International Journal of Mathematics And its Applications

Generalized Hyers - Ulam Stability of Additive Quadratic - Cubic - Quartic Functional Equation in Fuzzy Normed Spaces: A Direct Method

Research Article*

M.Arunkumar ${ }^{1}$ and C.Devi Shyamala Mary ${ }^{2}$
1 Department of Mathematics, Government Arts College, Tiruvannamalai, Tamil Nadu, India.
2 Department of Mathematics, St.Joseph's College of Arts and Science, Cuddalore, TamilNadu, India.

Abstract: In this paper, the authors investigate the generalized Hyers-Ulam-stability of AQCQ functional equation

$$
f(x+2 y)+f(x-2 y)=4 f(x+y)-4 f(x-y)-6 f(x)+f(2 y)+f(-2 y)-4 f(y)-4 f(-y)
$$

in fuzzy normed spaces using direct method.
MSC: $39 \mathrm{~B} 52,39 \mathrm{~B} 82,26 \mathrm{E} 50,46 \mathrm{~S} 50$.
Keywords: Fuzzy normed space, Additive, quadratic, cubic and quartic functional equation, Generalized Hyers-Ulam-Rassias stability. (c) JS Publication.

1. Introduction and Preliminaries

The stability problem of functional equations originated from a question of S.M. Ulam [40] concerning the stability of group homomorphisms. D.H. Hyers [15] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers' theorem was generalized by T. Aoki [2] for additive mappings and by Th.M. Rassias [35] for linear mappings by considering an unbounded Cauchy difference. The paper of Th.M. Rassias [35] has provided a lot of influence in the development of what we call generalized Hyers-Ulam stability of functional equations. A generalization of the Th.M. Rassias theorem was obtained by P. Gavruta [14] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias approach. In 1982, J.M. Rassias [32] followed the innovative approach of the Th.M. Rassias theorem [35] in which he replaced the factor $\|x\|^{p}+\|y\|^{p}$ by $\|x\|^{p}\|y\|^{q}$ for $p, q \in R$ with $p+q=1$.

In 2008, a special case of Gavruta's theorem for the unbounded Cauchy difference was obtained by Ravi etal., [37] by considering the summation of both the sum and the product of two $p-$ norms in the sprit of Rassias approach. The stability problems of several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem (see $[1,12,16,20]$).
A.K. Katsaras [22] defined a fuzzy norm on a vector space to construct a fuzzy vector topological structure on the space.

[^0]Some mathematicians have defined fuzzy norms on a vector space from various points of view [13, 24, 41]. In particular, T. Bag and S.K. Samanta [8], following S.C. Cheng and J.N. Mordeson [10], gave an idea of fuzzy norm in such a manner that the corresponding fuzzy metric is of Kramosil and Michalek type [23]. They established a decomposition theorem of a fuzzy norm into a family of crisp norms and investigated some properties of fuzzy normed spaces [9]. We use the definition of fuzzy normed spaces given in [8] and [27-30].

Definition 1.1. Let X be a real linear space. A function $N: X \times \mathbb{R} \rightarrow[0,1]$ (the so-called fuzzy subset) is said to be a fuzzy norm on X if for all $x, y \in X$ and all $s, t \in \mathbb{R}$,
(F1) $\quad N(x, c)=0$ for $c \leq 0$;
(F2) $\quad x=0$ if and only if $N(x, c)=1$ for all $c>0$;
(F3) $\quad N(c x, t)=N\left(x, \frac{t}{|c|}\right)$ if $c \neq 0$;
$(F 4) \quad N(x+y, s+t) \geq \min \{N(x, s), N(y, t)\} ;$
(F5) $\quad N(x, \cdot)$ is a non-decreasing function on \mathbb{R} and $\lim _{t \rightarrow \infty} N(x, t)=1$;
(F6) for $x \neq 0, N(x, \cdot)$ is (upper semi) continuous on \mathbb{R}.
The pair (X, N) is called a fuzzy normed linear space. One may regard $N(X, t)$ as the truth-value of the statement the norm of x is less than or equal to the real number t^{\prime}.

Example 1.2. Let $(X,\|\cdot\|)$ be a normed linear space. Then

$$
N(x, t)= \begin{cases}\frac{t}{t+\|x\|}, & t>0, \\ x \in X \\ 0, & t \leq 0, \quad x \in X\end{cases}
$$

is a fuzzy norm on X.

Definition 1.3. Let (X, N) be a fuzzy normed linear space. Let x_{n} be a sequence in X. Then x_{n} is said to be convergent if there exists $x \in X$ such that $\lim _{n \rightarrow \infty} N\left(x_{n}-x, t\right)=1$ for all $t>0$. In that case, x is called the limit of the sequence x_{n} and we denote it by $N-\lim _{n \rightarrow \infty} x_{n}=x$.

Definition 1.4. A sequence x_{n} in X is called Cauchy if for each $\epsilon>0$ and each $t>0$ there exists n_{0} such that for all $n \geq n_{0}$ and all $p>0$, we have $N\left(x_{n+p}-x_{n}, t\right)>1-\epsilon$.

Definition 1.5. Every convergent sequence in a fuzzy normed space is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be complete and the fuzzy normed space is called a fuzzy Banach space.

The stability of various functional equations in fuzzy normed spaces was investigated in $[3,4,6,17,26-30,38]$. In this paper, the authors investigate the generalized Hyers-Ulam-Aoki-Rassias stability AQCQ functional equation

$$
\begin{equation*}
f(x+2 y)+f(x-2 y)=4 f(x+y)-4 f(x-y)-6 f(x)+f(2 y)+f(-2 y)-4 f(y)-4 f(-y) \tag{1}
\end{equation*}
$$

in the fuzzy normed vector space by direct method.

2. Fuzzy Stability Results: Direct Method

Throughout this section, assume that $X,\left(Z, N^{\prime}\right)$ and $\left(Y, N^{\prime}\right)$ are linear space, fuzzy normed space and fuzzy Banach space, respectively. Now use the following notation for a given mapping $f: X \rightarrow Y$

$$
D f(x, y)=f(x+2 y)+f(x-2 y)-4 f(x+y)+4 f(x-y)+6 f(x)-f(2 y)-f(-2 y)+4 f(y)+4 f(-y)
$$

for all $x, y \in X$. Now, we investigate the generalized Ulam-Hyers stability of AQCQ functional equation (1).
Theorem 2.1. Let $\beta \in\{-1,1\}$ be fixed and let $\alpha: X^{2} \rightarrow Z$ be a mapping such that for some d with $0<\left(\frac{d}{2}\right)^{\beta}<1$

$$
\begin{equation*}
N^{\prime}\left(\alpha\left(2^{\beta} y, 2^{\beta} y\right), r\right) \geq N^{\prime}\left(d^{\beta} \alpha(y, y), r\right) \tag{2}
\end{equation*}
$$

for all $y \in X$ and all $r>0, d>0$, and

$$
\begin{equation*}
\lim _{k \rightarrow \infty} N^{\prime}\left(\alpha\left(2^{\beta k} x, 2^{\beta k} y\right), 2^{\beta k} r\right)=1 \tag{3}
\end{equation*}
$$

for all $x, y \in X$ and all $r>0$. Suppose that a function $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
N(D f(x, y), r) \geq N^{\prime}(\alpha(x, y), r) \tag{4}
\end{equation*}
$$

for all $r>0$ and all $x, y \in X$. Then the limit

$$
\begin{equation*}
A(y)=N-\lim _{k \rightarrow \infty} \frac{f\left(2^{\beta k} y\right)}{2^{\beta k}} \tag{5}
\end{equation*}
$$

exists for all $y \in X$ and the mapping $A: X \rightarrow Y$ is a unique additive mapping such that

$$
\begin{equation*}
N(f(2 y)-8 f(y)-A(y), r) \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{(2-d) r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{(2-d) r}{4}\right)\right\} \tag{6}
\end{equation*}
$$

for all $y \in X$ and all $r>0$.

