A(y) + 4A(−y), r)

≥ min
{

1, 1, 1, 1, 1, 1, 1, 1, 1,

{
N ′
(
α(2ky, 2ky),

(2− d)2kr

8

)
, N ′

(
α(2.2ky, 2ky),

(2− d)2kr

4

)}}
≥ min

{
N ′
(
α(2ky, 2ky),

(2− d)2kr

8

)
, N ′

(
α(2.2ky, 2ky),

(2− d)r

42k

)}
(23)

for all x, y ∈ X and all r > 0. Letting k →∞ in (23) and using (3), we see that

N (A(x+ 2y) +A(x− 2y)− 4A(x+ y) + 4A(x− y) + 6A(x)−A(2y)−A(−2y) + 4A(y) + 4A(−y), r) = 1 (24)

for all x, y ∈ X and all r > 0. Using (F2) in the above inequality gives

A(x+ 2y) +A(x− 2y) = 4A(x+ y)− 4A(x− y)− 6A(x) +A(2y) +A(−2y)− 4A(y)− 4A(−y)

for all x, y ∈ X. Hence A satisfies the cubic functional equation (1). In order to prove A(y) is unique, let A′(y) be another

additive functional equation satisfying (1) and (6). Hence,

N(A(y)−A′(y), r) ≥ min
{
N

(
A(2ky)

2k
− f(2ky)

2k
,
r

2

)
, N

(
f(2ky)

2k
− A(2ky)

2k
,
r

2

)}
≥ min

{
N ′
(
α(2ky, 2ky),

2k(2− d)r

8

)
, N ′

(
α(2k2y, 2ky),

2k(2− d)r

4

)}
≥ min

{
N ′
(
α(y, y),

2k(2− d)r

8dk

)
, N ′

(
α(2y, y),

2k(2− d)r

4dk

)}

5
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for all y ∈ X and all r > 0. Since

lim
k→∞

2k(2− d)r

8dk
=∞ and lim

k→∞

2k(2− d)r

4dk
=∞,

we obtain

lim
k→∞

N ′
(
α(y, y),

2k(2− d)r

8dk

)
= 1 and lim

k→∞
N ′
(
α(2y, y),

2k(2− d)r

4dk

)
= 1

for all y ∈ X and all r > 0. Thus

N(A(y)−A′(y), r) = 1

for all y ∈ X and all r > 0, hence A(y) = A′(y). Therefore A(y) is unique. For β = −1, we can prove the result by a similar

method.

From Theorem 2.1, we obtain the following corollaries concerning the Hyers-Ulam-Rassias and JMRassias stabilities for the

functional equation (1).

Corollary 2.2. Suppose that a function f : X → Y satisfies the inequality

N (D f(x, y), r) ≥



N ′ (ε, r) ,

N ′ (ε {||x||s + ||y||s} , r) , s 6= 1;

N ′ (ε {||x||s||y||s} , r) , s 6= 1
2

;

N ′
(
ε
(
||x||s||y||s + ||x||2s + ||y||2s

)
, r
)
, s 6= 1

2
;

(25)

for all x, y ∈ X and all r > 0, where ε, s are constants with ε > 0. Then there exists a unique additive mapping A : X → Y

such that

N (f(2y)− 8f(y)−A(y), r) ≥



min

{
N ′
(
ε,
|2|r
8

)
, N ′

(
ε,
|2|r
4

)}
min

{
N ′
(
ε

2s
||y||s, r

4|2s − 2|

)
, N ′

(
ε
1 + 2s

2s
||y||s, r

2|2s − 2|

)}
min

{
N ′
(

ε

22s
||y||2s, r

4|22s − 2|

)
, N ′

(
ε

2s
||y||2s, r

2|22s − 2|

)}
min

{
N ′
(

3ε

22s
||y||2s, r

4|22s − 2|

)
, N ′

(
ε

(
1 + 2s

2s
+

1

22s

)
||y||2s, r

2|22s − 2|

)}
(26)

for all y ∈ X and all r > 0.

