Generalized Hyers - Ulam Stability of Additive Quadratic - Cubic - Quartic Functional Equation in Fuzzy Normed Spaces Using Fixed Point Method

Research Article*

M.Arunkumar ${ }^{1}$ and C.Devi Shyamala Mary ${ }^{2}$
1 Department of Mathematics, Government Arts College, Tiruvannamalai, Tamil Nadu, India.
2 Department of Mathematics, St.Joseph's College of Arts and Science, Cuddalore, TamilNadu, India.

Abstract: In this paper, the authors investigate the generalized Hyers-Ulam-stability of AQCQ functional equation

$$
f(x+2 y)+f(x-2 y)=4 f(x+y)-4 f(x-y)-6 f(x)+f(2 y)+f(-2 y)-4 f(y)-4 f(-y)
$$

in fuzzy normed spaces using fixed point method.
MSC: $\quad 39 B 52,39 B 82,26 E 50,46 S 50$.
Keywords: Fuzzy normed space, Additive, quadratic, cubic and quartic functional equation, Generalized Hyers-Ulam-Rassias stability. (c) JS Publication.

1. Introduction and Preliminaries

The stability of various functional equations in fuzzy normed spaces was have been extensively investigated by a number of mathematicians in referenes (see [3-5, 16, 17, 28-31, 37]). In 2003, V. Radu [32] introduced a new method, successively developed in $([8-10])$, to obtaining the existence of the exact solutions and the error estimations, based on the fixed point alternative. A.K. Katsaras [19] defined a fuzzy norm on a vector space to construct a fuzzy vector topological structure on the space. Some mathematicians have defined fuzzy norms on a vector space from various points of view [13, 21, 40]. In particular, T. Bag and S.K. Samanta [6], following S.C. Cheng and J.N. Mordeson [11], gave an idea of fuzzy norm in such a manner that the corresponding fuzzy metric is of Kramosil and Michalek type [20]. They established a decomposition theorem of a fuzzy norm into a family of crisp norms and investigated some properties of fuzzy normed spaces [7]. We use the definition of fuzzy normed spaces given in [6] and [24-27].

Definition 1.1. Let X be a real linear space. A function $N: X \times \mathbb{R} \rightarrow[0,1]$ (the so-called fuzzy subset) is said to be a fuzzy norm on X if for all $x, y \in X$ and all $s, t \in \mathbb{R}$,
(F1) $\quad N(x, c)=0$ for $c \leq 0$;
(F2) $\quad x=0$ if and only if $N(x, c)=1$ for all $c>0$;

[^0](F3) $\quad N(c x, t)=N\left(x, \frac{t}{|c|}\right)$ if $c \neq 0$;
(F4) $N(x+y, s+t) \geq \min \{N(x, s), N(y, t)\}$;
(F5) $\quad N(x, \cdot)$ is a non-decreasing function on \mathbb{R} and $\lim _{t \rightarrow \infty} N(x, t)=1$;
(F6) for $x \neq 0, N(x, \cdot)$ is (upper semi) continuous on \mathbb{R}.
The pair (X, N) is called a fuzzy normed linear space. One may regard $N(X, t)$ as the truth-value of the statement the norm of x is less than or equal to the real number t^{\prime}.

Example 1.2. Let $(X,\|\cdot\|)$ be a normed linear space. Then

$$
N(x, t)= \begin{cases}\frac{t}{t+\|x\|}, & t>0, \quad x \in X, \\ 0, & t \leq 0, \quad x \in X\end{cases}
$$

is a fuzzy norm on X.
Definition 1.3. Let (X, N) be a fuzzy normed linear space. Let x_{n} be a sequence in X. Then x_{n} is said to be convergent if there exists $x \in X$ such that $\lim _{n \rightarrow \infty} N\left(x_{n}-x, t\right)=1$ for all $t>0$. In that case, x is called the limit of the sequence x_{n} and we denote it by $N-\lim _{n \rightarrow \infty} x_{n}=x$.

Definition 1.4. A sequence x_{n} in X is called Cauchy if for each $\epsilon>0$ and each $t>0$ there exists n_{0} such that for all $n \geq n_{0}$ and all $p>0$, we have $N\left(x_{n+p}-x_{n}, t\right)>1-\epsilon$.

Definition 1.5. Every convergent sequence in a fuzzy normed space is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be complete and the fuzzy normed space is called a fuzzy Banach space.

Definition 1.6. A mapping $f: X \rightarrow Y$ between fuzzy normed spaces X and Y is continuous at a point x_{0} if for each sequence $\left\{x_{n}\right\}$ covering to x_{0} in X, the sequence $f\left\{x_{n}\right\}$ converges to $f\left(x_{0}\right)$. If f is continuous at each point of $x_{0} \in X$ then f is said to be continuous on X.

In this paper, the authors investigate the generalized Hyers-Ulam-Aoki-Rassias stability of AQCQ functional equation

$$
\begin{equation*}
f(x+2 y)+f(x-2 y)=4 f(x+y)-4 f(x-y)-6 f(x)+f(2 y)+f(-2 y)-4 f(y)-4 f(-y) \tag{1}
\end{equation*}
$$

in fuzzy normed vector space by fixed point method.

2. Stability Results: Fixed Point Method

In this section, the authors presented the generalized Ulam - Hyers stability of the functional equation (1) in fuzzy normed space using fixed point method. Now we will recall the fundamental results in fixed point theory.

Theorem 2.1 (Banach's contraction principle). Let (X, d) be a complete metric space and consider a mapping $T: X \rightarrow X$ which is strictly contractive mapping, that is
(A1) $d(T x, T y) \leq L d(x, y)$ for some (Lipschitz constant) $L<1$. Then,
(i) The mapping T has one and only fixed point $x^{*}=T\left(x^{*}\right)$;
(ii) The fixed point for each given element x^{*} is globally attractive, that is
(A2) $\lim _{n \rightarrow \infty} T^{n} x=x^{*}$, for any starting point $x \in X$;
(iii) One has the following estimation inequalities:
(A3) $d\left(T^{n} x, x^{*}\right) \leq \frac{1}{1-L} d\left(T^{n} x, T^{n+1} x\right), \forall n \geq 0, \forall x \in X$;
(A4) $d\left(x, x^{*}\right) \leq \frac{1}{1-L} d\left(x, x^{*}\right), \forall x \in X$.
Theorem 2.2 (The alternative of fixed point [22]). Suppose that for a complete generalized metric space (X, d) and a strictly contractive mapping $T: X \rightarrow X$ with Lipschitz constant L. Then, for each given element $x \in X$, either

$$
\begin{equation*}
d\left(T^{n} x, T^{n+1} x\right)=\infty \quad \forall n \geq 0, \tag{B1}
\end{equation*}
$$

or
(B2) there exists a natural number n_{0} such that:
(i) $d\left(T^{n} x, T^{n+1} x\right)<\infty$ for all $n \geq n_{0}$;
(ii) The sequence $\left(T^{n} x\right)$ is convergent to a fixed point y^{*} of T
(iii) y^{*} is the unique fixed point of T in the set $Y=\left\{y \in X: d\left(T^{n_{0}} x, y\right)<\infty\right\}$;
(iv) $d\left(y^{*}, y\right) \leq \frac{1}{1-L} \quad d(y, T y)$ for all $y \in Y$.

In order to prove the stability results, we define the following:
δ_{i} is a constant such that

$$
\delta_{i}= \begin{cases}2 & \text { if } i=0 \\ \frac{1}{2} & \text { if } i=1\end{cases}
$$

and Ω is the set such that

$$
\Omega=\{g \mid g: X \rightarrow Y, g(0)=0\} .
$$

Theorem 2.3. Let $f: X \rightarrow Y$ be a mapping for which there exist a function $\alpha: X^{2} \rightarrow Z$ with the condition

$$
\begin{equation*}
\lim _{k \rightarrow \infty} N^{\prime}\left(\alpha\left(\delta_{i}^{k} x, \delta_{i}^{k} y\right), \delta_{i}^{k} r\right)=1, \quad \forall x, y \in X, r>0 \tag{2}
\end{equation*}
$$

and satisfying the functional inequality

$$
\begin{equation*}
N(D f(x, y), r) \geq N^{\prime}(\alpha(x, y), r), \forall x, y \in X, r>0 . \tag{3}
\end{equation*}
$$

If there exists $L=L(i)$, such that the function

$$
x \rightarrow N^{\prime}(\beta(y), r)=\min \left\{N^{\prime}\left(\alpha\left(\frac{y}{2}, \frac{y}{2}\right), \frac{r}{8}\right), N^{\prime}\left(\alpha\left(y, \frac{y}{2}\right), \frac{r}{2}\right)\right\},
$$

has the property

$$
\begin{equation*}
N^{\prime}\left(L \frac{1}{\delta_{i}} \beta\left(\delta_{i} x\right), r\right)=N^{\prime}(\beta(x), r), \forall x \in X, r>0 . \tag{4}
\end{equation*}
$$