Proof. First assume $\beta=1$. Replacing (x, y) by (y, y) in (4), we get

$$
\begin{equation*}
N(f(3 y)-4 f(2 y)+5 f(y), r) \geq N^{\prime}(\alpha(y, y), r) \tag{7}
\end{equation*}
$$

for all $y \in X$ and all $r>0$. Replacing x by $2 y$ in (4), we obtain

$$
\begin{equation*}
N(f(4 y)-4 f(3 y)+6 f(2 y)-4 f(y), r) \geq N^{\prime}(\alpha(2 y, y), r) \tag{8}
\end{equation*}
$$

for all $y \in X$ and all $r>0$. Now, from (7) and (8), we have

$$
\begin{align*}
N(f(4 y)-10 f(2 y)+16 f(y), r) & \geq \min \left\{N\left(4(f(3 y)-4 f(2 y)+5 f(y)), \frac{r}{2}\right), N\left(f(4 y)-4 f(3 y)+6 f(2 y)-4 f(y), \frac{r}{2}\right)\right\} \\
& \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{r}{2}\right)\right\} \tag{9}
\end{align*}
$$

for all $y \in X$ and all $r>0$. Let $a: X \rightarrow Y$ be a mapping defined by $a(y)=f(2 y)-8 f(y)$. Then we conclude that

$$
\begin{equation*}
N(a(2 y)-2 a(y), r) \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{r}{2}\right)\right\} \tag{10}
\end{equation*}
$$

for all $y \in X$ and all $r>0$. Thus, we have

$$
\begin{equation*}
N\left(\frac{a(2 y)}{2}-a(y), \frac{r}{2}\right) \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{r}{4}\right)\right\} \tag{11}
\end{equation*}
$$

for all $y \in X$ and all $r>0$. Replace y by $2^{k} y$ in (11), we get

$$
\begin{equation*}
N\left(\frac{a\left(2^{k+1} y\right)}{2^{k+1}}-\frac{f\left(2^{k} y\right)}{2^{k}}, \frac{r}{2^{k} 2}\right) \geq \min \left\{N^{\prime}\left(\alpha\left(2^{k} y, 2^{k} y\right), \frac{r}{8}\right), N^{\prime}\left(\alpha\left(2^{k+1} y, 2^{k} y\right), \frac{r}{4}\right)\right\} \tag{12}
\end{equation*}
$$

for all $y \in X$ and all $r>0$. Using (2), (F3) in (12), we arrive

$$
\begin{equation*}
N\left(\frac{a\left(2^{k+1} y\right)}{2^{k+1}}-\frac{a\left(2^{k} y\right)}{2^{k}}, \frac{r}{2^{k} 2}\right) \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{r}{8 d^{k}}\right), N^{\prime}\left(\alpha(2 y, y), \frac{r}{4 d^{k}}\right)\right\} \tag{13}
\end{equation*}
$$

for all $y \in X$ and all $r>0$. Replacing r by $d^{k} r$ in (13), we get

$$
\begin{equation*}
N\left(\frac{a\left(2^{k+1} y\right)}{2^{k+1}}-\frac{a\left(2^{k} y\right)}{2^{k}}, \frac{d^{k} r}{2^{k} 2}\right) \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{r}{4}\right)\right\} \tag{14}
\end{equation*}
$$

for all $y \in X$ and all $r>0$. It is easy to see that

$$
\begin{equation*}
\frac{a\left(2^{k} y\right)}{2^{k}}-a(y)=\sum_{i=0}^{k-1}\left[\frac{a\left(2^{i+1} y\right)}{2^{i+1}}-\frac{a\left(2^{i} y\right)}{2^{i}}\right] \tag{15}
\end{equation*}
$$

for all $y \in X$. From equations (14) and (15), we have

$$
\begin{align*}
N\left(\frac{a\left(2^{k} y\right)}{2^{k}}-a(y), \sum_{i=0}^{k-1} \frac{d^{i} r}{2^{i} 2}\right) & \geq \min \bigcup_{i=0}^{k-1} N\left\{\frac{a\left(2^{i+1} y\right)}{2^{i+1}}-\frac{a\left(2^{i} y\right)}{2^{i}}, \sum_{i=0}^{k-1} \frac{d^{i} r}{2^{i} 2}\right\} \\
& \geq \min \bigcup_{i=0}^{k-1}\left\{N^{\prime}\left(\alpha(y, y), \frac{r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{r}{4}\right)\right\} \\
& \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{r}{4}\right)\right\} \tag{16}
\end{align*}
$$

for all $y \in X$ and all $r>0$. Replacing x by $2^{m} x$ in (16) and using (2), (F3), we obtain

$$
\begin{equation*}
N\left(\frac{a\left(2^{k+m} x\right)}{2^{(k+m)}}-\frac{a\left(2^{m} x\right)}{2^{m}}, \sum_{i=0}^{k-1} \frac{d^{i} r}{2^{i+m} 2}\right) \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{r}{8 d^{m}}\right), N^{\prime}\left(\alpha(2 y, y), \frac{r}{4 d^{m}}\right)\right\} \tag{17}
\end{equation*}
$$

for all $y \in X$ and all $r>0$ and all $m, k \geq 0$. Replacing r by $d^{m} r$ in (17), we get

$$
\begin{equation*}
N\left(\frac{a\left(2^{k+m} y\right)}{2^{(k+m)}}-\frac{a\left(2^{m} y\right)}{2^{m}}, \sum_{i=0}^{m+k-1} \frac{d^{i+m} r}{2^{i+m} 2}\right) \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{r}{4}\right)\right\} \tag{18}
\end{equation*}
$$

for all $y \in X$ and all $r>0$ and all $m, k \geq 0$. Using (F3) in (18), we obtain

$$
\begin{equation*}
N\left(\frac{a\left(2^{k+m} y\right)}{2^{(k+m)}}-\frac{a\left(2^{m} y\right)}{2^{m}}, r\right) \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{r}{8 \sum_{i=m}^{m+k-1} \frac{d^{i}}{2^{i} 2}}\right), N^{\prime}\left(\alpha(2 y, y), \frac{r}{4 \sum_{i=m}^{m+k-1} \frac{d^{i}}{2^{i} 2}}\right)\right\} \tag{19}
\end{equation*}
$$

for all $y \in X$ and all $r>0$ and all $m, k \geq 0$. Since $0<d<2$ and $\sum_{i=0}^{k}\left(\frac{d}{2}\right)^{i}<\infty$, the cauchy criterion for convergence and (F5) implies that $\left\{\frac{a\left(2^{k} y\right)}{2^{k}}\right\}$ is a Cauchy sequence in (Y, N). Since (Y, N) is a fuzzy Banach space, this sequence converges to some point $A(y) \in Y$. So one can define the mapping $A: X \rightarrow Y$ by $A(y)=N-\lim _{k \rightarrow \infty} \frac{a\left(2^{k} y\right)}{2^{k}}$ for all $y \in X$. Letting $m=0$ in (19), we get

$$
\begin{equation*}
N\left(\frac{a\left(2^{k} y\right)}{2^{k}}-a(y), r\right) \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{r}{8 \sum_{i=0}^{k-1} \frac{d^{i}}{2^{i} 2}}\right), N^{\prime}\left(\alpha(2 y, y), \frac{r}{4 \sum_{i=0}^{k-1} \frac{d^{i}}{2^{i} 2}}\right)\right\} \tag{20}
\end{equation*}
$$

for all $y \in X$ and all $r>0$. Letting $k \rightarrow \infty$ in (20) and using ($F 6$), we arrive

$$
N(a(y)-A(y), r) \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{(2-d) r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{(2-d) r}{4}\right)\right\}
$$

for all $y \in X$ and all $r>0$. To prove A satisfies the (1), replacing (x, y) by $\left(2^{k} x, 2^{k} y\right)$ in (4), respectively, we obtain

$$
\begin{equation*}
N\left(\frac{1}{2^{k}} D f\left(2^{k} x, 2^{k} y\right), r\right) \geq N^{\prime}\left(\alpha\left(2^{k} x, 2^{k} y\right), 2^{k} r\right) \tag{21}
\end{equation*}
$$