Theorem 2.3. Let β ∈ {−1, 1} be fixed and let α : X2 → Z be a mapping such that for some d with 0 <

(
d

23

)β
< 1

N ′
(
α
(

2βy, 2βy
)
, r
)
≥ N ′

(
dβα (y, y) , r

)
(27)

for all y ∈ X and all r > 0, d > 0, and

lim
k→∞

N ′
(
α
(

2βkx, 2βky
)
, 2βkr

)
= 1 (28)

for all x, y ∈ X and all r > 0. Suppose that a function f : X → Y satisfies the inequality

N (Df(x, y), r) ≥ N ′ (α(x, y), r) (29)

6
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for all r > 0 and all x, y ∈ X. Then the limit

C(y) = N − lim
k→∞

a(2βky)

23kβ
(30)

exists for all y ∈ X and the mapping C : X → Y is a unique cubic mapping such that

N (f(2y)− 2f(y)− C(y), r) ≥ min
{
N ′
(
α(y, y),

(23 − d)r

8

)
, N ′

(
α(2y, y),

(23 − d)r

4

)}
(31)

for all y ∈ X and all r > 0.

Proof. It is easy to see from (9) that

N (f(4y)− 2f(2y)− 8f(2y), r) ≥ min
{
N
(

4 (f(3y)− 4f(2y) + 5f(y)) ,
r

2

)
, N
(
f(4y)− 4f(3y) + 6f(2y)− 4f(y),

r

2

)}
≥ min

{
N ′
(
α(y, y),

r

8

)
, N ′

(
α(2y, y),

r

2

)}
(32)

for all y ∈ X and all r > 0. Let h : X → Y be a mapping defined by h(y) = f(2y)− 2f(y). Then we conclude that

N (h(2y)− 8h(y), r) ≥ min
{
N ′
(
α(y, y),

r

8

)
, N ′

(
α(2y, y),

r

2

)}
(33)

for all y ∈ X and all r > 0. The rest of the proof is similar to that of Theorem 2.1.

The following corollary is an immediate consequence of Theorem 2.3 concerning the Ulam-Hyers stability of the functional

equation(1).

Corollary 2.4. Suppose that a function f : X → Y satisfies the inequality

N (Df(x, y), r) ≥



N ′ (ε, r) ,

N ′ (ε {||x||s + ||y||s} , r) , s 6= 3;

N ′ (ε {||x||s||y||s} , r) , s 6= 3
2

;

N ′
(
ε
(
||x||s||y||s + ||x||2s + ||y||2s

)
, r
)
, s 6= 3

2
;

(34)

for all x, y ∈ X and all r > 0, where ε, s are constants with ε > 0. Then there exists a unique Cubic mapping C : X → Y

such that

N (f(2y)− 2f(y)− C(y), r) ≥



min

{
N ′
(
ε,
r

|7|

)
, N ′

(
ε,

2r

|7|

)}
min

{
N ′
(
ε

2s
||y||s, r

|2s − 23|

)
, N ′

(
ε
1 + 2s

2s
||y||s, 2r

|2s − 23|

)}
min

{
N ′
(

ε

22s
||y||2s, r

|22s − 23|

)
, N ′

(
ε

2s
||y||2s, r

2|22s − 23|

)}
min

{
N ′
(

3ε

22s
||y||2s, r

|22s − 23|

)
, N ′

(
ε

(
1 + 2s

2s
+

1

22s

)
||y||2s, 2r

|22s − 23|

)}
(35)

for all y ∈ X and all r > 0.

Theorem 2.5. Let β ∈ {−1, 1} be fixed and let α : X2 → Z be a mapping such that for some d with the condition given (2)

and (27) and 0 <

(
d

2

)β
< 1, 0 <

(
d

23

)β
< 1. Suppose that a function f : X → Y satisfies the inequality

N (Df(x, y), r) ≥ N ′ (α(x, y), r) (36)

7
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for all r > 0 and all x, y ∈ X. Then there exists a additive mapping A : X → Y and unique cubic mapping C : X → Y

satisfying the functional equation (1) and

N (f(y)−A(y)− C(y), r) ≥ min

{
N ′
(
α(y, y),

(2− d)r

8

)
, N ′

(
α(2y, y),

(2− d)r

4

)
, N ′

(
α(y, y),

(23 − d)r

8

)
,

N ′
(
α(2y, y),

(23 − d)r

4

)}
(37)

for all y ∈ X and all r > 0.