Then there exists unique additive function $A: X \rightarrow Y$ satisfying the functional equation (1) and

$$
\begin{equation*}
N(f(2 y)-8 f(y)-A(y), r) \geq \min \left\{N^{\prime}\left(\alpha(y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{8}\right), N^{\prime}\left(\alpha(2 y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{4}\right)\right\} \tag{5}
\end{equation*}
$$

Proof. Let d be a general metric on Ω, such that

$$
d(g, h)=\inf \left\{K \in(0, \infty) \mid N(g(x)-h(x), r) \geq N^{\prime}(\beta(x), K r), x \in X, r>0\right\}
$$

It is easy to see that (Ω, d) is complete. Define $T: \Omega \rightarrow \Omega$ by $T g(x)=\frac{1}{\delta_{i}} g\left(\delta_{i} x\right)$, for all $x \in X$. For $g, h \in \Omega$, we have $d(g, h) \leq K$

$$
\begin{array}{cc}
\Rightarrow & N(g(x)-h(x), r) \geq N^{\prime}(\beta(x), K r) \\
\Rightarrow & N\left(\frac{g\left(\delta_{i} x\right)}{\delta_{i}}-\frac{h\left(\delta_{i} x\right)}{\delta_{i}}, r\right) \geq N^{\prime}\left(\beta\left(\delta_{i} x\right), K \delta_{i} r\right) \\
\Rightarrow & N(T g(x)-T h(x), r) \geq N^{\prime}(\beta(x), L K r) \\
\Rightarrow & d(T g(x), T h(x)) \leq K L \\
\Rightarrow & d(T g, T h) \leq L d(g, h) \tag{6}
\end{array}
$$

for all $g, h \in \Omega$. There fore T is strictly contractive mapping on Ω with Lipschitz constant L. Replacing (x, y) by (y, y) in (3), we get

$$
\begin{equation*}
N(f(3 y)-4 f(2 y)+5 f(y), r) \geq N^{\prime}(\alpha(y, y), r) \tag{7}
\end{equation*}
$$

for all $y \in X$ and all $r>0$. Replacing x by $2 y$ in (3), we obtain

$$
\begin{equation*}
N(f(4 y)-4 f(3 y)+6 f(2 y)-4 f(y), r) \geq N^{\prime}(\alpha(2 y, y), r) \tag{8}
\end{equation*}
$$

for all $y \in X$ and all $r>0$. Now, from (7) and (8), we have

$$
\begin{align*}
N(f(4 y)-10 f(2 y)+16 f(y), r) & \geq \min \left\{N\left(4(f(3 y)-4 f(2 y)+5 f(y)), \frac{r}{2}\right), N\left(f(4 y)-4 f(3 y)+6 f(2 y)-4 f(y), \frac{r}{2}\right)\right\} \\
& \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{r}{2}\right)\right\} \tag{9}
\end{align*}
$$

for all $y \in X$ and all $r>0$. Let $a: X \rightarrow Y$ be a mapping defined by $a(y)=f(2 y)-8 f(y)$. Then we conclude that

$$
\begin{equation*}
N(a(2 y)-2 a(y), r) \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{r}{2}\right)\right\} \tag{10}
\end{equation*}
$$

for all $y \in X$ and all $r>0$. Using (F3) in (10), we arrive

$$
\begin{equation*}
N\left(\frac{a(2 y)}{2}-a(y), r\right) \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{2 r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{2 r}{2}\right)\right\} \tag{11}
\end{equation*}
$$

for all $y \in X, r>0$, with the help of (4) when $i=0$, it follows from (11), we get

$$
\begin{equation*}
N\left(\frac{a(2 y)}{2}-a(y), r\right) \geq N^{\prime}(\beta(y), L r) \Rightarrow d(T f, f) \leq L=L^{1-i} \tag{12}
\end{equation*}
$$

for all $y \in X, r>0$. Letting $y=\frac{y}{2}$ in (10), we obtain

$$
\begin{equation*}
N\left(a(y)-2 a\left(\frac{y}{2}\right), r\right) \geq \min \left\{N^{\prime}\left(\alpha\left(\frac{y}{2}, \frac{y}{2}\right), \frac{r}{8}\right), N^{\prime}\left(\alpha\left(y, \frac{y}{2}\right), \frac{r}{2}\right)\right\} \tag{13}
\end{equation*}
$$

for all $y \in X, r>0$, with the help of (4) when $i=1$, it follows from (13), we get

$$
\begin{equation*}
N\left(a(y)-2 a\left(\frac{y}{2}\right), r\right) \geq N^{\prime}(\beta(x), r) \Rightarrow d(f, T f) \leq 1=L^{0}=L^{1-i} \tag{14}
\end{equation*}
$$

Then from (12) and (14) we can conclude,

$$
d(f, T f) \leq L^{1-i}<\infty
$$

Now from the fixed point alternative in both cases, it follows that there exists a fixed point A of T in Ω such that

$$
\begin{equation*}
A(y)=N-\lim _{k \rightarrow \infty} \frac{f\left(2^{k} y\right)}{2^{k}}, \quad \forall y \in X, r>0 \tag{15}
\end{equation*}
$$

Replacing (x, y) by $\left(\delta_{i} x, \delta_{i} y\right)$ in (3), we arrive

$$
\begin{equation*}
N\left(\frac{1}{\delta_{i}} D f\left(\delta_{i} x, \delta_{i} y\right), r\right) \geq N^{\prime}\left(\alpha\left(\delta_{i} x, \delta_{i}\right), \delta_{i} r\right) \tag{16}
\end{equation*}
$$

for all $r>0$ and all $x, y \in X$. It is easy to prove the function $A: X \rightarrow Y$ satisfies the functional equation (1).
By fixed point alternative, since A is unique fixed point of T in the set

$$
\Delta=\{f \in \Omega \mid d(f, A)<\infty\}
$$

therefore A is a uniqe function such that

$$
\begin{equation*}
N(a(y)-A(y), r) \geq \min \left\{N^{\prime}(\alpha(y, y), K r), N^{\prime}(\alpha(2 y, y), K r)\right\} \tag{17}
\end{equation*}
$$

for all $y \in X, r>0$ and $K>0$. Again using the fixed point alternative, we obtain

$$
\begin{align*}
& d(f, A) \leq \frac{1}{1-L} d(f, T f) \\
\Rightarrow & d(f, A) \leq \frac{L^{1-i}}{1-L} \\
\Rightarrow & N(a(y)-A(y), r) \geq N^{\prime}\left(\beta(y), \frac{L^{1-i}}{1-L} r\right) \tag{18}
\end{align*}
$$

for all $y \in X$ and $r>0$. This completes the proof of the theorem.

From Theorem 2.3, we obtain the following corollary concerning the stability for the functional equation (1).
Corollary 2.4. Suppose that a function $f: X \rightarrow Y$ satisfies the inequality

$$
N(D f(x, y), r) \geq \begin{cases}N^{\prime}(\epsilon, r), \tag{19}\\ N^{\prime}\left(\epsilon\left\{\|x\|^{s}+\|y\|^{s}\right\}, r\right), & s \neq 1 \\ N^{\prime}\left(\epsilon\left\{\|x\|^{s}\|y\|^{s}\right\}, r\right), & s \neq \frac{1}{2} \\ N^{\prime}\left(\epsilon\left(\|x\|^{s}\|y\|^{s}+\|x\|^{2 s}+\|y\|^{2 s}\right), r\right), & s \neq \frac{1}{2}\end{cases}
$$

for all $x, y \in X$ and all $r>0$, where ϵ, s are constants with $\epsilon>0$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that
for all $y \in X$ and all $r>0$.

Proof. Setting

$$
\alpha(x, y)=\left\{\begin{array}{l}
\epsilon \\
\epsilon\left(\|x\|^{s}+\|y\|^{s}\right), \\
\epsilon\left(\|x\|^{s}\|y\|^{s}\right) \\
\epsilon\left(\|x\|^{s}\|y\|^{s}+\|x\|^{2 s}+\|y\|^{2 s}\right)
\end{array}\right.
$$

for all $x, y \in X$. Then,

$$
\begin{aligned}
N^{\prime}\left(\alpha\left(\delta_{i}^{k} x, \delta_{i}^{k} y\right), \delta_{i}^{k} r\right) & =\left\{\begin{array}{l}
N^{\prime}\left(\epsilon, \delta_{i}^{k} r\right) \\
N^{\prime}\left(\epsilon\left(\left\|\delta_{i}^{k} x\right\|^{s}+\left\|\delta_{i}^{k} y\right\|^{s}\right), \delta_{i}^{k} r\right) \\
N^{\prime}\left(\epsilon\left(\left\|\delta_{i}^{k} x\right\|^{s}\left\|\delta_{i}^{k} y\right\|^{s}\right), \delta_{i}^{k} r\right) \\
N^{\prime}\left(\epsilon\left(\left\|\delta_{i}^{k} x\right\|^{s}\left\|\delta_{i}^{k} y\right\|^{s}+\left\|\delta_{i}^{k} x\right\|^{2 s}+\left\|\delta_{i}^{k} y\right\|^{2 s}\right), \delta_{i}^{k} r\right)
\end{array}\right. \\
& =\left\{\begin{array} { l }
{ N ^ { \prime } (\epsilon , \delta _ { i } ^ { k } r) } \\
{ N ^ { \prime } (\epsilon (\| x \| ^ { s } + \| y \| ^ { s }) , \delta _ { i } ^ { (1 - s) k } r) } \\
{ N ^ { \prime } (\epsilon (\| x \| ^ { s } \| y \| ^ { s }) , \delta _ { i } ^ { (1 - 2 s) k } r) } \\
{ N ^ { \prime } (\epsilon (\| x \| ^ { s } \| y \| ^ { s } + \| x \| ^ { 2 s } + \| y \| ^ { 2 s }) , \delta _ { i } ^ { (1 - 2 s) k } r) }
\end{array} \left\{\begin{array}{l}
\rightarrow 1 \text { as } k \rightarrow \infty \\
\rightarrow 1 \text { as } k \rightarrow \infty \\
\rightarrow 1 \text { as } k \rightarrow \infty \\
\rightarrow 1 \text { as } k \rightarrow \infty .
\end{array}\right.\right.
\end{aligned}
$$