for all $r>0$ and all $x, y \in X$. Now,

$$
\begin{align*}
N(A(x+2 y) & +A(x-2 y)-4 A(x+y)+4 A(x-y)+6 A(x)-A(2 y)-A(-2 y)+4 A(y)+4 A(-y), r) \\
\geq \min \{ & N\left(A(x+2 y)-\frac{1}{2^{k}} f(x+2 y), \frac{r}{10}\right), N\left(A(x-2 y)-\frac{1}{2^{k}} f(x-2 y), \frac{r}{10}\right), \\
& N\left(-4 A(x+y)+4 \frac{1}{2^{k}} f(x+y), \frac{r}{10}\right), N\left(4 A(x-y)-4 \frac{1}{2^{k}} f(x-y), \frac{r}{10}\right), \\
& N\left(6 A(x)-6 \frac{1}{2^{k}} f(x), \frac{r}{10}\right), N\left(-A(2 y)+\frac{1}{2^{k}} f(2 y), \frac{r}{10}\right), \\
& N\left(-A(-2 y)+\frac{1}{2^{k}} f(-2 y), \frac{r}{10}\right), N\left(4 A(y)-4 \frac{1}{2^{k}} f(y), \frac{r}{10}\right), \\
& N\left(4 A(-y)-4 \frac{1}{2^{k}} f(-y), \frac{r}{10}\right), N\left(\frac{1}{2^{k}} f(x+2 y)+\frac{1}{2^{k}} f(x-2 y)-\frac{1}{2^{k}} 4 f(x+y)\right. \\
& \left.\left.+\frac{1}{2^{k}} 4 f(x-y)+\frac{1}{2^{k}} 6 f(x)-\frac{1}{2^{k}} f(2 y)-\frac{1}{2^{k}} f(-2 y)+\frac{1}{2^{k}} 4 f(y)+\frac{1}{2^{k}} 4 f(-y), \frac{r}{10}\right)\right\} \tag{22}
\end{align*}
$$

for all $x, y \in X$ and all $r>0$. Using (21) and (F5) in (22), we arrive

$$
\begin{align*}
& N(A(x+2 y)+A(x-2 y)-4 A(x+y)+4 A(x-y)+6 A(x)-A(2 y)-A(-2 y)+4 A(y)+4 A(-y), r) \\
& \quad \geq \min \left\{1,1,1,1,1,1,1,1,1,\left\{N^{\prime}\left(\alpha\left(2^{k} y, 2^{k} y\right), \frac{(2-d) 2^{k} r}{8}\right), N^{\prime}\left(\alpha\left(2.2^{k} y, 2^{k} y\right), \frac{(2-d) 2^{k} r}{4}\right)\right\}\right\} \\
& \quad \geq \min \left\{N^{\prime}\left(\alpha\left(2^{k} y, 2^{k} y\right), \frac{(2-d) 2^{k} r}{8}\right), N^{\prime}\left(\alpha\left(2.2^{k} y, 2^{k} y\right), \frac{(2-d) r}{42^{k}}\right)\right\} \tag{23}
\end{align*}
$$

for all $x, y \in X$ and all $r>0$. Letting $k \rightarrow \infty$ in (23) and using (3), we see that

$$
\begin{equation*}
N(A(x+2 y)+A(x-2 y)-4 A(x+y)+4 A(x-y)+6 A(x)-A(2 y)-A(-2 y)+4 A(y)+4 A(-y), r)=1 \tag{24}
\end{equation*}
$$

for all $x, y \in X$ and all $r>0$. Using (F2) in the above inequality gives

$$
A(x+2 y)+A(x-2 y)=4 A(x+y)-4 A(x-y)-6 A(x)+A(2 y)+A(-2 y)-4 A(y)-4 A(-y)
$$

for all $x, y \in X$. Hence A satisfies the cubic functional equation (1). In order to prove $A(y)$ is unique, let $A^{\prime}(y)$ be another additive functional equation satisfying (1) and (6). Hence,

$$
\begin{aligned}
N\left(A(y)-A^{\prime}(y), r\right) & \geq \min \left\{N\left(\frac{A\left(2^{k} y\right)}{2^{k}}-\frac{f\left(2^{k} y\right)}{2^{k}}, \frac{r}{2}\right), N\left(\frac{f\left(2^{k} y\right)}{2^{k}}-\frac{A\left(2^{k} y\right)}{2^{k}}, \frac{r}{2}\right)\right\} \\
& \geq \min \left\{N^{\prime}\left(\alpha\left(2^{k} y, 2^{k} y\right), \frac{2^{k}(2-d) r}{8}\right), N^{\prime}\left(\alpha\left(2^{k} 2 y, 2^{k} y\right), \frac{2^{k}(2-d) r}{4}\right)\right\} \\
& \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{2^{k}(2-d) r}{8 d^{k}}\right), N^{\prime}\left(\alpha(2 y, y), \frac{2^{k}(2-d) r}{4 d^{k}}\right)\right\}
\end{aligned}
$$

for all $y \in X$ and all $r>0$. Since

$$
\lim _{k \rightarrow \infty} \frac{2^{k}(2-d) r}{8 d^{k}}=\infty \text { and } \lim _{k \rightarrow \infty} \frac{2^{k}(2-d) r}{4 d^{k}}=\infty
$$

we obtain

$$
\lim _{k \rightarrow \infty} N^{\prime}\left(\alpha(y, y), \frac{2^{k}(2-d) r}{8 d^{k}}\right)=1 \text { and } \lim _{k \rightarrow \infty} N^{\prime}\left(\alpha(2 y, y), \frac{2^{k}(2-d) r}{4 d^{k}}\right)=1
$$

for all $y \in X$ and all $r>0$. Thus

$$
N\left(A(y)-A^{\prime}(y), r\right)=1
$$

for all $y \in X$ and all $r>0$, hence $A(y)=A^{\prime}(y)$. Therefore $A(y)$ is unique. For $\beta=-1$, we can prove the result by a similar method.

From Theorem 2.1, we obtain the following corollaries concerning the Hyers-Ulam-Rassias and JMRassias stabilities for the functional equation (1).

Corollary 2.2. Suppose that a function $f: X \rightarrow Y$ satisfies the inequality

$$
N(D f(x, y), r) \geq \begin{cases}N^{\prime}(\epsilon, r), & s \neq 1 \tag{25}\\ N^{\prime}\left(\epsilon\left\{\|x\|^{s}+\|y\|^{s}\right\}, r\right), & s \neq \frac{1}{2} \\ N^{\prime}\left(\epsilon\left\{\|x\|^{s}\|y\|^{s}\right\}, r\right), & s \neq \frac{1}{2}\end{cases}
$$

for all $x, y \in X$ and all $r>0$, where ϵ, s are constants with $\epsilon>0$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that
for all $y \in X$ and all $r>0$.
Theorem 2.3. Let $\beta \in\{-1,1\}$ be fixed and let $\alpha: X^{2} \rightarrow Z$ be a mapping such that for some d with $0<\left(\frac{d}{2^{3}}\right)^{\beta}<1$

$$
\begin{equation*}
N^{\prime}\left(\alpha\left(2^{\beta} y, 2^{\beta} y\right), r\right) \geq N^{\prime}\left(d^{\beta} \alpha(y, y), r\right) \tag{27}
\end{equation*}
$$

for all $y \in X$ and all $r>0, d>0$, and

$$
\begin{equation*}
\lim _{k \rightarrow \infty} N^{\prime}\left(\alpha\left(2^{\beta k} x, 2^{\beta k} y\right), 2^{\beta k} r\right)=1 \tag{28}
\end{equation*}
$$

for all $x, y \in X$ and all $r>0$. Suppose that a function $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
N(D f(x, y), r) \geq N^{\prime}(\alpha(x, y), r) \tag{29}
\end{equation*}
$$

for all $r>0$ and all $x, y \in X$. Then the limit

$$
\begin{equation*}
C(y)=N-\lim _{k \rightarrow \infty} \frac{a\left(2^{\beta k} y\right)}{2^{3 k \beta}} \tag{30}
\end{equation*}
$$

exists for all $y \in X$ and the mapping $C: X \rightarrow Y$ is a unique cubic mapping such that

$$
\begin{equation*}
N(f(2 y)-2 f(y)-C(y), r) \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{\left(2^{3}-d\right) r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{\left(2^{3}-d\right) r}{4}\right)\right\} \tag{31}
\end{equation*}
$$

for all $y \in X$ and all $r>0$.
Proof. It is easy to see from (9) that

$$
\begin{align*}
N(f(4 y)-2 f(2 y)-8 f(2 y), r) & \geq \min \left\{N\left(4(f(3 y)-4 f(2 y)+5 f(y)), \frac{r}{2}\right), N\left(f(4 y)-4 f(3 y)+6 f(2 y)-4 f(y), \frac{r}{2}\right)\right\} \\
& \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{r}{2}\right)\right\} \tag{32}
\end{align*}
$$

for all $y \in X$ and all $r>0$. Let $h: X \rightarrow Y$ be a mapping defined by $h(y)=f(2 y)-2 f(y)$. Then we conclude that

$$
\begin{equation*}
N(h(2 y)-8 h(y), r) \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{r}{2}\right)\right\} \tag{33}
\end{equation*}
$$

for all $y \in X$ and all $r>0$. The rest of the proof is similar to that of Theorem 2.1.

The following corollary is an immediate consequence of Theorem 2.3 concerning the Ulam-Hyers stability of the functional equation(1).