Proof. By Theorems 2.1 and 2.3, there exists a unique additive function A1 : X → Y and a unique cubic function

C1 : X → Y such that

N (f(2y)− 8f(y)−A1(y), r) ≥ min
{
N ′
(
α(y, y),

(2− d)r

8

)
, N ′

(
α(2y, y),

(2− d)r

4

)}
(38)

for all y ∈ X and all r > 0 and

N (f(2y)− 2f(y)− C1(y), r) ≥ min
{
N ′
(
α(y, y),

(23 − d)r

8

)
, N ′

(
α(2y, y),

(23 − d)r

4

)}
(39)

for all y ∈ X and all r > 0. Now from (38) and (39), one can see that

N

(
f(y) +

1

6
A1(y)− 1

6
C1(y), 2r

)
≥ min

{
N

(
f(2y)

6
− 8

6
f(y)− 1

6
A1(y),

r

6

)
, N

(
f(2y)

6
− 2

6
f(y)− 1

6
C1(y),

r

6

)}
≥ min {N (f(2y)− 8f(y)−A1(y), r) , N (f(2y)− 2f(y)− C1(y), r)}

≥ min

{
N ′
(
α(y, y),

(2− d)r

8

)
, N ′

(
α(2y, y),

(2− d)r

4

)
, N ′

(
α(y, y),

(23 − d)r

8

)
,

N ′
(
α(2y, y),

(23 − d)r

4

)}
for all y ∈ X and all r > 0. Thus we obtain (37) by defining A(y) = −1

6
A1(y) and C(y) = 1

6
C1(y) for all y ∈ X and all

r > 0.

The following corollary is an immediate consequence of Theorem 2.5 concerning the Ulam-Hyers stability of the functional

equation(1).

Corollary 2.6. Suppose that a function f : X → Y satisfies the inequality

N (Df(x, y), r) ≥



N ′ (ε, r) ,

N ′ (ε {||x||s + ||y||s} , r) , s 6= 1, 3;

N ′ (ε {||x||s||y||s} , r) , s 6= 1
2
, 3
2

;

N ′
(
ε
(
||x||s||y||s + ||x||2s + ||y||2s

)
, r
)
, s 6= 1

2
, 3
2

;

(40)

for all x, y ∈ X and all r > 0, where ε, s are constants with ε > 0. Then there exists a unique additive mapping A : X → Y

and a unique Cubic mapping C : X → Y such that

N (f(x)−A(x)− C(x), r) ≥



min
{
N ′
(
ε, |2|r

8

)
, N ′

(
ε, |2|r

4

)
, N ′

(
ε, r|7|

)
, N ′

(
ε, 2r
|7|

)}
min

{
N ′
(
ε
2s
||y||s, r

4|2s−2|

)
, N ′

(
ε 1+2s

2s
||y||s, r

2|2s−2|

)
,

N ′
(
ε
2s
||y||s, r

|2s−23|

)
, N ′

(
ε 1+2s

2s
||y||s, 2r

|2s−23|

)}
min

{
N ′
(

ε
22s
||y||2s, r

4|22s−2|

)
, N ′

(
ε
2s
||y||2s, r

2|22s−2|

)
,

N ′
(

ε
22s
||y||2s, r

|22s−23|

)
, N ′

(
ε
2s
||y||2s, r

2|22s−23|

)}
min

{
N ′
(

3ε
22s
||y||2s, r

4|22s−2|

)
, N ′

(
ε
(

1+2s

2s
+ 1

22s

)
||y||2s, r

2|22s−2|

)
,

N ′
(

3ε
22s
||y||2s, r

|22s−23|

)
, N ′

(
ε
(

1+2s

2s
+ 1

22s

)
||y||2s, 2r

|22s−23|

)}

(41)

for all y ∈ X and all r > 0.