Thus, (2) is holds. But we have $N^{\prime}(\beta(y), r)=\min \left\{N^{\prime}\left(\alpha\left(\frac{y}{2}, \frac{y}{2}\right), \frac{r}{8}\right), N^{\prime}\left(\alpha\left(y, \frac{y}{2}\right), \frac{r}{2}\right)\right\}$, has the property

$$
N^{\prime}\left(L \frac{1}{\delta_{i}} \beta\left(\delta_{i} y\right), r\right) \geq N^{\prime}(\beta(y), r) \forall y \in X, r>0 .
$$

Hence

$$
\begin{aligned}
N^{\prime}(\beta(y), r) & =\min \left\{N^{\prime}\left(\alpha\left(\frac{y}{2}, \frac{y}{2}\right), \frac{r}{8}\right), N^{\prime}\left(\alpha\left(y, \frac{y}{2}\right), \frac{r}{2}\right)\right\} \\
& =\left\{\begin{array}{l}
\min \left\{N^{\prime}\left(\epsilon, \frac{r}{8}\right), N^{\prime}\left(\epsilon, \frac{r}{4}\right)\right\} \\
\min \left\{N^{\prime}\left(\frac{\epsilon}{2^{s}}\|y\|^{s}, \frac{r}{8}\right), N^{\prime}\left(\epsilon \frac{1+2^{s}}{2^{s}}\|y\|^{s}, \frac{r}{4}\right)\right\} \\
\min \left\{N^{\prime}\left(\frac{\epsilon}{2^{2 s}}\|y\|^{2 s}, \frac{r}{8}\right), N^{\prime}\left(\frac{\epsilon}{2^{s}}\|y\|^{2 s}, \frac{r}{4}\right)\right\} \\
\min \left\{N^{\prime}\left(\frac{3 \epsilon}{2^{2 s}}\|y\|^{2 s}, \frac{r}{8}\right), N^{\prime}\left(\epsilon\left(\frac{1+2^{s}}{2^{s}}+\frac{1}{2^{2 s}}\right)\|y\|^{2 s}, \frac{r}{4}\right)\right\}
\end{array}\right.
\end{aligned}
$$

Now,

$$
\begin{aligned}
& =\left\{\begin{array}{l}
\min \left\{N^{\prime}\left(\epsilon, \frac{\delta_{i} r}{8}\right), N^{\prime}\left(\epsilon, \frac{\delta_{i} r}{4}\right)\right\} \\
\min \left\{N^{\prime}\left(\frac{\epsilon}{2^{s}}\|y\|^{s}, \frac{\delta_{i}^{1-s} r}{8}\right), N^{\prime}\left(\epsilon \frac{1+2^{s}}{2^{s}}\|y\|^{s}, \frac{\delta_{i}^{1-s} r}{4}\right)\right\} \\
\min \left\{N^{\prime}\left(\frac{\epsilon}{2^{2 s}}\|y\|^{2 s}, \frac{\delta_{i}^{1-2 s} r}{8}\right), N^{\prime}\left(\frac{\epsilon}{2^{s}}\|y\|^{2 s}, \frac{\delta_{i}^{1-2 s} r}{4}\right)\right\} \\
\min \left\{N^{\prime}\left(\frac{3 \epsilon}{2^{2 s}}\|y\|^{2 s}, \frac{\delta_{i}^{1-2 s} r}{8}\right), N^{\prime}\left(\epsilon\left(\frac{1+2^{s}}{2^{s}}+\frac{1}{2^{2 s}}\right)\|y\|^{2 s}, \frac{\delta_{i}^{1-2 s} r}{4}\right)\right\}
\end{array}\right.
\end{aligned}
$$

Now from (5), we desired (20).

Theorem 2.5. Let $f: X \rightarrow Y$ be a mapping for which there exist a function $\alpha: X^{2} \rightarrow Z$ with the condition

$$
\begin{equation*}
\lim _{k \rightarrow \infty} N^{\prime}\left(\alpha\left(\delta_{i}^{k} x, \delta_{i}^{k} y\right), \delta_{i}^{3 k} r\right)=1, \quad \forall x, y \in X, r>0 \tag{21}
\end{equation*}
$$

and satisfying the functional inequality

$$
\begin{equation*}
N(D f(x, y), r) \geq N^{\prime}(\alpha(x, y), r), \forall x, y \in X, r>0 . \tag{22}
\end{equation*}
$$

If there exists $L=L(i)$ such that the function

$$
x \rightarrow N^{\prime}(\beta(y), r)=\min \left\{N^{\prime}\left(\alpha\left(\frac{y}{2}, \frac{y}{2}\right), \frac{r}{8}\right), N^{\prime}\left(\alpha\left(y, \frac{y}{2}\right), \frac{r}{2}\right)\right\},
$$

has the property

$$
\begin{equation*}
N^{\prime}\left(L \frac{1}{\delta_{i}^{3}} \beta\left(\delta_{i} x\right), r\right)=N^{\prime}(\beta(x), r), \forall x \in X, r>0 . \tag{23}
\end{equation*}
$$

Then there exists unique cubic function $C: X \rightarrow Y$ satisfying the functional equation (1) and

$$
\begin{equation*}
N(f(2 y)-2 f(y)-C(y), r) \geq \min \left\{N^{\prime}\left(\alpha(y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{8}\right), N^{\prime}\left(\alpha(2 y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{4}\right)\right\} \tag{24}
\end{equation*}
$$

Proof. It is easy to see from (9) that

$$
\begin{align*}
N(f(4 y)-2 f(2 y)-8 f(2 y), r) & \geq \min \left\{N\left(4(f(3 y)-4 f(2 y)+5 f(y)), \frac{r}{2}\right), N\left(f(4 y)-4 f(3 y)+6 f(2 y)-4 f(y), \frac{r}{2}\right)\right\} \\
& \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{r}{2}\right)\right\} \tag{25}
\end{align*}
$$

for all $y \in X$ and all $r>0$. Let $h: X \rightarrow Y$ be a mapping defined by $h(y)=f(2 y)-2 f(y)$. Then we conclude that

$$
\begin{equation*}
N(h(2 y)-8 h(y), r) \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{r}{2}\right)\right\} \tag{26}
\end{equation*}
$$

for all $y \in X$ and all $r>0$. The rest of the proof is similar to that of Theorem 2.3.

The following corollary is an immediate consequence of Theorem 2.5 concerning the Ulam-Hyers stability of the functional equation(1).

Corollary 2.6. Suppose that a function $f: X \rightarrow Y$ satisfies the inequality

$$
N(D f(x, y), r) \geq \begin{cases}N^{\prime}(\epsilon, r), & s \neq 3 \tag{27}\\ N^{\prime}\left(\epsilon\left\{\|x\|^{s}+\|y\|^{s}\right\}, r\right), & s \neq \frac{3}{2} \\ N^{\prime}\left(\epsilon\left\{\|x\|^{s}\|y\|^{s}\right\}, r\right), & s \neq \frac{3}{2} \\ N^{\prime}\left(\epsilon\left(\|x\|^{s}\|y\|^{s}+\|x\|^{2 s}+\|y\|^{2 s}\right), r\right),\end{cases}
$$

for all $x, y \in X$ and all $r>0$, where ϵ,s are constants with $\epsilon>0$. Then there exists a unique cubic mapping $C: X \rightarrow Y$ such that
for all $y \in X$ and all $r>0$.