Corollary 2.4. Suppose that a function $f: X \rightarrow Y$ satisfies the inequality

$$
N(D f(x, y), r) \geq \begin{cases}N^{\prime}(\epsilon, r), & s \neq 3 \tag{34}\\ N^{\prime}\left(\epsilon\left\{\|x\|^{s}+\|y\|^{s}\right\}, r\right), & s \neq \frac{3}{2} \\ N^{\prime}\left(\epsilon\left\{\|x\|^{s}\|y\|^{s}\right\}, r\right), & s \neq \frac{3}{2}\end{cases}
$$

for all $x, y \in X$ and all $r>0$, where ϵ,s are constants with $\epsilon>0$. Then there exists a unique Cubic mapping $C: X \rightarrow Y$ such that
for all $y \in X$ and all $r>0$.

Theorem 2.5. Let $\beta \in\{-1,1\}$ be fixed and let $\alpha: X^{2} \rightarrow Z$ be a mapping such that for some d with the condition given (2) and (27) and $0<\left(\frac{d}{2}\right)^{\beta}<1,0<\left(\frac{d}{2^{3}}\right)^{\beta}<1$. Suppose that a function $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
N(D f(x, y), r) \geq N^{\prime}(\alpha(x, y), r) \tag{36}
\end{equation*}
$$

for all $r>0$ and all $x, y \in X$. Then there exists a additive mapping $A: X \rightarrow Y$ and unique cubic mapping $C: X \rightarrow Y$ satisfying the functional equation (1) and

$$
\begin{gather*}
N(f(y)-A(y)-C(y), r) \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{(2-d) r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{(2-d) r}{4}\right), N^{\prime}\left(\alpha(y, y), \frac{\left(2^{3}-d\right) r}{8}\right),\right. \\
\left.N^{\prime}\left(\alpha(2 y, y), \frac{\left(2^{3}-d\right) r}{4}\right)\right\} \tag{37}
\end{gather*}
$$

for all $y \in X$ and all $r>0$.
Proof. By Theorems 2.1 and 2.3, there exists a unique additive function $A_{1}: X \rightarrow Y$ and a unique cubic function $C_{1}: X \rightarrow Y$ such that

$$
\begin{equation*}
N\left(f(2 y)-8 f(y)-A_{1}(y), r\right) \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{(2-d) r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{(2-d) r}{4}\right)\right\} \tag{38}
\end{equation*}
$$

for all $y \in X$ and all $r>0$ and

$$
\begin{equation*}
N\left(f(2 y)-2 f(y)-C_{1}(y), r\right) \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{\left(2^{3}-d\right) r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{\left(2^{3}-d\right) r}{4}\right)\right\} \tag{39}
\end{equation*}
$$

for all $y \in X$ and all $r>0$. Now from (38) and (39), one can see that

$$
\begin{aligned}
& N\left(f(y)+\frac{1}{6} A_{1}(y)-\frac{1}{6} C_{1}(y), 2 r\right) \geq \min \left\{N\left(\frac{f(2 y)}{6}-\frac{8}{6} f(y)-\frac{1}{6} A_{1}(y), \frac{r}{6}\right), N\left(\frac{f(2 y)}{6}-\frac{2}{6} f(y)-\frac{1}{6} C_{1}(y), \frac{r}{6}\right)\right\} \\
& \geq \min \left\{N\left(f(2 y)-8 f(y)-A_{1}(y), r\right), N\left(f(2 y)-2 f(y)-C_{1}(y), r\right)\right\} \\
& \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{(2-d) r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{(2-d) r}{4}\right), N^{\prime}\left(\alpha(y, y), \frac{\left(2^{3}-d\right) r}{8}\right),\right. \\
&\left.N^{\prime}\left(\alpha(2 y, y), \frac{\left(2^{3}-d\right) r}{4}\right)\right\}
\end{aligned}
$$

for all $y \in X$ and all $r>0$. Thus we obtain (37) by defining $A(y)=\frac{-1}{6} A_{1}(y)$ and $C(y)=\frac{1}{6} C_{1}(y)$ for all $y \in X$ and all $r>0$.

The following corollary is an immediate consequence of Theorem 2.5 concerning the Ulam-Hyers stability of the functional equation(1).

Corollary 2.6. Suppose that a function $f: X \rightarrow Y$ satisfies the inequality

$$
N(D f(x, y), r) \geq \begin{cases}N^{\prime}(\epsilon, r), & s \neq 1,3 \tag{40}\\ N^{\prime}\left(\epsilon\left\{\|x\|^{s}+\|y\|^{s}\right\}, r\right), & s \neq \frac{1}{2}, \frac{3}{2} \\ N^{\prime}\left(\epsilon\left\{\|x\|^{s}\|y\|^{s}\right\}, r\right), & s \neq \frac{1}{2}, \frac{3}{2}\end{cases}
$$

for all $x, y \in X$ and all $r>0$, where ϵ, s are constants with $\epsilon>0$. Then there exists a unique additive mapping $A: X \rightarrow Y$ and a unique Cubic mapping $C: X \rightarrow Y$ such that

$$
N(f(x)-A(x)-C(x), r) \geq\left\{\begin{array}{c}
\min \left\{N^{\prime}\left(\epsilon, \frac{|2| r}{8}\right), N^{\prime}\left(\epsilon, \frac{|2| r}{4}\right), N^{\prime}\left(\epsilon, \frac{r}{|7|}\right), N^{\prime}\left(\epsilon, \frac{2 r}{|7|}\right)\right\} \tag{41}\\
\min \left\{N^{\prime}\left(\frac{\epsilon}{2^{s}}\|y\|^{s}, \frac{r}{4\left|2^{2 s}-2\right|}\right), N^{\prime}\left(\epsilon \frac{1+2^{s}}{2^{s}}\|y\|^{s}, \frac{r}{2\left|2^{s}-2\right|}\right),\right. \\
\left.N^{\prime}\left(\frac{\epsilon}{2^{s}}\|y\|^{s}, \frac{r}{\left|2^{s}-2^{3}\right|}\right), N^{\prime}\left(\epsilon \frac{1+2^{s}}{2^{s}}\|y\|^{s}, \frac{2 r}{\left|2^{s}-2^{3}\right|}\right)\right\} \\
\min \left\{N^{\prime}\left(\frac{\epsilon}{2^{2 s}}\|y\|^{2 s}, \frac{r}{4\left|2^{2 s}-2\right|}\right), N^{\prime}\left(\frac{\epsilon}{2^{s}}\|y\|^{2 s}, \frac{r}{2\left|2^{2 s}-2\right|}\right),\right. \\
\left.N^{\prime}\left(\frac{\epsilon}{2^{2 s}}\|y\|^{2 s}, \frac{r}{\left|2^{2 s}-2^{3}\right|}\right), N^{\prime}\left(\frac{\epsilon}{2^{s}}\|y\|^{2 s}, \frac{r}{2\left|2^{2 s}-2^{3}\right|}\right)\right\} \\
\min \left\{N^{\prime}\left(\frac{3 \epsilon}{2^{2 s}}\|y\|^{2 s}, \frac{r}{4\left|2^{2 s}-2\right|}\right), N^{\prime}\left(\epsilon\left(\frac{1+2^{s}}{2^{s}}+\frac{1}{2^{2 s}}\right)\|y\|^{2 s}, \frac{r}{2\left|2^{2 s}-2\right|}\right),\right. \\
\left.N^{\prime}\left(\frac{3 \epsilon}{2^{2 s}}\|y\|^{2 s}, \frac{r}{\left|2^{2 s}-2^{3}\right|}\right), N^{\prime}\left(\epsilon\left(\frac{1+2^{s}}{2^{s}}+\frac{1}{2^{2 s}}\right)\|y\|^{2 s}, \frac{2 r}{22^{2 s}-2^{3} \mid}\right)\right\}
\end{array}\right.
$$

for all $y \in X$ and all $r>0$.