8
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Theorem 2.7. Let β ∈ {−1, 1} be fixed and let α : X2 → Z be a mapping such that for some d with 0 <

(
d

22

)β
< 1

N ′
(
α
(

2βy, 2βy
)
, r
)
≥ N ′

(
dβα (y, y) , r

)
(42)

for all y ∈ X and all r > 0, d > 0, and

lim
k→∞

N ′
(
α
(

2βkx, 2βky
)
, 2βkr

)
= 1 (43)

for all x, y ∈ X and all r > 0. Suppose that a function f : X → Y satisfies the inequality

N (Df(x, y), r) ≥ N ′ (α(x, y), r) (44)

for all r > 0 and all x, y ∈ X. Then the limit

Q2(y) = N − lim
k→∞

q(2βky)

22kβ
(45)

exists for all y ∈ X and the mapping Q2 : X → Y is a unique quadratic mapping such that

N (f(2y)− 16f(y)−Q2(y), r) ≥ min
{
N ′
(
α(y, y),

(22 − d)r

8

)
, N ′

(
α(2y, y),

(22 − d)r

4

)}
(46)

for all y ∈ X and all r > 0.

Proof. It is easy to see from (9) that

N (f(3y)− 6f(2y) + 15f(y), r) ≥ N ′ (α (y, y) , r) (47)

for all y ∈ X and all r > 0. Replacing x by 2y in (9), we obtain

N (f(4y)− 4f(3y) + 4f(2y) + 4f(y), r) ≥ N ′ (α (2y, y) , r) (48)

for all y ∈ X and all r > 0. It follows from (47) and (48) that

N (f(4y)− 20f(2y) + 64f(2y), r) ≥ min
{
N
(

4 (f(3y)− 24f(2y) + 60f(y)) ,
r

2

)
, N
(
f(4y)− 4f(3y) + 4f(2y) + 4f(y),

r

2

)}
≥ min

{
N ′
(
α(y, y),

r

8

)
, N ′

(
α(2y, y),

r

2

)}
(49)

for all y ∈ X and all r > 0. Let q2 : X → Y be a mapping defined by q2(y) = f(2y)− 16f(y). Then we conclude that

N (q2(2y)− 4q2(y), r) ≥ min
{
N ′
(
α(y, y),

r

8

)
, N ′

(
α(2y, y),

r

2

)}
(50)

for all y ∈ X and all r > 0. The rest of the proof is similar to that of Theorem 2.1.

The following corollary is an immediate consequence of Theorem 2.7 concerning the Ulam-Hyers stability of the functional

equation(1).

9



Generalized Hyers - Ulam Stability of Additive - Quadratic - Cubic - Quartic Functional Equation in Fuzzy Normed Spaces: A Direct Method

Corollary 2.8. Suppose that a function f : X → Y satisfies the inequality

N (Df(x, y), r) ≥



N ′ (ε, r) ,

N ′ (ε {||x||s + ||y||s} , r) , s 6= 2;

N ′ (ε {||x||s||y||s} , r) , s 6= 1;

N ′
(
ε
(
||x||s||y||s + ||x||2s + ||y||2s

)
, r
)
, s 6= 1;

(51)

for all x, y ∈ X and all r > 0, where ε, s are constants with ε > 0. Then there exists a unique quadratic mapping Q2 : X → Y

and a such that

N (f(2y)− 16f(y)−Q2(y), r) ≥



min

{
N ′
(
ε,

r

2| − 3|

)
, N ′

(
ε,

r

| − 3|

)}
min

{
N ′
(
ε

2s
||y||s, r

2|2s − 22|

)
, N ′

(
ε
1 + 2s

2s
||y||s, r

|2s − 22|

)}
min

{
N ′
(

ε

22s
||y||2s, r

2|22s − 22|

)
, N ′

(
ε

2s
||y||2s, r

|22s − 22|

)}
min

{
N ′
(

3ε

22s
||y||2s, r

2|22s − 22|

)
, N ′

(
ε

(
1 + 2s

2s
+

1

22s

)
||y||2s, r

|22s − 22|

)}
(52)

for all y ∈ X and all r > 0.