Theorem 2.7. Let $f: X \rightarrow Y$ be a mapping for which there exist a function $\alpha: X^{2} \rightarrow Z$ with the conditions

$$
\begin{equation*}
\lim _{k \rightarrow \infty} N^{\prime}\left(\alpha\left(\delta_{i}^{k} x, \delta_{i}^{k} y\right), \delta_{i}^{k} r\right)=1, \lim _{k \rightarrow \infty} N^{\prime}\left(\alpha\left(\delta_{i}^{k} x, \delta_{i}^{k} y\right), \delta_{i}^{3 k} r\right)=1, \quad \forall x, y \in X, r>0 \tag{29}
\end{equation*}
$$

and satisfying the functional inequality

$$
\begin{equation*}
N(D f(x, y), r) \geq N^{\prime}(\alpha(x, y), r), \forall x, y \in X, r>0 . \tag{30}
\end{equation*}
$$

If there exists $L=L(i)$ such that the function

$$
x \rightarrow N^{\prime}(\beta(y), r)=\min \left\{N^{\prime}\left(\alpha\left(\frac{y}{2}, \frac{y}{2}\right), \frac{r}{8}\right), N^{\prime}\left(\alpha\left(y, \frac{y}{2}\right), \frac{r}{2}\right)\right\},
$$

has the property

$$
\begin{equation*}
N^{\prime}\left(L \frac{1}{\delta_{i}} \beta\left(\delta_{i} y\right), r\right)=N^{\prime}(\beta(y), r), N^{\prime}\left(L \frac{1}{\delta_{i}^{3}} \beta\left(\delta_{i} y\right), r\right)=N^{\prime}(\beta(y), r), \forall y \in X, r>0 . \tag{31}
\end{equation*}
$$

Then there exists unique additive function $A: X \rightarrow Y$ and unique cubic function $C: X \rightarrow Y$ satisfying the functional equation (1) and

$$
\begin{array}{r}
N(f(y)-A(y)-C(y), r) \geq \min \left\{N^{\prime}\left(\alpha(y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{8}\right), N^{\prime}\left(\alpha(2 y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{4}\right),\right. \\
\left.N^{\prime}\left(\alpha(y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{8}\right), N^{\prime}\left(\alpha(2 y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{4}\right)\right\} \tag{32}
\end{array}
$$

Proof. By Theorems 2.3 and 2.5, there exists a unique additive function $A_{1}: X \rightarrow Y$ and a unique cubic function $C_{1}: X \rightarrow Y$ such that

$$
\begin{equation*}
N\left(f(2 y)-8 f(y)-A_{1}(y), r\right) \geq \min \left\{N^{\prime}\left(\alpha(y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{8}\right), N^{\prime}\left(\alpha(2 y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{4}\right)\right\} \tag{33}
\end{equation*}
$$

for all $y \in X$ and all $r>0$ and

$$
\begin{equation*}
N\left(f(2 y)-2 f(y)-C_{1}(y), r\right) \geq \min \left\{N^{\prime}\left(\alpha(y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{8}\right), N^{\prime}\left(\alpha(2 y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{4}\right)\right\} \tag{34}
\end{equation*}
$$

for all $y \in X$ and all $r>0$. Now from (33) and (34), one can see that

$$
\begin{aligned}
& N\left(f(y)+\frac{1}{6} A_{1}(y)-\frac{1}{6} C_{1}(y), 2 r\right)=N\left(-\frac{f(2 y)}{6}+\frac{8}{6} f(y)+\frac{1}{6} A_{1}(y)+\frac{f(2 y)}{6}-\frac{2}{6} f(y)-\frac{1}{6} C_{1}(y), \frac{2 r}{6}\right) \\
& \geq \min \left\{N\left(\frac{f(2 y)}{6}-\frac{8}{6} f(y)-\frac{1}{6} A_{1}(y), \frac{r}{6}\right), N\left(\frac{f(2 y)}{6}-\frac{2}{6} f(y)-\frac{1}{6} C_{1}(y), \frac{r}{6}\right)\right\} \\
& \geq \min \left\{N\left(f(2 y)-8 f(y)-A_{1}(y), r\right), N\left(f(2 y)-2 f(y)-C_{1}(y), r\right)\right\} \\
& \geq \min \left\{N^{\prime}\left(\alpha(y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{8}\right), N^{\prime}\left(\alpha(2 y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{4}\right),\right. \\
&\left.N^{\prime}\left(\alpha(y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{8}\right), N^{\prime}\left(\alpha(2 y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{4}\right)\right\}
\end{aligned}
$$

for all $y \in X$ and all $r>0$. Thus we obtain (32) by defining $A(y)=\frac{-1}{6} A_{1}(y)$ and $C(y)=\frac{1}{6} C_{1}(y)$ for all $y \in X$ and all $r>0$.

Corollary 2.8. Suppose that a function $f: X \rightarrow Y$ satisfies the inequality

$$
N(D f(x, y), r) \geq \begin{cases}N^{\prime}(\epsilon, r), & s \neq 1,3 ; \tag{35}\\ N^{\prime}\left(\epsilon\left\{\|x\|^{s}+\|y\|^{s}\right\}, r\right), & s \neq \frac{1}{2}, \frac{3}{2} ; \\ N^{\prime}\left(\epsilon\left\{\|x\|^{s}\|y\|^{s}\right\}, r\right), & s \neq \frac{1}{2}, \frac{3}{2} ;\end{cases}
$$

for all $x, y \in X$ and all $r>0$, where ϵ, s are constants with $\epsilon>0$. Then there exists a unique additive mapping $A: X \rightarrow Y$ and a unique Cubic mapping $C: X \rightarrow Y$ such that

$$
N(f(x)-A(x)-C(x), r) \geq\left\{\begin{array}{c}
\min \left\{N^{\prime}\left(\epsilon, \frac{|2| r}{8}\right), N^{\prime}\left(\epsilon, \frac{|2| r}{4}\right), N^{\prime}\left(\epsilon, \frac{r}{|7|}\right), N^{\prime}\left(\epsilon, \frac{2 r}{|7|}\right)\right\} \tag{36}\\
\min \left\{N^{\prime}\left(\frac{\epsilon}{2^{s}}\|y\|^{s}, \frac{r}{4\left|2^{s}-2\right|}\right), N^{\prime}\left(\epsilon \frac{1+2^{s}}{2^{s}}\|y\|^{s}, \frac{r}{2\left|2^{s}-2\right|}\right),\right. \\
\left.N^{\prime}\left(\frac{\epsilon}{2^{s}}\|y\|^{s}, \frac{r}{\left|2^{s}-2^{3}\right|}\right), N^{\prime}\left(\epsilon \frac{1+2^{s}}{2^{s}}\|y\|^{s}, \frac{2 r}{\left|2^{s}-2^{3}\right|}\right)\right\} \\
\min \left\{N^{\prime}\left(\frac{\epsilon}{2^{2 s}}\|y\|^{2 s}, \frac{r}{4\left|2^{2 s}-2\right|}\right), N^{\prime}\left(\frac{\epsilon}{2^{s}}\|y\|^{2 s}, \frac{r}{2\left|2^{2 s}-2\right|}\right),\right. \\
\left.N^{\prime}\left(\frac{\epsilon}{2^{2 s}}\|y\|^{2 s}, \frac{r}{\left|2^{2 s}-2^{3}\right|}\right), N^{\prime}\left(\frac{\epsilon}{2^{s}}\|y\|^{2 s}, \frac{r}{2\left|2^{2 s}-2^{3}\right|}\right)\right\} \\
\min \left\{N^{\prime}\left(\frac{3 \epsilon}{2^{2 s}}\|y\|^{2 s}, \frac{r}{4\left|2^{2 s}-2\right|}\right), N^{\prime}\left(\epsilon\left(\frac{1+2^{s}}{2^{s}}+\frac{1}{2^{2 s}}\right)\|y\|^{2 s}, \frac{r}{2\left|2^{2 s}-2\right|}\right),\right. \\
\left.N^{\prime}\left(\frac{3 \epsilon}{2^{2 s}}\|y\|^{2 s}, \frac{r}{\left|2^{2 s}-2^{3}\right|}\right), N^{\prime}\left(\epsilon\left(\frac{1+2^{s}}{2^{s}}+\frac{1}{2^{2 s}}\right)\|y\|^{2 s}, \frac{2 r}{22^{2 s}-2^{3} \mid}\right)\right\}
\end{array}\right.
$$

for all $y \in X$ and all $r>0$.
Theorem 2.9. Let $f: X \rightarrow Y$ be a mapping for which there exist a function $\alpha: X^{2} \rightarrow Z$ with the condition

$$
\begin{equation*}
\lim _{k \rightarrow \infty} N^{\prime}\left(\alpha\left(\delta_{i}^{k} x, \delta_{i}^{k} y\right), \delta_{i}^{2 k} r\right)=1, \quad \forall x, y \in X, r>0 \tag{37}
\end{equation*}
$$

and satisfying the functional inequality

$$
\begin{equation*}
N(D f(x, y), r) \geq N^{\prime}(\alpha(x, y), r), \forall x, y \in X, r>0 . \tag{38}
\end{equation*}
$$

If there exists $L=L(i)$ such that the function

$$
x \rightarrow N^{\prime}(\beta(y), r)=\min \left\{N^{\prime}\left(\alpha\left(\frac{y}{2}, \frac{y}{2}\right), \frac{r}{8}\right), N^{\prime}\left(\alpha\left(y, \frac{y}{2}\right), \frac{r}{2}\right)\right\},
$$

has the property

$$
\begin{equation*}
N^{\prime}\left(L \frac{1}{\delta_{i}^{2}} \beta\left(\delta_{i} y\right), r\right)=N^{\prime}(\beta(y), r), \forall y \in X, r>0 . \tag{39}
\end{equation*}
$$