Theorem 2.7. Let $\beta \in\{-1,1\}$ be fixed and let $\alpha: X^{2} \rightarrow Z$ be a mapping such that for some d with $0<\left(\frac{d}{2^{2}}\right)^{\beta}<1$

$$
\begin{equation*}
N^{\prime}\left(\alpha\left(2^{\beta} y, 2^{\beta} y\right), r\right) \geq N^{\prime}\left(d^{\beta} \alpha(y, y), r\right) \tag{42}
\end{equation*}
$$

for all $y \in X$ and all $r>0, d>0$, and

$$
\begin{equation*}
\lim _{k \rightarrow \infty} N^{\prime}\left(\alpha\left(2^{\beta k} x, 2^{\beta k} y\right), 2^{\beta k} r\right)=1 \tag{43}
\end{equation*}
$$

for all $x, y \in X$ and all $r>0$. Suppose that a function $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
N(D f(x, y), r) \geq N^{\prime}(\alpha(x, y), r) \tag{44}
\end{equation*}
$$

for all $r>0$ and all $x, y \in X$. Then the limit

$$
\begin{equation*}
Q_{2}(y)=N-\lim _{k \rightarrow \infty} \frac{q\left(2^{\beta k} y\right)}{2^{2 k \beta}} \tag{45}
\end{equation*}
$$

exists for all $y \in X$ and the mapping $Q_{2}: X \rightarrow Y$ is a unique quadratic mapping such that

$$
\begin{equation*}
N\left(f(2 y)-16 f(y)-Q_{2}(y), r\right) \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{\left(2^{2}-d\right) r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{\left(2^{2}-d\right) r}{4}\right)\right\} \tag{46}
\end{equation*}
$$

for all $y \in X$ and all $r>0$.

Proof. It is easy to see from (9) that

$$
\begin{equation*}
N(f(3 y)-6 f(2 y)+15 f(y), r) \geq N^{\prime}(\alpha(y, y), r) \tag{47}
\end{equation*}
$$

for all $y \in X$ and all $r>0$. Replacing x by $2 y$ in (9), we obtain

$$
\begin{equation*}
N(f(4 y)-4 f(3 y)+4 f(2 y)+4 f(y), r) \geq N^{\prime}(\alpha(2 y, y), r) \tag{48}
\end{equation*}
$$

for all $y \in X$ and all $r>0$. It follows from (47) and (48) that

$$
\begin{align*}
N(f(4 y)-20 f(2 y)+64 f(2 y), r) & \geq \min \left\{N\left(4(f(3 y)-24 f(2 y)+60 f(y)), \frac{r}{2}\right), N\left(f(4 y)-4 f(3 y)+4 f(2 y)+4 f(y), \frac{r}{2}\right)\right\} \\
& \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{r}{2}\right)\right\} \tag{49}
\end{align*}
$$

for all $y \in X$ and all $r>0$. Let $q_{2}: X \rightarrow Y$ be a mapping defined by $q_{2}(y)=f(2 y)-16 f(y)$. Then we conclude that

$$
\begin{equation*}
N\left(q_{2}(2 y)-4 q_{2}(y), r\right) \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{r}{2}\right)\right\} \tag{50}
\end{equation*}
$$

for all $y \in X$ and all $r>0$. The rest of the proof is similar to that of Theorem 2.1.

The following corollary is an immediate consequence of Theorem 2.7 concerning the Ulam-Hyers stability of the functional equation(1).

Corollary 2.8. Suppose that a function $f: X \rightarrow Y$ satisfies the inequality

$$
N(D f(x, y), r) \geq \begin{cases}N^{\prime}(\epsilon, r), & s \neq 2 ; \tag{51}\\ N^{\prime}\left(\epsilon\left\{\|x\|^{s}+\|y\|^{s}\right\}, r\right), & s \neq 1 ; \\ N^{\prime}\left(\epsilon\left\{\|x\|^{s}\|y\|^{s}\right\}, r\right), & N^{\prime}\left(\epsilon\left(\|x\|^{s}\|y\|^{s}+\|x\|^{2 s}+\|y\|^{2 s}\right), r\right), \\ N^{\prime} \neq 1 ;\end{cases}
$$

for all $x, y \in X$ and all $r>0$, where ϵ, s are constants with $\epsilon>0$. Then there exists a unique quadratic mapping $Q_{2}: X \rightarrow Y$ and a such that
for all $y \in X$ and all $r>0$.
Theorem 2.9. Let $\beta \in\{-1,1\}$ be fixed and let $\alpha: X^{2} \rightarrow Z$ be a mapping such that for some d with $0<\left(\frac{d}{2^{4}}\right)^{\beta}<1$

$$
\begin{equation*}
N^{\prime}\left(\alpha\left(2^{\beta} y, 2^{\beta} y\right), r\right) \geq N^{\prime}\left(d^{\beta} \alpha(y, y), r\right) \tag{53}
\end{equation*}
$$

for all $y \in X$ and all $r>0, d>0$, and

$$
\begin{equation*}
\lim _{k \rightarrow \infty} N^{\prime}\left(\alpha\left(2^{\beta k} x, 2^{\beta k} y\right), 2^{\beta k} r\right)=1 \tag{54}
\end{equation*}
$$

for all $x, y \in X$ and all $r>0$. Suppose that a function $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
N(D f(x, y), r) \geq N^{\prime}(\alpha(x, y), r) \tag{55}
\end{equation*}
$$

for all $r>0$ and all $x, y \in X$. Then the limit

$$
\begin{equation*}
Q_{4}(y)=N-\lim _{k \rightarrow \infty} \frac{q_{4}\left(2^{\beta k} y\right)}{2^{4 k \beta}} \tag{56}
\end{equation*}
$$

exists for all $y \in X$ and the mapping $Q_{4}: X \rightarrow Y$ is a unique quartic mapping such that

$$
\begin{equation*}
N\left(f(2 y)-4 f(y)-Q_{4}(y), r\right) \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{\left(2^{4}-d\right) r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{\left(2^{4}-d\right) r}{4}\right)\right\} \tag{57}
\end{equation*}
$$

for all $y \in X$ and all $r>0$.
Proof. It is easy to see from (49)

$$
\begin{equation*}
N(f(4 y)-4 f(2 y)-16 f(2 y), r) \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{r}{2}\right)\right\} \tag{58}
\end{equation*}
$$

for all $y \in X$ and all $r>0$. Let $q_{4}: X \rightarrow Y$ be a mapping defined by $q_{4}(y)=f(2 y)-4 f(y)$. Then we conclude that

$$
\begin{equation*}
N\left(q_{4}(2 y)-16 q_{4}(y), r\right) \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{r}{2}\right)\right\} \tag{59}
\end{equation*}
$$

for all $y \in X$ and all $r>0$. The rest of the proof is similar to that of Theorem 2.1.

The following corollary is an immediate consequence of Theorem 2.9 concerning the Ulam-Hyers stability of the functional equation(1).

Corollary 2.10. Suppose that a function $f: X \rightarrow Y$ satisfies the inequality

$$
N(D f(x, y), r) \geq \begin{cases}N^{\prime}(\epsilon, r), \tag{60}\\ N^{\prime}\left(\epsilon\left\{\|x\|^{s}+\|y\|^{s}\right\}, r\right), & s \neq 4 \\ N^{\prime}\left(\epsilon\left\{\|x\|^{s}\|y\|^{s}\right\}, r\right), & s \neq 2 \\ N^{\prime}\left(\epsilon\left(\|x\|^{s}\|y\|^{s}+\|x\|^{2 s}+\|y\|^{2 s}\right), r\right), & s \neq 2\end{cases}
$$

for all $x, y \in X$ and all $r>0$, where ϵ, s are constants with $\epsilon>0$. Then there exists a unique quartic mapping $Q_{4}: X \rightarrow Y$ such that
for all $y \in X$ and all $r>0$.
Theorem 2.11. Let $\beta \in\{-1,1\}$ be fixed and let $\alpha: X^{2} \rightarrow Z$ be a mapping such that for some d with the condition given (42) and (53) and $0<\left(\frac{d}{2^{2}}\right)^{\beta}<1,0<\left(\frac{d}{2^{4}}\right)^{\beta}<1$. Suppose that a function $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
N(D f(x, y), r) \geq N^{\prime}(\alpha(x, y), r) \tag{62}
\end{equation*}
$$

for all $r>0$ and all $x, y \in X$. Then there exists a quadratic mapping $Q_{2}: X \rightarrow Y$ and unique quartic mapping $Q_{4}: X \rightarrow Y$ satisfying the functional equation (1) and

$$
\begin{align*}
N\left(f(y)-Q_{2}(y)-Q_{4}(y), r\right) \geq & \min \left\{N^{\prime}\left(\alpha(y, y), \frac{\left(2^{2}-d\right) r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{\left(2^{2}-d\right) r}{4}\right)\right. \\
& \left.N^{\prime}\left(\alpha(y, y), \frac{\left(2^{4}-d\right) r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{\left(2^{4}-d\right) r}{4}\right)\right\} \tag{63}
\end{align*}
$$