Theorem 2.9. Let β ∈ {−1, 1} be fixed and let α : X2 → Z be a mapping such that for some d with 0 <

(
d

24

)β
< 1

N ′
(
α
(

2βy, 2βy
)
, r
)
≥ N ′

(
dβα (y, y) , r

)
(53)

for all y ∈ X and all r > 0, d > 0, and

lim
k→∞

N ′
(
α
(

2βkx, 2βky
)
, 2βkr

)
= 1 (54)

for all x, y ∈ X and all r > 0. Suppose that a function f : X → Y satisfies the inequality

N (Df(x, y), r) ≥ N ′ (α(x, y), r) (55)

for all r > 0 and all x, y ∈ X. Then the limit

Q4(y) = N − lim
k→∞

q4(2βky)

24kβ
(56)

exists for all y ∈ X and the mapping Q4 : X → Y is a unique quartic mapping such that

N (f(2y)− 4f(y)−Q4(y), r) ≥ min
{
N ′
(
α(y, y),

(24 − d)r

8

)
, N ′

(
α(2y, y),

(24 − d)r

4

)}
(57)

for all y ∈ X and all r > 0.

Proof. It is easy to see from (49)

N (f(4y)− 4f(2y)− 16f(2y), r) ≥ min
{
N ′
(
α(y, y),

r

8

)
, N ′

(
α(2y, y),

r

2

)}
(58)

for all y ∈ X and all r > 0. Let q4 : X → Y be a mapping defined by q4(y) = f(2y)− 4f(y). Then we conclude that

N (q4(2y)− 16q4(y), r) ≥ min
{
N ′
(
α(y, y),

r

8

)
, N ′

(
α(2y, y),

r

2

)}
(59)

for all y ∈ X and all r > 0. The rest of the proof is similar to that of Theorem 2.1.

10
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The following corollary is an immediate consequence of Theorem 2.9 concerning the Ulam-Hyers stability of the functional

equation(1).

Corollary 2.10. Suppose that a function f : X → Y satisfies the inequality

N (Df(x, y), r) ≥



N ′ (ε, r) ,

N ′ (ε {||x||s + ||y||s} , r) , s 6= 4;

N ′ (ε {||x||s||y||s} , r) , s 6= 2;

N ′
(
ε
(
||x||s||y||s + ||x||2s + ||y||2s

)
, r
)
, s 6= 2;

(60)

for all x, y ∈ X and all r > 0, where ε, s are constants with ε > 0. Then there exists a unique quartic mapping Q4 : X → Y

such that

N (f(2y)− 4f(y)−Q4(y), r) ≥



min

{
N ′
(
ε,

2r

|15|

)
, N ′

(
ε,

4r

|15|

)}
min

{
N ′
(
ε

2s
||y||s, 2r

|2s − 24|

)
, N ′

(
ε
1 + 2s

2s
||y||s, 4r

|2s − 24|

)}
min

{
N ′
(

ε

22s
||y||2s, 2r

|22s − 24|

)
, N ′

(
ε

2s
||y||2s, 4r

|22s − 24|

)}
min

{
N ′
(

3ε

22s
||y||2s, 2r

|22s − 24|

)
, N ′

(
ε

(
1 + 2s

2s
+

1

22s

)
||y||2s, 4r

|22s − 24|

)}
(61)

for all y ∈ X and all r > 0.

Theorem 2.11. Let β ∈ {−1, 1} be fixed and let α : X2 → Z be a mapping such that for some d with the condition given

(42) and (53) and 0 <

(
d

22

)β
< 1, 0 <

(
d

24

)β
< 1. Suppose that a function f : X → Y satisfies the inequality

N (Df(x, y), r) ≥ N ′ (α(x, y), r) (62)

for all r > 0 and all x, y ∈ X. Then there exists a quadratic mapping Q2 : X → Y and unique quartic mapping Q4 : X → Y

satisfying the functional equation (1) and

N (f(y)−Q2(y)−Q4(y), r) ≥min

{
N ′
(
α(y, y),

(22 − d)r

8

)
, N ′

(
α(2y, y),

(22 − d)r

4

)
,

N ′
(
α(y, y),

(24 − d)r

8

)
, N ′

(
α(2y, y),

(24 − d)r

4

)}
(63)

for all y ∈ X and all r > 0.