Then there exists unique quadratic function $Q_{2}: X \rightarrow Y$ satisfying the functional equation (1) and

$$
\begin{equation*}
N\left(f(2 y)-16 f(y)-Q_{2}(y), r\right) \geq \min \left\{N^{\prime}\left(\alpha(y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{8}\right), N^{\prime}\left(\alpha(2 y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{4}\right)\right\} \tag{40}
\end{equation*}
$$

Proof. It is easy to see from (9) that

$$
\begin{equation*}
N(f(3 y)-6 f(2 y)+15 f(y), r) \geq N^{\prime}(\alpha(y, y), r) \tag{41}
\end{equation*}
$$

for all $y \in X$ and all $r>0$. Replacing x by $2 y$ in (9), we obtain

$$
\begin{equation*}
N(f(4 y)-4 f(3 y)+4 f(2 y)+4 f(y), r) \geq N^{\prime}(\alpha(2 y, y), r) \tag{42}
\end{equation*}
$$

for all $y \in X$ and all $r>0$. It follows from (41) and (42) that

$$
\begin{align*}
N(f(4 y)-20 f(2 y)+64 f(2 y), r) & \geq \min \left\{N\left(4(f(3 y)-24 f(2 y)+60 f(y)), \frac{r}{2}\right), N\left(f(4 y)-4 f(3 y)+4 f(2 y)+4 f(y), \frac{r}{2}\right)\right\} \\
& \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{r}{2}\right)\right\} \tag{43}
\end{align*}
$$

for all $y \in X$ and all $r>0$. Let $q_{2}: X \rightarrow Y$ be a mapping defined by $q_{2}(x)=f(2 x)-16 f(x)$. Then we conclude that

$$
\begin{equation*}
N\left(q_{2}(2 y)-4 q_{2}(y), r\right) \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{r}{2}\right)\right\} \tag{44}
\end{equation*}
$$

for all $y \in X$ and all $r>0$. The rest of the proof is similar to that of Theorem 2.3.

The following corollary is an immediate consequence of Theorem 2.9 concerning the Ulam-Hyers stability of the functional equation(1).

Corollary 2.10. Suppose that a function $f: X \rightarrow Y$ satisfies the inequality

$$
N(D f(x, y), r) \geq \begin{cases}N^{\prime}(\epsilon, r), & s \neq 2 \tag{45}\\ N^{\prime}\left(\epsilon\left\{\|x\|^{s}+\|y\|^{s}\right\}, r\right), & s \neq 1 \\ N^{\prime}\left(\epsilon\left\{\|x\|^{s}\|y\|^{s}\right\}, r\right), & s \neq 1\end{cases}
$$

for all $x, y \in X$ and all $r>0$, where ϵ,s are constants with $\epsilon>0$. Then there exists a unique quadratic mapping $Q_{2}: X \rightarrow Y$ and a such that
for all $y \in X$ and all $r>0$.
Theorem 2.11. Let $f: X \rightarrow Y$ be a mapping for which there exist a function $\alpha: X^{2} \rightarrow Z$ with the condition

$$
\begin{equation*}
\lim _{k \rightarrow \infty} N^{\prime}\left(\alpha\left(\delta_{i}^{k} x, \delta_{i}^{k} y\right), \delta_{i}^{4 k} r\right)=1, \quad \forall x, y \in X, r>0 \tag{47}
\end{equation*}
$$

and satisfying the functional inequality

$$
\begin{equation*}
N(D f(x, y), r) \geq N^{\prime}(\alpha(x, y), r), \forall x, y \in X, r>0 . \tag{48}
\end{equation*}
$$

If there exists $L=L(i)$ such that the function

$$
x \rightarrow N^{\prime}(\beta(y), r)=\min \left\{N^{\prime}\left(\alpha\left(\frac{y}{2}, \frac{y}{2}\right), \frac{r}{8}\right), N^{\prime}\left(\alpha\left(y, \frac{y}{2}\right), \frac{r}{2}\right)\right\},
$$

has the property

$$
\begin{equation*}
N^{\prime}\left(L \frac{1}{\delta_{i}^{4}} \beta\left(\delta_{i} y\right), r\right)=N^{\prime}(\beta(y), r), \forall y \in X, r>0 \tag{49}
\end{equation*}
$$

Then there exists unique quartic function $Q_{4}: X \rightarrow Y$ satisfying the functional equation (1) and

$$
\begin{equation*}
N\left(f(2 y)-4 f(y)-Q_{4}(y), r\right) \geq \min \left\{N^{\prime}\left(\alpha(y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{8}\right), N^{\prime}\left(\alpha(2 y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{4}\right)\right\} \tag{50}
\end{equation*}
$$

Proof. It is easy to see from (43)

$$
\begin{equation*}
N(f(4 y)-4 f(2 y)-16 f(2 y), r) \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{r}{2}\right)\right\} \tag{51}
\end{equation*}
$$

for all $y \in X$ and all $r>0$. Let $q_{4}: X \rightarrow Y$ be a mapping defined by $q_{4}(x)=f(2 x)-4 f(x)$. Then we conclude that

$$
\begin{equation*}
N\left(q_{4}(2 y)-16 q_{4}(y), r\right) \geq \min \left\{N^{\prime}\left(\alpha(y, y), \frac{r}{8}\right), N^{\prime}\left(\alpha(2 y, y), \frac{r}{2}\right)\right\} \tag{52}
\end{equation*}
$$

for all $y \in X$ and all $r>0$. The rest of the proof is similar to that of Theorem 2.3.

The following corollary is an immediate consequence of Theorem 2.11 concerning the Ulam-Hyers stability of the functional equation(1).

Corollary 2.12. Suppose that a function $f: X \rightarrow Y$ satisfies the inequality

$$
N(D f(x, y), r) \geq \begin{cases}N^{\prime}(\epsilon, r), & s \neq 4 ; \tag{53}\\ N^{\prime}\left(\epsilon\left\{\|x\|^{s}+\|y\|^{s}\right\}, r\right), & s \neq 2 ; \\ N^{\prime}\left(\epsilon\left\{\|x\|^{s}\|y\|^{s}\right\}, r\right), & \\ N^{\prime}\left(\epsilon\left(\|x\|^{s}\|y\|^{s}+\|x\|^{2 s}+\|y\|^{2 s}\right), r\right), & s \neq 2\end{cases}
$$

for all $x, y \in X$ and all $r>0$, where ϵ, s are constants with $\epsilon>0$. Then there exists a unique quartic mapping $Q_{4}: X \rightarrow Y$ such that
for all $y \in X$ and all $r>0$.
Theorem 2.13. Let $f: X \rightarrow Y$ be a mapping for which there exist a function $\alpha: X^{2} \rightarrow Z$ with the conditions

$$
\begin{equation*}
\lim _{k \rightarrow \infty} N^{\prime}\left(\alpha\left(\delta_{i}^{k} x, \delta_{i}^{k} y\right), \delta_{i}^{2 k} r\right)=1, \lim _{k \rightarrow \infty} N^{\prime}\left(\alpha\left(\delta_{i}^{k} x, \delta_{i}^{k} y\right), \delta_{i}^{4 k} r\right)=1, \quad \forall x, y \in X, r>0 \tag{55}
\end{equation*}
$$

and satisfying the functional inequality

$$
\begin{equation*}
N(D f(x, y), r) \geq N^{\prime}(\alpha(x, y), r), \forall x, y \in X, r>0 . \tag{56}
\end{equation*}
$$

If there exists $L=L(i)$ such that the function

$$
x \rightarrow N^{\prime}(\beta(y), r)=\min \left\{N^{\prime}\left(\alpha\left(\frac{y}{2}, \frac{y}{2}\right), \frac{r}{8}\right), N^{\prime}\left(\alpha\left(y, \frac{y}{2}\right), \frac{r}{2}\right)\right\},
$$

has the property

$$
\begin{equation*}
N^{\prime}\left(L \frac{1}{\delta_{i}} \beta\left(\delta_{i}^{2} y\right), r\right)=N^{\prime}(\beta(y), r), N^{\prime}\left(L \frac{1}{\delta_{i}^{4}} \beta\left(\delta_{i} y\right), r\right)=N^{\prime}(\beta(y), r), \forall y \in X, r>0 . \tag{57}
\end{equation*}
$$

Then there exists unique quadratic function $Q_{2}: X \rightarrow Y$ and unique quartic function $Q_{4}: X \rightarrow Y$ satisfying the functional equation (1) and

$$
\begin{array}{r}
N\left(f(y)-Q_{2}(y)-Q_{4}(y), r\right) \geq \min \left\{N^{\prime}\left(\alpha(y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{8}\right), N^{\prime}\left(\alpha(2 y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{4}\right),\right. \\
\left.N^{\prime}\left(\alpha(y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{8}\right), N^{\prime}\left(\alpha(2 y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{4}\right)\right\} \tag{58}
\end{array}
$$