for all $y \in X$ and all $r>0$.
Proof. By Theorems (??) and (??), there exists a unique quadratic function $Q_{2_{1}}: X \rightarrow Y$ and a unique quartic function $Q_{4_{1}}: X \rightarrow Y$ such that

$$
\begin{equation*}
N\left(f(2 y)-16 f(y)-Q_{2_{1}}(y), r\right) \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{\left(2^{2}-d\right) r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{\left(2^{2}-d\right) r}{4}\right)\right\} \tag{64}
\end{equation*}
$$

for all $y \in X$ and all $r>0$ and

$$
\begin{equation*}
N\left(f(2 y)-4 f(y)-Q_{4_{1}}(y), r\right) \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{\left(2^{4}-d\right) r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{\left(2^{4}-d\right) r}{4}\right)\right\} \tag{65}
\end{equation*}
$$

for all $y \in X$ and all $r>0$. Now from (64) and (65), one can see that

$$
\begin{aligned}
& N\left(f(y)+\frac{1}{12} Q_{2_{1}}(y)-\frac{1}{12} Q_{4_{1}}(y), 2 r\right) \\
& \geq \min \left\{N\left(\frac{f(2 y)}{12}-\frac{16}{12} f(y)-\frac{1}{12} Q_{2_{1}}(y), \frac{r}{12}\right), N\left(\frac{f(2 y)}{12}-\frac{4}{12} f(y)-\frac{1}{12} Q_{4_{1}}(y), \frac{r}{12}\right)\right\} \\
& \geq \min \left\{N\left(f(2 y)-16 f(y)-Q_{2_{1}}(y), r\right), N\left(f(2 y)-4 f(y)-Q_{4_{1}}(y), r\right)\right\} \\
& \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{\left(2^{2}-d\right) r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{\left(2^{2}-d\right) r}{4}\right), N^{\prime}\left(\alpha(y, y), \frac{\left(2^{4}-d\right) r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{\left(2^{4}-d\right) r}{4}\right)\right\}
\end{aligned}
$$

for all $y \in X$ and all $r>0$. Thus we obtain (37) by defining $Q_{2}(y)=\frac{-1}{12} Q_{2_{1}}(y)$ and $Q_{4}(y)=\frac{1}{12} Q_{4_{1}}(y)$ for all $y \in X$ and all $r>0$.

The following corollary is an immediate consequence of Theorem 2.11 concerning the Ulam-Hyers stability of the functional equation(1).

Corollary 2.12. Suppose that a function $f: X \rightarrow Y$ satisfies the inequality

$$
N(D f(x, y), r) \geq \begin{cases}N^{\prime}(\epsilon, r), & s \neq 2,4 \tag{66}\\ N^{\prime}\left(\epsilon\left\{\|x\|^{s}+\|y\|^{s}\right\}, r\right), & s \neq 1,2 \\ N^{\prime}\left(\epsilon\left\{\|x\|^{s}\|y\|^{s}\right\}, r\right), & N^{2}\left(\epsilon\left(\|x\|^{s}\|y\|^{s}+\|x\|^{2 s}+\|y\|^{2 s}\right), r\right), \\ N^{\prime} \neq 1,2\end{cases}
$$

for all $x, y \in X$ and all $r>0$, where ϵ, s are constants with $\epsilon>0$. Then there exists a unique quadratic mapping $Q_{2}: X \rightarrow Y$ and a unique quartic mapping $Q_{4}: X \rightarrow Y$ such that

$$
N\left(f(y)-Q_{2}(y)-Q_{4}(y), r\right) \geq\left\{\begin{array}{l}
\min \left\{N^{\prime}\left(\epsilon, \frac{r}{2|3|}\right), N^{\prime}\left(\epsilon, \frac{r}{|3|}\right), N^{\prime}\left(\epsilon, \frac{2 r}{|15|}\right), N^{\prime}\left(\epsilon, \frac{4 r}{|15|}\right)\right\} \tag{67}\\
\min \left\{N^{\prime}\left(\frac{\epsilon}{2^{s}}\|y\|^{s}, \frac{r}{2\left|2^{s}-2^{2}\right|}\right), N^{\prime}\left(\epsilon \frac{1+2^{s}}{2^{s}}\|y\|^{s}, \frac{r}{\left|2^{s}-2^{2}\right|}\right),\right. \\
\left.N^{\prime}\left(\frac{\epsilon}{2^{s}}\|y\|^{s}, \frac{2 r}{\left|2^{s}-2^{4}\right|}\right), N^{\prime}\left(\epsilon \frac{1+2^{s}}{2^{s}}\|y\|^{s}, \frac{4 r}{2^{s}-2^{4} \mid}\right)\right\} \\
\min \left\{N^{\prime}\left(\frac{\epsilon}{2^{2 s}}\|y\|^{2 s}, \frac{r}{2\left|2^{2 s}-2^{2}\right|}\right), N^{\prime}\left(\frac{\epsilon}{2^{s}}\|y\|^{2 s}, \frac{r}{\left|2^{2 s}-2^{2}\right|}\right),\right. \\
\left.N^{\prime}\left(\frac{\epsilon}{2^{2 s}}\|y\|^{2 s}, \frac{2 r}{22^{2 s}}\right), N^{\prime}\left(\frac{\epsilon}{2^{s}}\|y\|^{2 s}, \frac{4 r}{\left|2^{2 s}-2^{4}\right|}\right)\right\} \\
\min \left\{N^{\prime}\left(\frac{3 \epsilon}{2^{2 s}}\|y\|^{2 s}, \frac{r}{2\left|2^{2 s}-2^{2}\right|}\right), N^{\prime}\left(\epsilon\left(\frac{1+2^{s}}{2^{s}}+\frac{1}{2^{2 s}}\right)\|y\|^{2 s}, \frac{r}{\left|2^{2 s}-2^{2}\right|}\right)\right. \\
\left.N^{\prime}\left(\frac{3 \epsilon}{2^{2 s}}\|y\|^{2 s}, \frac{2 r}{\left|2^{2 s}-2^{4}\right|}\right), N^{\prime}\left(\epsilon\left(\frac{1+2^{s}}{2^{s}}+\frac{1}{2^{2 s}}\right)\|y\|^{2 s}, \frac{4 r}{\left|2^{2 s}-2^{4}\right|}\right)\right\}
\end{array}\right.
$$

for all $y \in X$ and all $r>0$.
Theorem 2.13. Let $\beta \in\{-1,1\}$ be fixed and let $\alpha: X^{2} \rightarrow Z$ be a mapping such that for some d with the condition given (2), (27), (42), (53) and $0<\left(\frac{d}{2}\right)^{\beta}<1,0<\left(\frac{d}{2^{2}}\right)^{\beta}<1,0<\left(\frac{d}{2^{3}}\right)^{\beta}<1$ and $0<\left(\frac{d}{2^{4}}\right)^{\beta}<1$. Suppose that a function $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
N(D f(x, y), r) \geq N^{\prime}(\alpha(x, y), r) \tag{68}
\end{equation*}
$$

for all $r>0$ and all $x, y \in X$. Then there exists a unique additive mapping $A: X \rightarrow Y$, a unique quadratic mapping $Q_{2}: X \rightarrow Y$, a unique cubic cubic mapping $C: X \rightarrow Y$ and unique quartic mapping $Q_{4}: X \rightarrow Y$ satisfying the functional equation (1) and

$$
\begin{aligned}
& N\left(f(y)-A(y)-Q_{2}(y)-C(y)-Q_{4}(y), r\right) \\
& \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{(2-d) r}{16}\right), N^{\prime}\left(\alpha(-y,-y), \frac{(2-d) r}{16}\right), N^{\prime}\left(\alpha(2 y, y), \frac{(2-d) r}{8}\right),\right. \\
& \quad N^{\prime}\left(\alpha(-2 y,-y), \frac{(2-d) r}{8}\right), N^{\prime}\left(\alpha(y, y), \frac{\left(2^{3}-d\right) r}{16}\right), N^{\prime}\left(\alpha(-y,-y), \frac{\left(2^{3}-d\right) r}{16}\right), \\
& \quad N^{\prime}\left(\alpha(2 y, y), \frac{\left(2^{3}-d\right) r}{8}\right), N^{\prime}\left(\alpha(-2 y,-y), \frac{\left(2^{3}-d\right) r}{8}\right), N^{\prime}\left(\alpha(y, y), \frac{\left(2^{2}-d\right) r}{16}\right), \\
& \quad N^{\prime}\left(\alpha(-y,-y), \frac{\left(2^{2}-d\right) r}{16}\right) N^{\prime}\left(\alpha(2 y, y), \frac{\left(2^{2}-d\right) r}{8}\right), N^{\prime}\left(\alpha(-2 y,-y), \frac{\left(2^{2}-d\right) r}{8}\right), \\
& \left.\quad N^{\prime}\left(\alpha(y, y), \frac{\left(2^{4}-d\right) r}{16}\right), N^{\prime}\left(\alpha(-y,-y), \frac{\left(2^{4}-d\right) r}{16}\right), N^{\prime}\left(\alpha(2 y, y), \frac{\left(2^{4}-d\right) r}{8}\right), N^{\prime}\left(\alpha(-2 y,-y), \frac{\left(2^{4}-d\right) r}{8}\right)\right\}
\end{aligned}
$$

for all $y \in X$ and all $r>0$.