Proof. By Theorems (??) and (??), there exists a unique quadratic function Q21 : X → Y and a unique quartic function

Q41 : X → Y such that

N (f(2y)− 16f(y)−Q21(y), r) ≥ min
{
N ′
(
α(y, y),

(22 − d)r

8

)
, N ′

(
α(2y, y),

(22 − d)r

4

)}
(64)

for all y ∈ X and all r > 0 and

N (f(2y)− 4f(y)−Q41(y), r) ≥ min
{
N ′
(
α(y, y),

(24 − d)r

8

)
, N ′

(
α(2y, y),

(24 − d)r

4

)}
(65)

for all y ∈ X and all r > 0. Now from (64) and (65), one can see that

N

(
f(y) +

1

12
Q21(y)− 1

12
Q41(y), 2r

)
≥ min

{
N

(
f(2y)

12
− 16

12
f(y)− 1

12
Q21(y),

r

12

)
, N

(
f(2y)

12
− 4

12
f(y)− 1

12
Q41(y),

r

12

)}
≥ min {N (f(2y)− 16f(y)−Q21(y), r) , N (f(2y)− 4f(y)−Q41(y), r)}

≥ min

{
N ′
(
α(y, y),

(22 − d)r

8

)
, N ′

(
α(2y, y),

(22 − d)r

4

)
, N ′

(
α(y, y),

(24 − d)r

8

)
, N ′

(
α(2y, y),

(24 − d)r

4

)}
11
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for all y ∈ X and all r > 0. Thus we obtain (37) by defining Q2(y) = −1
12
Q21(y) and Q4(y) = 1

12
Q41(y) for all y ∈ X and

all r > 0.

The following corollary is an immediate consequence of Theorem 2.11 concerning the Ulam-Hyers stability of the functional

equation(1).

Corollary 2.12. Suppose that a function f : X → Y satisfies the inequality

N (Df(x, y), r) ≥



N ′ (ε, r) ,

N ′ (ε {||x||s + ||y||s} , r) , s 6= 2, 4;

N ′ (ε {||x||s||y||s} , r) , s 6= 1, 2;

N ′
(
ε
(
||x||s||y||s + ||x||2s + ||y||2s

)
, r
)
, s 6= 1, 2;

(66)

for all x, y ∈ X and all r > 0, where ε, s are constants with ε > 0. Then there exists a unique quadratic mapping Q2 : X → Y

and a unique quartic mapping Q4 : X → Y such that

N (f(y)−Q2(y)−Q4(y), r) ≥



min
{
N ′
(
ε, r

2|3|

)
, N ′

(
ε, r|3|

)
, N ′

(
ε, 2r
|15|

)
, N ′

(
ε, 4r
|15|

)}
min

{
N ′
(
ε
2s
||y||s, r

2|2s−22|

)
, N ′

(
ε 1+2s

2s
||y||s, r

|2s−22|

)
,

N ′
(
ε
2s
||y||s, 2r

|2s−24|

)
, N ′

(
ε 1+2s

2s
||y||s, 4r

|2s−24|

)}
min

{
N ′
(

ε
22s
||y||2s, r

2|22s−22|

)
, N ′

(
ε
2s
||y||2s, r

|22s−22|

)
,

N ′
(

ε
22s
||y||2s, 2r

|22s−24|

)
, N ′

(
ε
2s
||y||2s, 4r

|22s−24|

)}
min

{
N ′
(

3ε
22s
||y||2s, r

2|22s−22|

)
, N ′

(
ε
(

1+2s

2s
+ 1

22s

)
||y||2s, r

|22s−22|

)
,

N ′
(

3ε
22s
||y||2s, 2r

|22s−24|

)
, N ′

(
ε
(

1+2s

2s
+ 1

22s

)
||y||2s, 4r

|22s−24|

)}

(67)

for all y ∈ X and all r > 0.