Proof. By Theorems 2.9 and 2.11, there exists a unique quadratic function $Q_{2}: X \rightarrow Y$ and a quartic function $Q_{4}: X \rightarrow Y$ such that

$$
\begin{equation*}
N\left(f(2 y)-16 f(y)-Q_{2_{1}}(y), r\right) \geq \min \left\{N^{\prime}\left(\alpha(y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{8}\right), N^{\prime}\left(\alpha(2 y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{4}\right)\right\} \tag{59}
\end{equation*}
$$

for all $y \in X$ and all $r>0$ and

$$
\begin{equation*}
N\left(f(2 y)-4 f(y)-Q_{4_{1}}(y), r\right) \geq \min \left\{N^{\prime}\left(\alpha(y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{8}\right), N^{\prime}\left(\alpha(2 y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{4}\right)\right\} \tag{60}
\end{equation*}
$$

for all $y \in X$ and all $r>0$. Now from (59) and (60), one can see that

$$
\begin{aligned}
& N\left(f(y)+\frac{1}{12} Q_{2_{1}}(y)-\frac{1}{12} Q_{4_{1}}(y), 2 r\right) \\
& \geq \min \left\{N\left(\frac{f(2 y)}{12}-\frac{16}{12} f(y)-\frac{1}{12} Q_{2_{1}}(y), \frac{r}{12}\right), N\left(\frac{f(2 y)}{12}-\frac{4}{12} f(y)-\frac{1}{12} Q_{4_{1}}(y), \frac{r}{12}\right)\right\} \\
& \geq \min \left\{N\left(f(2 y)-16 f(y)-Q_{2_{1}}(y), r\right), N\left(f(2 y)-4 f(y)-Q_{4_{1}}(y), r\right)\right\} \\
& \geq \min \left\{N^{\prime}\left(\alpha(y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{8}\right), N^{\prime}\left(\alpha(2 y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{4}\right), N^{\prime}\left(\alpha(y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{8}\right), N^{\prime}\left(\alpha(2 y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{4}\right)\right\}
\end{aligned}
$$

for all $y \in X$ and all $r>0$. Thus we obtain (58) by defining $Q_{2}(y)=\frac{-1}{12} Q_{2_{1}}(y)$ and $Q_{4}(y)=\frac{1}{12} Q_{4_{1}}(y)$ for all $y \in X$ and all $r>0$.

The following corollary is an immediate consequence of Theorem 2.13 concerning the Ulam-Hyers stability of the functional equation(1).

Corollary 2.14. Suppose that a function $f: X \rightarrow Y$ satisfies the inequality

$$
N(D f(x, y), r) \geq \begin{cases}N^{\prime}(\epsilon, r), & s \neq 2,4 \tag{61}\\ N^{\prime}\left(\epsilon\left\{\|x\|^{s}+\|y\|^{s}\right\}, r\right), & s \neq 1,2 \\ N^{\prime}\left(\epsilon\left\{\|x\|^{s}\|y\|^{s}\right\}, r\right), & \\ N^{\prime}\left(\epsilon\left(\|x\|^{s}\|y\|^{s}+\|x\|^{2 s}+\|y\|^{2 s}\right), r\right), & s \neq 1,2\end{cases}
$$

for all $x, y \in X$ and all $r>0$, where ϵ,s are constants with $\epsilon>0$. Then there exists a unique quadratic mapping $Q_{2}: X \rightarrow Y$ and a unique quartic mapping $Q_{4}: X \rightarrow Y$ such that

$$
N\left(f(y)-Q_{2}(y)-Q_{4}(y), r\right) \geq\left\{\begin{array}{l}
\min \left\{N^{\prime}\left(\epsilon, \frac{r}{2|3|}\right), N^{\prime}\left(\epsilon, \frac{r}{|3|}\right), N^{\prime}\left(\epsilon, \frac{2 r}{|15|}\right), N^{\prime}\left(\epsilon, \frac{4 r}{|15|}\right)\right\} \tag{62}\\
\min \left\{N^{\prime}\left(\frac{\epsilon}{2^{s}}\|y\|^{s}, \frac{r}{2\left[2^{s}-2^{2} \mid\right.}\right), N^{\prime}\left(\epsilon \frac{1+2^{s}}{2^{s}}\|y\| \|^{s}, \frac{r}{\left|2^{s}-2^{2}\right|}\right),\right. \\
\left.N^{\prime}\left(\frac{\epsilon}{2^{s}}\|y\|^{s}, \frac{2 r}{\left|2^{s}-2^{4}\right|}\right), N^{\prime}\left(\epsilon \frac{1+2^{s}}{2^{s}}\|y\|^{s}, \frac{4 r}{2^{s}-2^{4} \mid}\right)\right\} \\
\min \left\{N^{\prime}\left(\frac{\epsilon}{2^{2 s}}\|y\|^{2 s}, \frac{r}{2\left|2^{2 s}-2^{2}\right|}\right), N^{\prime}\left(\frac{\epsilon}{2^{s}}\|y\|^{2 s}, \frac{r}{\left|2^{2 s}-2^{2}\right|}\right),\right. \\
\left.N^{\prime}\left(\frac{\epsilon}{2^{2 s}}\|y\|^{2 s}, \frac{2 r}{22^{2 s}}\right), N^{\prime}\left(\frac{\epsilon}{2^{s}}\|y\|^{2 s}, \frac{4 r}{\left|2^{2 s}-2^{4}\right|}\right)\right\} \\
\min \left\{N^{\prime}\left(\frac{3 \epsilon}{2^{2 s}}\|y\|^{2 s}, \frac{r}{2\left|2^{2 s}-2^{2}\right|}\right), N^{\prime}\left(\epsilon\left(\frac{1+2^{s}}{2^{s}}+\frac{1}{2^{2 s}}\right)\|y\|^{2 s}, \frac{r}{\left|2^{2 s}-2^{2}\right|}\right),\right. \\
\left.N^{\prime}\left(\frac{3 \epsilon}{2^{2 s}}\|y\|^{2 s}, \frac{2 r}{\left|2^{2 s}-2^{4}\right|}\right), N^{\prime}\left(\epsilon\left(\frac{1+2^{s}}{2^{s}}+\frac{1}{2^{2 s}}\right)\|y\|^{2 s}, \frac{4 r}{\left|2^{2 s}-2^{4}\right|}\right)\right\}
\end{array}\right.
$$

for all $y \in X$ and all $r>0$.

Theorem 2.15. Let $f: X \rightarrow Y$ be a mapping for which there exist a function $\alpha: X^{2} \rightarrow Z$ with the conditions

$$
\begin{align*}
& \lim _{k \rightarrow \infty} N^{\prime}\left(\alpha\left(\delta_{i}^{k} x, \delta_{i}^{k} y\right), \delta_{i}^{k} r\right)=1, \lim _{k \rightarrow \infty} N^{\prime}\left(\alpha\left(\delta_{i}^{k} x, \delta_{i}^{k} y\right), \delta_{i}^{2 k} r\right)=1, \\
& \lim _{k \rightarrow \infty} N^{\prime}\left(\alpha\left(\delta_{i}^{k} x, \delta_{i}^{k} y\right), \delta_{i}^{3 k} r\right)=1, \lim _{k \rightarrow \infty} N^{\prime}\left(\alpha\left(\delta_{i}^{k} x, \delta_{i}^{k} y\right), \delta_{i}^{4 k} r\right)=1, \quad \forall x, y \in X, r>0 \tag{63}
\end{align*}
$$

and satisfying the functional inequality

$$
\begin{equation*}
N(D f(x, y), r) \geq N^{\prime}(\alpha(x, y), r), \forall x, y \in X, r>0 . \tag{64}
\end{equation*}
$$

If there exists $L=L(i)$ such that the function

$$
x \rightarrow N^{\prime}(\beta(y), r)=\min \left\{N^{\prime}\left(\alpha\left(\frac{y}{2}, \frac{y}{2}\right), \frac{r}{8}\right), N^{\prime}\left(\alpha\left(y, \frac{y}{2}\right), \frac{r}{2}\right)\right\},
$$

has the property

$$
\begin{align*}
& N^{\prime}\left(L \frac{1}{\delta_{i}} \beta\left(\delta_{i} x\right), r\right)=N^{\prime}(\beta(x), r), N^{\prime}\left(L \frac{1}{\delta_{i}^{2}} \beta\left(\delta_{i} x\right), r\right)=N^{\prime}(\beta(x), r), \\
& N^{\prime}\left(L \frac{1}{\delta_{i}} \beta\left(\delta_{i}^{3} x\right), r\right)=N^{\prime}(\beta(x), r), N^{\prime}\left(L \frac{1}{\delta_{i}^{4}} \beta\left(\delta_{i} x\right), r\right)=N^{\prime}(\beta(x), r), \forall x \in X, r>0 . \tag{65}
\end{align*}
$$