Proof. Let $f_{a c}(y)=\frac{f_{o}(y)-f_{o}(-y)}{2}$ for all $y \in X$. Then $f_{a c}(0)=0$ and $f_{o}(-y)=-f_{o}(y)$ for all $y \in X$. Hence

$$
\begin{equation*}
N\left(D f_{a c}(x, y), r\right) \geq \min \left\{N^{\prime}\left(\alpha(x, y), \frac{r}{2}\right), N^{\prime}\left(\alpha(-x,-y), \frac{r}{2}\right)\right\} \tag{69}
\end{equation*}
$$

for all $y \in X$ and all $r>0$. By Theorem (??), there exists a unique additive mapping $A: X \rightarrow Y$ and a unique cubic mapping $C: X \rightarrow Y$ such that

$$
\begin{gather*}
N\left(f_{a c}(y)-A(y)-C(y), r\right) \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{(2-d) r}{8}\right), N^{\prime}\left(\alpha(-y,-y), \frac{(2-d) r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{(2-d) r}{4}\right),\right. \\
\\
N^{\prime}\left(\alpha(-2 y,-y), \frac{(2-d) r}{4}\right), N^{\prime}\left(\alpha(y, y), \frac{\left(2^{3}-d\right) r}{8}\right), N^{\prime}\left(\alpha(-y,-y), \frac{\left(2^{3}-d\right) r}{8}\right), \tag{70}\\
\\
\left.N^{\prime}\left(\alpha(2 y, y), \frac{\left(2^{3}-d\right) r}{4}\right), N^{\prime}\left(\alpha(-2 y,-y), \frac{\left(2^{3}-d\right) r}{4}\right)\right\}
\end{gather*}
$$

for all $y \in X$ and all $r>0$. Also, let $f_{q q}(y)=\frac{f_{e}(y)+f_{e}(-y)}{2}$ for all $y \in X$. Then $f_{q q}(0)=0$ and $f_{o}(-y)=f_{o}(y)$ for all $y \in X$. Hence

$$
\begin{equation*}
N\left(D f_{q q}(x, y), r\right) \geq \min \left\{N^{\prime}\left(\alpha(x, y), \frac{r}{2}\right), N^{\prime}\left(\alpha(-x,-y), \frac{r}{2}\right)\right\} \tag{71}
\end{equation*}
$$

for all $y \in X$ and all $r>0$. By Theorem (??), there exists a unique quadratic mapping $Q_{2}: X \rightarrow Y$, and a unique quartic mapping $Q_{4}: X \rightarrow Y$ such that

$$
\begin{gather*}
N\left(f_{q q}(y)-Q_{2}(y)-Q_{4}(y), r\right) \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{\left(2^{2}-d\right) r}{8}\right), N^{\prime}\left(\alpha(-y,-y), \frac{\left(2^{2}-d\right) r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{\left(2^{2}-d\right) r}{4}\right),\right. \\
\\
N^{\prime}\left(\alpha(-2 y,-y), \frac{\left(2^{2}-d\right) r}{4}\right), N^{\prime}\left(\alpha(y, y), \frac{\left(2^{4}-d\right) r}{8}\right), N^{\prime}\left(\alpha(-y,-y), \frac{\left(2^{4}-d\right) r}{8}\right) \tag{72}\\
\left.\quad N^{\prime}\left(\alpha(2 y, y), \frac{\left(2^{4}-d\right) r}{4}\right), N^{\prime}\left(\alpha(-2 y,-y), \frac{\left(2^{4}-d\right) r}{4}\right)\right\}
\end{gather*}
$$

for all $y \in X$ and all $r>0$. Define a function $f(y)$ by

$$
\begin{equation*}
f(y)=f_{a c}(y)+f_{q q}(y) \tag{73}
\end{equation*}
$$

for all $y \in X$. Combining (73), (70) and (72) we arrive our result.
Corollary 2.14. Suppose that a function $f: X \rightarrow Y$ satisfies the inequality

$$
N(D f(x, y), r) \geq \begin{cases}N^{\prime}(\epsilon, r), & s \neq 1,3,2,4 \tag{74}\\ N^{\prime}\left(\epsilon\left\{\|x\|^{s}+\|y\|^{s}\right\}, r\right), & s \neq \frac{1}{2}, \frac{3}{2}, 2,4 \\ N^{\prime}\left(\epsilon\left\{\|x\|^{s}\|y\|^{s}\right\}, r\right), & s \neq \frac{1}{2}, \frac{3}{2}, 2,4\end{cases}
$$

for all $x, y \in X$ and all $r>0$, where ϵ, s are constants with $\epsilon>0$. Then there exists a unique additive mapping $A: X \rightarrow Y$ and a unique Cubic mapping $C: X \rightarrow Y$, a unique quadratic mapping $Q_{2}: X \rightarrow Y$ and a unique quartic mapping
$Q_{4}: X \rightarrow Y$ such that

$$
\begin{align*}
& N\left(f(x)-A(x)-Q_{2}(x)-C(x)-Q_{4}(x), r\right) \\
& (i) N^{\prime}\left(\epsilon, \frac{|2| r}{8}\right), N^{\prime}\left(\epsilon, \frac{|2| r}{4}\right), N^{\prime}\left(\epsilon, \frac{r}{|7|}\right), N^{\prime}\left(\epsilon, \frac{2 r}{|7|}\right), N^{\prime}\left(\epsilon, \frac{r}{2|3|}\right), N^{\prime}\left(\epsilon, \frac{r}{|3|}\right), \\
& N^{\prime}\left(\epsilon, \frac{2 r}{|15|}\right), N^{\prime}\left(\epsilon, \frac{4 r}{|15|}\right) \\
& \text { (ii) } N^{\prime}\left(\frac{\epsilon}{2^{s}}\|y\|^{s}, \frac{r}{4\left|2^{s}-2\right|}\right), N^{\prime}\left(\epsilon \frac{1+2^{s}}{2^{s}}\|y\|^{s}, \frac{r}{2\left|2^{s}-2\right|}\right), N^{\prime}\left(\frac{\epsilon}{2^{s}}\|y\|^{s}, \frac{r}{\left|2^{s}-2^{3}\right|}\right) \text {, } \\
& N^{\prime}\left(\epsilon \frac{1+2^{s}}{2^{s}}\|y\|^{s}, \frac{2 r}{\left|2^{s}-2^{3}\right|}\right), N^{\prime}\left(\frac{\epsilon}{2^{s}}\|y\|^{s}, \frac{r}{2\left|2^{s}-2^{2}\right|}\right), N^{\prime}\left(\epsilon \frac{1+2^{s}}{2^{s}}\|y\|^{s}, \frac{r}{\left|2^{s}-2^{2}\right|}\right) \text {, } \\
& N^{\prime}\left(\frac{\epsilon}{2^{s}}\|y\|^{s}, \frac{2 r}{\left|2^{s}-2^{4}\right|}\right), N^{\prime}\left(\epsilon \frac{1+2^{s}}{2^{s}}\|y\|^{s}, \frac{4 r}{\left|2^{s}-2^{4}\right|}\right) \\
& \geq\left\{\begin{array}{c}
(i i i) N^{\prime}\left(\frac{\epsilon}{2^{2 s}}\|y\|^{2 s}, \frac{r}{4\left|2^{2 s}-2\right|}\right), N^{\prime}\left(\frac{\epsilon}{2^{s}}\|y\|^{2 s}, \frac{r}{2\left|2^{2 s}-2\right|}\right), N^{\prime}\left(\frac{\epsilon}{2^{2 s}}\|y\|^{2 s}, \frac{r}{\left|2^{2 s}-2^{3}\right|}\right), \\
N^{\prime}\left(\frac{\epsilon}{2 s}\|y\|^{2 s}, \frac{r}{22^{2 s}-2^{3}}\right), N^{\prime}\left(\frac{\epsilon}{2^{2 s}}\|y\|^{2 s}, \frac{r}{22^{2 s}-2^{2} \|}\right), N^{\prime}\left(\frac{\epsilon}{2^{s}}\|y\|^{2 s}, \frac{r}{22^{2 s}-2^{2} \mid}\right),
\end{array}\right. \tag{75}\\
& N^{\prime}\left(\frac{\epsilon}{2^{2 s}}\|y\|^{2 s}, \frac{2 r}{\left|2^{2 s}-2^{4}\right|}\right), N^{\prime}\left(\frac{\epsilon}{2^{s}}\|y\|^{2 s}, \frac{4 r}{\left|2^{2 s}-2^{4}\right|}\right) \\
& \text { (iv) } N^{\prime}\left(\frac{3 \epsilon}{2^{2 s}}\|y\|^{2 s}, \frac{r}{4\left[2^{2 s}-2 \mid\right.}\right), N^{\prime}\left(\epsilon\left(\frac{1+2^{s}}{2^{s}}+\frac{1}{2^{2 s}}\right)\|y\|^{2 s}, \frac{r}{2\left|2^{2 s}-2\right|}\right) \text {, } \\
& N^{\prime}\left(\frac{3 \epsilon}{2^{2 s}}\|y\|^{2 s}, \frac{r}{\left|2^{2 s}-2^{3}\right|}\right), N^{\prime}\left(\epsilon\left(\frac{1+2^{s}}{2^{s}}+\frac{1}{2^{2 s}}\right)\|y\|^{2 s}, \frac{2 r}{\left|2^{2 s}-2^{3}\right|}\right) \text {, } \\
& N^{\prime}\left(\frac{3 \epsilon}{2^{2 s}}\|y\|^{2 s}, \frac{r}{2\left|2^{2 s}-2^{2}\right|}\right), N^{\prime}\left(\epsilon\left(\frac{1+2^{s}}{2^{s}}+\frac{1}{2^{2 s}}\right)\|y\|^{2 s}, \frac{r}{\left|2^{2 s}-2^{2}\right|}\right) \text {, } \\
& N^{\prime}\left(\frac{3 \epsilon}{2^{2 s}}\|y\|^{2 s}, \frac{2 r}{\left|2^{2 s}-2^{4}\right|}\right), N^{\prime}\left(\epsilon\left(\frac{1+2^{s}}{2^{s}}+\frac{1}{2^{2 s}}\right)\|y\|^{2 s}, \frac{4 r}{\left|2^{2 s}-2^{4}\right|}\right)
\end{align*}
$$