Theorem 2.13. Let β ∈ {−1, 1} be fixed and let α : X2 → Z be a mapping such that for some d with the condition given

(2), (27), (42), (53) and 0 <

(
d

2

)β
< 1, 0 <

(
d

22

)β
< 1, 0 <

(
d

23

)β
< 1 and 0 <

(
d

24

)β
< 1. Suppose that a function

f : X → Y satisfies the inequality

N (Df(x, y), r) ≥ N ′ (α(x, y), r) (68)

for all r > 0 and all x, y ∈ X. Then there exists a unique additive mapping A : X → Y , a unique quadratic mapping

Q2 : X → Y , a unique cubic cubic mapping C : X → Y and unique quartic mapping Q4 : X → Y satisfying the functional

equation (1) and

N (f(y)−A(y)−Q2(y)− C(y)−Q4(y), r)

≥ min

{
N ′
(
α(y, y),

(2− d)r

16

)
, N ′

(
α(−y,−y),

(2− d)r

16

)
, N ′

(
α(2y, y),

(2− d)r

8

)
,

N ′
(
α(−2y,−y),

(2− d)r

8

)
, N ′

(
α(y, y),

(23 − d)r

16

)
, N ′

(
α(−y,−y),

(23 − d)r

16

)
,

N ′
(
α(2y, y),

(23 − d)r

8

)
, N ′

(
α(−2y,−y),

(23 − d)r

8

)
, N ′

(
α(y, y),

(22 − d)r

16

)
,

N ′
(
α(−y,−y),

(22 − d)r

16

)
N ′
(
α(2y, y),

(22 − d)r

8

)
, N ′

(
α(−2y,−y),

(22 − d)r

8

)
,

N ′
(
α(y, y),

(24 − d)r

16

)
, N ′

(
α(−y,−y),

(24 − d)r

16

)
, N ′

(
α(2y, y),

(24 − d)r

8

)
, N ′

(
α(−2y,−y),

(24 − d)r

8

)}

for all y ∈ X and all r > 0.
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Proof. Let fac(y) = fo(y)−fo(−y)
2

for all y ∈ X. Then fac(0) = 0 and fo(−y) = −fo(y) for all y ∈ X. Hence

N (Dfac(x, y), r) ≥ min
{
N ′
(
α(x, y),

r

2

)
, N ′

(
α(−x,−y),

r

2

)}
(69)

for all y ∈ X and all r > 0. By Theorem (??), there exists a unique additive mapping A : X → Y and a unique cubic

mapping C : X → Y such that

N (fac(y)−A(y)− C(y), r) ≥ min

{
N ′
(
α(y, y),

(2− d)r

8

)
, N ′

(
α(−y,−y),

(2− d)r

8

)
, N ′

(
α(2y, y),

(2− d)r

4

)
,

N ′
(
α(−2y,−y),

(2− d)r

4

)
, N ′

(
α(y, y),

(23 − d)r

8

)
, N ′

(
α(−y,−y),

(23 − d)r

8

)
,

N ′
(
α(2y, y),

(23 − d)r

4

)
, N ′

(
α(−2y,−y),

(23 − d)r

4

)}
(70)

for all y ∈ X and all r > 0. Also, let fqq(y) = fe(y)+fe(−y)
2

for all y ∈ X. Then fqq(0) = 0 and fo(−y) = fo(y) for all y ∈ X.

Hence

N (Dfqq(x, y), r) ≥ min
{
N ′
(
α(x, y),

r

2

)
, N ′

(
α(−x,−y),

r

2

)}
(71)

for all y ∈ X and all r > 0. By Theorem (??), there exists a unique quadratic mapping Q2 : X → Y , and a unique quartic

mapping Q4 : X → Y such that

N (fqq(y)−Q2(y)−Q4(y), r) ≥ min

{
N ′
(
α(y, y),

(22 − d)r

8

)
, N ′

(
α(−y,−y),

(22 − d)r

8

)
, N ′

(
α(2y, y),

(22 − d)r

4

)
,

N ′
(
α(−2y,−y),

(22 − d)r

4

)
, N ′

(
α(y, y),

(24 − d)r

8

)
, N ′

(
α(−y,−y),

(24 − d)r

8

)
,

N ′
(
α(2y, y),

(24 − d)r

4

)
, N ′

(
α(−2y,−y),

(24 − d)r

4

)}
(72)

for all y ∈ X and all r > 0. Define a function f(y) by

f(y) = fac(y) + fqq(y) (73)

for all y ∈ X. Combining (73), (70) and (72) we arrive our result.