Then there exists a unique additive mapping $A: X \rightarrow Y$, a unique quadratic mapping $Q_{2}: X \rightarrow Y$, a unique cubic cubic mapping $C: X \rightarrow Y$ and unique quartic mapping $Q_{4}: X \rightarrow Y$ satisfying the functional equation (1) and

$$
\begin{align*}
& N\left(f(y)-A(y)-Q_{2}(y)-C(y)-Q_{4}(y), r\right) \\
& \geq \min \left\{N^{\prime}\left(\alpha(y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{16}\right), N^{\prime}\left(\alpha(-y,-y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{16}\right), N^{\prime}\left(\alpha(2 y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{8}\right),\right. \\
& \quad N^{\prime}\left(\alpha(-2 y,-y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{8}\right), N^{\prime}\left(\alpha(y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{16}\right), N^{\prime}\left(\alpha(-y,-y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{16}\right), \\
& \quad N^{\prime}\left(\alpha(2 y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{8}\right), N^{\prime}\left(\alpha(-2 y,-y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{8}\right), N^{\prime}\left(\alpha(y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{16}\right), \\
& \quad N^{\prime}\left(\alpha(-y,-y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{16}\right), N^{\prime}\left(\alpha(2 y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{8}\right), N^{\prime}\left(\alpha(-2 y,-y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{8}\right), \\
& \quad N^{\prime}\left(\alpha(y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{16}\right), N^{\prime}\left(\alpha(-y,-y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{16}\right), \\
& \left.\quad N^{\prime}\left(\alpha(2 y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{8}\right), N^{\prime}\left(\alpha(-2 y,-y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{8}\right)\right\} \tag{66}
\end{align*}
$$

Proof. Let $f_{a c}(y)=\frac{f_{o}(y)-f_{o}(-y)}{2}$ for all $y \in X$. Then $f_{a c}(0)=0$ and $f_{o}(-y)=-f_{o}(y)$ for all $y \in X$. Hence

$$
\begin{equation*}
N\left(D f_{a c}(x, y), r\right) \geq \min \left\{N^{\prime}\left(\alpha(x, y), \frac{r}{2}\right), N^{\prime}\left(\alpha(-x,-y), \frac{r}{2}\right)\right\} \tag{67}
\end{equation*}
$$

for all $y \in X$ and all $r>0$. By Theorem (2.7), there exists a unique additive mapping $A: X \rightarrow Y$ and a unique cubic mapping $C: X \rightarrow Y$ such that

$$
\begin{align*}
N\left(f_{a c}(y)-A(y)-C(y), r\right) \geq & \min \left\{N^{\prime}\left(\alpha(y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{8}\right), N^{\prime}\left(\alpha(-y,-y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{8}\right),\right. \\
& N^{\prime}\left(\alpha(2 y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{4}\right), N^{\prime}\left(\alpha(-2 y,-y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{4}\right), \\
& N^{\prime}\left(\alpha(y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{8}\right), N^{\prime}\left(\alpha(-y,-y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{8}\right), \\
& \left.N^{\prime}\left(\alpha(2 y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{4}\right), N^{\prime}\left(\alpha(-2 y,-y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{4}\right)\right\} \tag{68}
\end{align*}
$$

for all $y \in X$ and all $r>0$. Also, let $f_{q q}(y)=\frac{f_{e}(y)+f_{e}(-y)}{2}$ for all $y \in X$. Then $f_{q q}(0)=0$ and $f_{o}(-y)=f_{o}(y)$ for all $y \in X$. Hence

$$
\begin{equation*}
N\left(D f_{q q}(x, y), r\right) \geq \min \left\{N^{\prime}\left(\alpha(x, y), \frac{r}{2}\right), N^{\prime}\left(\alpha(-x,-y), \frac{r}{2}\right)\right\} \tag{69}
\end{equation*}
$$

for all $y \in X$ and all $r>0$. By Theorem 2.13, there exists a unique quadratic mapping $Q_{2}: X \rightarrow Y$, and a unique quartic mapping $Q_{4}: X \rightarrow Y$ such that

$$
\begin{align*}
N\left(f_{q q}(y)-Q_{2}(y)-Q_{4}(y), r\right) \geq & \min \left\{N^{\prime}\left(\alpha(y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{8}\right), N^{\prime}\left(\alpha(-y,-y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{8}\right),\right. \\
& N^{\prime}\left(\alpha(2 y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{4}\right), N^{\prime}\left(\alpha(-2 y,-y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{4}\right), \\
& N^{\prime}\left(\alpha(y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{8}\right), N^{\prime}\left(\alpha(-y,-y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{8}\right), \\
& \left.N^{\prime}\left(\alpha(2 y, y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{4}\right), N^{\prime}\left(\alpha(-2 y,-y),\left(\frac{L^{1-i}}{1-L}\right) \frac{r}{4}\right)\right\} \tag{70}
\end{align*}
$$

for all $y \in X$ and all $r>0$. Define a function $f(y)$ by

$$
\begin{equation*}
f(y)=f_{a c}(y)+f_{q q}(y) \tag{71}
\end{equation*}
$$

for all $y \in X$. Combining (71), (68) and (70), we arrive our result.

The following corollary is an immediate consequence of Theorem 2.15 concerning the Ulam-Hyers stability of the functional equation(1).

Corollary 2.16. Suppose that a function $f: X \rightarrow Y$ satisfies the inequality

$$
N(D f(x, y), r) \geq \begin{cases}N^{\prime}(\epsilon, r), & s \neq 1,3,2,4 \tag{72}\\ N^{\prime}\left(\epsilon\left\{\|x\|^{s}+\|y\|^{s}\right\}, r\right), & s \neq \frac{1}{2}, \frac{3}{2}, 2,4 \\ N^{\prime}\left(\epsilon\left\{\|x\|^{s}\|y\|^{s}\right\}, r\right), & N^{\prime}\left(\epsilon\left(\|x\|^{s}\|y\|^{s}+\|x\|^{2 s}+\|y\|^{2 s}\right), r\right), \\ N^{\prime} \neq \frac{1}{2}, \frac{3}{2}, 2,4\end{cases}
$$

for all $x, y \in X$ and all $r>0$, where ϵ, s are constants with $\epsilon>0$. Then there exists a unique additive mapping $A: X \rightarrow Y$ and a unique Cubic mapping $C: X \rightarrow Y$, a unique quadratic mapping $Q_{2}: X \rightarrow Y$ and a unique quartic mapping $Q_{4}: X \rightarrow Y$ such that