for all $y \in X$ and all $r>0$.

References

[1] J.Aczel and J.Dhombres, Functional Equations in Several Variables, Cambridge Univ, Press, (1989).
[2] T.Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2(1950), 64-66.
[3] M.Arunkumar, S.Karthikeyan and S.Ramamoorthi, Generalized Ulam-Hyers Stability of N-Dimensional Cubic Functional Equation in FNS and RNS: Various Methods, Middle-East Journal of Scientific Research, 24(S2)(2016), 386-404.
[4] M.Arunkumar, Three Dimensional Quartic Functional Equation In Fuzzy Normed Spaces, Far East Journal of Applied Mathematics, 41(2)(2010), 83-94.
[5] M.Arunkumar, Stability of a functional equation in dq-normed space, International Journal of pure and Applied Mathematics, $57(2)(2009), 241-250$.
[6] M.Arunkumar, John M.Rassias and S.Karthikeyan, Stability Of A Leibniz Type Additive And Quadratic Functional Equation In Intuitionistic Fuzzy Normed Spaces, Advances in Theoretical and Applied Mathematics, 11(2)(2016), 145169.
[7] C.Baak and M.S.Moslenian, On the stability of a orthogonally cubic functional equations, Kyungpook Math. J., 47(2007), 69-76.
[8] T.Bag and S.K.Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math., 11(3)(2003), 687-705.
[9] T.Bag and S.K.Samanta, Fuzzy bounded linear operators, Fuzzy Sets and Systems, 151(2005), 513-547.
[10] S.C.Cheng and J.N.Mordeson, Fuzzy linear operator and fuzzy normed linear spaces, Bull. Calcutta Math. Soc., 86(1994), 429-436.
[11] H.Y.Chu and D.S.Kang, On the stability of an n - dimensional cubic functional equation, J. Math. Anal. Appl., 325(1)(2007), 595-607.
[12] S.Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, (2002).
[13] C.Felbin, Finite dimensional fuzzy normed linear space, Fuzzy Sets and Systems, 48(1992), 239-248.
[14] P.Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184(1994), 431-436.
[15] D.H.Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., U.S.A., 27(1941), 222-224.
[16] D.H.Hyers, G.Isac and Th.M.Rassias, Stability of functional equations in several variables, Birkhauser, Basel, (1998).
[17] Sun-Young Jang, Jung Rye Lee, Choonkil Park and Dong Yun Shin, Fuzzy Stability of Jensen-Type Quadratic Functional Equations, Abstract and Applied Analysis, 2009(2009), Article ID 535678.
[18] K.W.Jun and H.M.Kim, On the Hyers-Ulam-Rassias stability of a general cubic functional equation, Math. Ineq. Appl., $6(2)(2003), 289-302$.
[19] Y.S.Jung and I.S.Chang, The stability of a cubic type functional equation with the fixed point alternative, J. Math. Anal. Appl., 306(2005), 752-760.
[20] S.M.Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, (2001).
[21] Y.S.Jung and I.S.Chang, The stability of a cubic type functional equation with the fixed point alternative, J. Math. Anal. Appl., 306(2005), 752-760.
[22] A.K.Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets and Systems, 12(1984), 143-154.
[23] I.Kramosil and J.Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11(1975), 326-334.
[24] S.V.Krishna and K.K.M. Sarma, Separation of fuzzy normed linear spaces, Fuzzy Sets and Systems, 63(1994), $207-217$.
[25] B.Margolis and J.B.Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 126(74)(1968), 305-309.
[26] D. Mihet, The fixed point method for fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems, 160(2009), 1663-1667.
[27] A.K.Mirmostafaee and M.S.Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets and Systems, 159(6)(2008), 720-729.
[28] A.K.Mirmostafaee, M.Mirzavaziri and M.S.Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems, 159(6)(2008), 730-738.
[29] A.K.Mirmostafaee and M.S.Moslehian, Fuzzy approximately cubic mappings, Information Sciences, 178(19)(2008), 37913798.
[30] A.K.Mirmostafaee and M.S.Moslehian, Fuzzy almost quadratic functions, Results in Mathematics, 52(1-2)(2008), 161177.
[31] K.H.Park and Y.S.Jung, Stability for a cubic functional equation, Bull. Korean Math. Soc., 41(2)(2004), 347-357.
[32] J.M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. USA, 46(1982), 126-130.
[33] J.M. Rassias, On approximately of approximately linear mappings by linear mappings, Bull. Sc. Math., 108(1984), 445-446.
[34] J. M. Rassias, Solution of the Ulam stability problem for the cubic mapping, Glasnik Mathematica, 36(56)(2001), 63-72.
[35] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc.Amer.Math. Soc., 72(1978), 297-300.
[36] K.Ravi and M.Arunkumar, On The Generalized Hyers-Ulam- Rassias Stability of a Cubic Functional Equation, International Review of Pure and Applied Mathematics, 2(1)(2006), 13-23.
[37] K.Ravi, M.Arunkumar and J.M.Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, International Journal of Mathematical Sciences, 3(8)(2008), 36-47.
[38] K.Ravi, M.Arunkumar and P.Narasimman, Fuzzy stability of a Additive functional equation, International Journal of

Mathematical Sciences, 9(S11)(2011), 88-105.
[39] P.K.Sahoo, On a functional equation characterizing polynomials of degree three, Bul. Inst. Math. Acd. Sin., 32(1)(2004).
[40] S.M.Ulam, Problems in Modern Mathematics, Science Editions, Wiley, NewYork, (1964).
[41] J.Z.Xiao and X.H.Zhu, Fuzzy normed spaces of operators and its completeness, Fuzzy Sets and Systems, 133(2003), 389-399.

[^0]: * Proceedings : National Conference on Recent Trends in Applied Mathematics held on 22 83 23.07.2016, organized by Department of Mathematics, St. Joseph's College of Arts \& Science, Manjakuppam, Cuddalore (Tamil Nadu), India.