Corollary 2.14. Suppose that a function f : X → Y satisfies the inequality

N (Df(x, y), r) ≥



N ′ (ε, r) ,

N ′ (ε {||x||s + ||y||s} , r) , s 6= 1, 3, 2, 4;

N ′ (ε {||x||s||y||s} , r) , s 6= 1
2
, 3
2
, 2, 4;

N ′
(
ε
(
||x||s||y||s + ||x||2s + ||y||2s

)
, r
)
, s 6= 1

2
, 3
2
, 2, 4;

(74)

for all x, y ∈ X and all r > 0, where ε, s are constants with ε > 0. Then there exists a unique additive mapping A : X → Y

and a unique Cubic mapping C : X → Y , a unique quadratic mapping Q2 : X → Y and a unique quartic mapping

13
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Q4 : X → Y such that

N (f(x)−A(x)−Q2(x)− C(x)−Q4(x), r)

≥



(i)N ′
(
ε, |2|r

8

)
, N ′

(
ε, |2|r

4

)
, N ′

(
ε, r|7|

)
, N ′

(
ε, 2r
|7|

)
, N ′

(
ε, r

2|3|

)
, N ′

(
ε, r|3|

)
,

N ′
(
ε, 2r
|15|

)
, N ′

(
ε, 4r
|15|

)
(ii)N ′

(
ε
2s
||y||s, r

4|2s−2|

)
, N ′

(
ε 1+2s

2s
||y||s, r

2|2s−2|

)
, N ′

(
ε
2s
||y||s, r

|2s−23|

)
,

N ′
(
ε 1+2s

2s
||y||s, 2r

|2s−23|

)
, N ′

(
ε
2s
||y||s, r

2|2s−22|

)
, N ′

(
ε 1+2s

2s
||y||s, r

|2s−22|

)
,

N ′
(
ε
2s
||y||s, 2r

|2s−24|

)
, N ′

(
ε 1+2s

2s
||y||s, 4r

|2s−24|

)
(iii)N ′

(
ε

22s
||y||2s, r

4|22s−2|

)
, N ′

(
ε
2s
||y||2s, r

2|22s−2|

)
, N ′

(
ε

22s
||y||2s, r

|22s−23|

)
,

N ′
(
ε
2s
||y||2s, r

2|22s−23|

)
, N ′

(
ε

22s
||y||2s, r

2|22s−22|

)
, N ′

(
ε
2s
||y||2s, r

|22s−22|

)
,

N ′
(

ε
22s
||y||2s, 2r

|22s−24|

)
, N ′

(
ε
2s
||y||2s, 4r

|22s−24|

)
(iv)N ′

(
3ε
22s
||y||2s, r

4|22s−2|

)
, N ′

(
ε
(

1+2s

2s
+ 1

22s

)
||y||2s, r

2|22s−2|

)
,

N ′
(

3ε
22s
||y||2s, r

|22s−23|

)
, N ′

(
ε
(

1+2s

2s
+ 1

22s

)
||y||2s, 2r

|22s−23|

)
,

N ′
(

3ε
22s
||y||2s, r

2|22s−22|

)
, N ′

(
ε
(

1+2s

2s
+ 1

22s

)
||y||2s, r

|22s−22|

)
,

N ′
(

3ε
22s
||y||2s, 2r

|22s−24|

)
, N ′

(
ε
(

1+2s

2s
+ 1

22s

)
||y||2s, 4r

|22s−24|

)

(75)

for all y ∈ X and all r > 0.
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