$$
\begin{align*}
& N\left(f(x)-A(x)-Q_{2}(x)-C(x)-Q_{4}(x), r\right) \\
& \left((i) N^{\prime}\left(\epsilon, \frac{|2| r}{8}\right), N^{\prime}\left(\epsilon, \frac{|2| r}{4}\right), N^{\prime}\left(\epsilon, \frac{r}{|7|}\right), N^{\prime}\left(\epsilon, \frac{2 r}{|7|}\right), N^{\prime}\left(\epsilon, \frac{r}{2|3|}\right), N^{\prime}\left(\epsilon, \frac{r}{|3|}\right),\right. \\
& N^{\prime}\left(\epsilon, \frac{2 r}{|15|}\right), N^{\prime}\left(\epsilon, \frac{4 r}{|15|}\right) \\
& \text { (ii) } N^{\prime}\left(\frac{\epsilon}{2^{s}}\|y\|^{s}, \frac{r}{4\left|2^{s}-2\right|}\right), N^{\prime}\left(\epsilon \frac{1+2^{s}}{2^{s}}\|y\|^{s}, \frac{r}{2\left|2^{s}-2\right|}\right), N^{\prime}\left(\frac{\epsilon}{2^{s}}\|y\|^{s}, \frac{r}{\left|2^{s}-2^{3}\right|}\right) \text {, } \\
& N^{\prime}\left(\epsilon \frac{1+2^{s}}{2^{s}}\|y\|^{s}, \frac{2 r}{\left|2^{s}-2^{3}\right|}\right), N^{\prime}\left(\frac{\epsilon}{2^{s}}\|y\|^{s}, \frac{r}{2\left|2^{s}-2^{2}\right|}\right), N^{\prime}\left(\epsilon \frac{1+2^{s}}{2^{s}}\|y\|^{s}, \frac{r}{\left|2^{s}-2^{2}\right|}\right) \text {, } \\
& N^{\prime}\left(\frac{\epsilon}{2^{s}}\|y\|^{s}, \frac{2 r}{\left|2^{s}-2^{4}\right|}\right), N^{\prime}\left(\epsilon \frac{1+2^{s}}{2^{s}}\|y\|^{s}, \frac{4 r}{\left|2^{s}-2^{4}\right|}\right) \\
& \geq\left\{\begin{array}{c}
(i i i) N^{\prime}\left(\frac{\epsilon}{2^{2 s}}\|y\|^{2 s}, \frac{r}{4\left|2^{2 s}-2\right|}\right), N^{\prime}\left(\frac{\epsilon}{2^{s}}\|y\|^{2 s}, \frac{r}{2\left|2^{2 s}-2\right|}\right), N^{\prime}\left(\frac{\epsilon}{2^{2 s}}\|y\|^{2 s}, \frac{r}{\left|2^{2 s}-2^{3}\right|}\right), \\
N^{\prime}\left(\frac{\epsilon}{2^{s}}\|y\|^{2 s}, \frac{r}{22^{2 s}-2^{3} \mid}\right), N^{\prime}\left(\frac{\epsilon}{2^{2 s}}\|y\|^{2 s}, \frac{r}{2\left[2^{2 s}-2^{2 \mid} \mid\right.}\right), N^{\prime}\left(\frac{\epsilon}{2^{s}}\|y\|^{2 s}, \frac{r}{\frac{22^{2 s}-2^{2} \|}{2}}\right),
\end{array}\right. \tag{73}\\
& N^{\prime}\left(\frac{\epsilon}{2^{s}}\|y\|^{2 s}, \frac{r}{2\left|2^{2 s}-2^{3}\right|}\right), N^{\prime}\left(\frac{\epsilon}{2^{2 s}}\|y\|^{2 s}, \frac{r}{2\left|2^{2 s}-2^{2}\right|}\right), N^{\prime}\left(\frac{\epsilon}{2^{s}}\|y\|^{2 s}, \frac{r}{\left|2^{2 s}-2^{2 \mid}\right|}\right) \text {, } \\
& N^{\prime}\left(\frac{\epsilon}{2^{2 s}}\|y\|^{2 s}, \frac{2 r}{\left|2^{2 s}-2^{4}\right|}\right), N^{\prime}\left(\frac{\epsilon}{2^{s}}\|y\|^{2 s}, \frac{4 r}{\left|2^{2 s}-2^{4}\right|}\right) \\
& \text { (iv) } N^{\prime}\left(\frac{3 \epsilon}{2^{2 s}}\|y\|^{2 s}, \frac{r}{42^{2 s}-2 \mid}\right), N^{\prime}\left(\epsilon\left(\frac{1+2^{s}}{2^{s}}+\frac{1}{2^{2 s}}\right)\|y\|^{2 s}, \frac{r}{2\left|2^{2 s}-2\right|}\right) \text {, } \\
& N^{\prime}\left(\frac{3 \epsilon}{2^{2 s}}\|y\|^{2 s}, \frac{r}{2^{2 s}-2^{3} \mid}\right), N^{\prime}\left(\epsilon\left(\frac{1+2^{s}}{2^{s}}+\frac{1}{2^{2 s}}\right)\|y\|^{2 s}, \frac{2 r}{\left|2^{2 s}-2^{3}\right|}\right) \text {, } \\
& N^{\prime}\left(\frac{3 \epsilon}{2^{2 s}}\|y\|^{2 s}, \frac{r}{2\left|2^{2 s}-2^{2}\right|}\right), N^{\prime}\left(\epsilon\left(\frac{1+2^{s}}{2^{s}}+\frac{1}{2^{2 s}}\right)\|y\|^{2 s}, \frac{r}{\left|2^{2 s}-2^{2}\right|}\right) \text {, } \\
& N^{\prime}\left(\frac{3 \epsilon}{2^{2 s}}\|y\|^{2 s}, \frac{2 r}{\left|2^{2 s}-2^{4}\right|}\right), N^{\prime}\left(\epsilon\left(\frac{1+2^{s}}{2^{s}}+\frac{1}{2^{2 s}}\right)\|y\|^{2 s}, \frac{4 r}{\left|2^{2 s}-2^{4}\right|}\right)
\end{align*}
$$

for all $y \in X$ and all $r>0$.

References

[1] J.Aczel and J.Dhombres, Functional Equations in Several Variables, Cambridge Univ, Press, (1989).
[2] T.Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2(1950), 64-66.
[3] M.Arunkumar, S.Karthikeyan and S.Ramamoorthi, Generalized Ulam-Hyers Stability of N-Dimensional Cubic Functional Equation in FNS and RNS: Various Methods, Middle-East Journal of Scientific Research, 24(S2)(2016), 386-404.
[4] M.Arunkumar, Three Dimensional Quartic Functional Equation In Fuzzy Normed Spaces, Far East Journal of Applied Mathematics, 41(2)(2010), 83-94.
[5] M.Arunkumar, John M.Rassias and S.Karthikeyan, Stability Of A Leibniz Type Additive And Quadratic Functional Equation In Intuitionistic Fuzzy Normed Spaces, Advances in Theoretical and Applied Mathematics, 11(2)(2016), 145169.
[6] T.Bag and S.K.Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math., 11(3)(2003), 687-705.
[7] T.Bag and S.K.Samanta, Fuzzy bounded linear operators, Fuzzy Sets and Systems, 151(2005), 513-547.
[8] L.Cadariu and V.Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure and Appl. Math., 4(1) (2003).
[9] L.Cadariu and V.Radu, Fixed point methods for the generalized stability of functional equations in a single variable, Fixed Point Theory and Applications, 2008(2008), Article ID 749392.
[10] L.Cadariu and V.Radu, A generalized point method for the stability of Cauchy functional equation, In Functional Equations in Mathematical Analysis, Th. M. Rassias, J. Brzdek (Eds.), Series Springer Optimization and Its Applications 52, (2011).
[11] S.C.Cheng and J.N.Mordeson, Fuzzy linear operator and fuzzy normed linear spaces, Bull. Calcutta Math. Soc., 86(1994), 429-436.
[12] S.Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, (2002).
[13] C.Felbin, Finite dimensional fuzzy normed linear space, Fuzzy Sets and Systems, 48(1992), 239-248.
[14] P.Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184(1994), 431-436.
[15] D.H.Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., U.S.A., 27(1941), 222-224.
[16] D.H.Hyers, G.Isac and Th.M.Rassias, Stability of functional equations in several variables, Birkhauser, Basel, (1998).
[17] Y.S.Jung and I.S.Chang, The stability of a cubic type functional equation with the fixed point alternative, J. Math. Anal. Appl., 306 (2005), 752-760.
[18] S.M.Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, (2001).
[19] A.K.Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets and Systems, 12(1984), 143-154.
[20] I.Kramosil and J.Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11(1975), 326-334.
[21] S.V.Krishna and K.K.M. Sarma, Separation of fuzzy normed linear spaces, Fuzzy Sets and Systems, 63(1994), 207-217.
[22] B.Margolis and J.B.Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 126(74)(1968), 305-309.
[23] D. Mihet, The fixed point method for fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems, 160(2009), 1663-1667.
[24] A.K.Mirmostafaee and M.S.Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets and Systems, 159(6)(2008), 720-729.
[25] A.K.Mirmostafaee, M.Mirzavaziri and M.S.Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems, 159(6)(2008), 730-738.
[26] A.K.Mirmostafaee and M.S.Moslehian, Fuzzy approximately cubic mappings, Information Sciences, 178(19)(2008), 37913798.
[27] A.K.Mirmostafaee and M.S.Moslehian, Fuzzy almost quadratic functions, Results in Mathematics, 52(1-2)(2008), 161177.
[28] C.Park, Fixed Points and the Stability of an AQCQ-Functional Equation in Non-Archimedean Normed Spaces, Abstract and Applied Analysis, 2010(2010), Article ID 849543.
[29] C.Park and J.R.Lee, An AQCQ-functional equation in paranormed spaces, Advances in Difference Equations, 2012(2012).
[30] C.Park, S.Y.Jang, J.R.Lee and Dong Yun Shin, On the stability of an AQCQ-functional equation in random normed spaces, Journal of Inequalities and Applications, 2011(2014)..
[31] C.Park, S.Y.Jang, J.R.Lee and Dong Yun Shin, A Fixed point approach to the stability of an AQCQ-functional equation in RN-spaces, J. Nonlinear Sci. Appl., 9(2016), 1787-1806.
[32] V.Radu, The Fixed point alternative and the stability of functional equations, Fixed Point Theory, 4(1)(2003), 91-96.
[33] J.M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. USA, 46(1982), 126-130.
[34] J.M. Rassias, On approximately of approximately linear mappings by linear mappings, Bull. Sc. Math., 108(1984), 445-446.
[35] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc.Amer.Math. Soc., 72(1978), 297-300.
[36] K.Ravi, M.Arunkumar and J.M.Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, International Journal of Mathematical Sciences, 3(8)(2008), 36-47.
[37] K.Ravi, M.Arunkumar and P.Narasimman, Fuzzy stability of a Additive functional equation, International Journal of Mathematical Sciences, Autumn, 9(S11)(2011), 88-105.
[38] P.K.Sahoo, On a functional equation characterizing polynomials of degree three, Bul. Inst. Math. Acd. Sin., 32(1)(2004).
[39] S.M.Ulam, Problems in Modern Mathematics, Science Editions, Wiley, NewYork, (1964).
[40] J.Z.Xiao and X.H.Zhu, Fuzzy normed spaces of operators and its completeness, Fuzzy Sets and Systems, 133(2003), 389-399.

[^0]: * Proceedings : National Conference on Recent Trends in Applied Mathematics held on 22 83 23.07.2016, organized by Department of Mathematics, St. Joseph's College of Arts $\& 5$ Science, Manjakuppam, Cuddalore (Tamil Nadu), India.

