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1. Introduction

In 1940, S. M. Ulam [26] gave a talk before the Mathematics Club of the University of Wisconsin in which he discussed a

number of unsolved problems. Among these the following question was concerning the stability of homomorphisms. Let G1

be a group and let G2 be a metric group with a metric d(, ., ). Given κ > 0, does there exist a ρ > 0 such that if a function

f : G1 → G2 satisfies the inequality d(f(x + y), f(x) + f(y)) < ρ for all x, y ∈ G1, then there exists a homomorphism

A : G1 → G2 with d(f(x), A(x)) < κ for all x ∈ G1 ?

In 1941, Hyers [10] gave the first partial solution to Ulam’s question for the case of approximate additive mappings for Banach

spaces. Then, Aoki [2] and Bourgin [6] considered the stability problem with unbounded Cauchy differences. In 1978, Rassias

[21] generalized the theorem of Hyers [10] by considering the stability problem with unbounded Cauchy differences. In 1991,

Gajda [8] following the same approach as by Rassias [21] gave an affirmative solution to this question for p > 1. It was

shown by Gajda [8] as well as by Rassias and Semrl [23], that one cannot prove a Rassias-type theorem when p = 1. Gavruta

[9] obtained the generalized result of Rassias’s theorem which allows the Cauchy difference to be controlled by a general

unbounded function.

In 2008, a special case of Gavruta’s theorem for the unbounded Cauchy difference was obtained by Ravi etal., [24] by

considering the summation of both the sum and the product of two p− norms in the sprit of Rassias approach.

∗ Proceedings : National Conference on Recent Trends in Applied Mathematics held on 22 & 23.07.2016, organized by
Department of Mathematics, St. Joseph’s College of Arts & Science, Manjakuppam, Cuddalore (Tamil Nadu), India.
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During the past two decades, a number of papers and research monographs have been published on various generalizations

and applications of the generalized Hyers-Ulam stability to a number of functional equations and mappings, for example,

Cauchy-Jensen mappings, k−additive mappings, invariant means, multiplicative mappings, bounded nth differences, convex

functions, generalized orthogonality mappings, Euler-Lagrange functional equations, differential equations, and Navier-

Stokes equations (see[15–19, 23, 25]).

There is a saying in Tamil, paruppilla kalyanama i.e., marriage without lentils. (In the North American context,

can one think of Thanks giving without turkey?) Similarly, can one say a article on functional equations without Cauchys

equations? As Cauchys equations permeate functional equations and are fundamental in nature,

The Cauchy functional equations are

A(x+ y) = A(x) +A(y) (Additive), (1)

E(x+ y) = E(x)E(y) (Exponential), (2)

L(xy) = L(x) + L(y) (Logarithmic), (3)

M(xy) = M(x)M(y) (Multiplicative). (4)

In 1821, they were first solved by A.L. Cauchy in the class of continuous real-valued functions. It is often called an Cauchy

functional equations in honor of Cauchy (see [14]).

M. Arunkumar, C. Leela Sabari [3] proved the solution and Hyers - Ulam - Rassias stability of the additive functional

equation

f(x) + f(x) = f(2x) (5)

which is originating from a chemical equation. Also, M. Arunkumar et. al., [4] investigated the generalized Ulam-Hyers

stability of a functional equation

f (y) =
f (y + z) + f (y − z)

2
(6)

which is originating from arithmetic mean of consecutive terms of an arithmetic progression using direct and fixed point

methods. Infact, M. Arunkumar and Matina J. Rassias [5] established the solution and generalized Ulam - Hyers stability

of a new type of reciprocal functional equation

f(2y) =
f(y + z)f(y − z)
f(y + z) + f(y − z) (7)

which originates from consecutive terms of an harmonic progression.

In this paper, the author has proved the generalized Ulam-Hyers stability of a new type of the functional equation

`(uv) + `
(u
v

)
= 2`(u) (8)

with v 6= 0 which is originating from consecutive terms of a geometric progression. In Section 2, the general solution of the

functional equation (8) is given. In Section 3, 4 the Hyers - Ulam - Rassias stability of the logarithmic functional equation

(8) is proved using direct and fixed point method. An application of the logarithmic functional equation (8) is also discussed

in Section 5.
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2. General Solution

In this section, the general solution of the functional equation (8) is given.

Theorem 2.1. If a mapping ` : R→ R satisfies the functional equation

`(uv) + `
(u
v

)
= 2`(u) (9)

with `(1) = 0 then ` is logarithmic.

Proof. Let ` : R→ R satisfies the functional equation (8). Setting v = u in (8), we get

`(u2) = 2`(u) (10)

for all u ∈ R. Hence ` is logarithmic.

3. Stability Results

In this section, the generalized Ulam - Hyers stability of the functional equation (8) is provided.

Theorem 3.1. Let j = ±1. Let ` : R→ R be a mapping for which there exist a function ζ : U2 → [0,∞) with the condition

∞∑
n=0

ζ
(
u2nj

, v2
nj
)

2nj
converges in R and lim

n→∞

ζ
(
u2nj

, v2
nj
)

2nj
= 0 (11)

such that the functional inequality ∣∣∣`(uv) + `
(u
v

)
− 2`(u)

∣∣∣ ≤ ζ (u, v) (12)

for all u, v ∈ R. Then there exists a unique logarithmic function L : R→ R satisfying the functional equation (8) and

|`(u)− L(u)| ≤ 1

2

∞∑
k= 1−j

2

ζ
(
u2kj

, u2kj
)

+ |`(1)|

2kj
(13)

for all u ∈ R. The mapping L(u) is defined by

L(u) = lim
n→∞

`
(
u2nj

)
2nj

(14)

for all u ∈ R.

Proof. Assume j = 1. Replacing v by u in (12) and dividing by 2, we get

∣∣∣∣ `(u2)

2
− `(u)

∣∣∣∣ ≤ 1

2
[ζ (u, u) + |`(1)|] (15)

for all u ∈ R. Now replacing u by u2 and dividing by 2 in (15), we get

∣∣∣∣ `(u4)

4
− `(u2)

2

∣∣∣∣ ≤ 1

22

[
ζ
(
u2, u2)+ |`(1)|

]
(16)
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for all u ∈ R. From (15) and (16), we obtain∣∣∣∣ `(u4)

4
− `(u)

∣∣∣∣ ≤ ∣∣∣∣ `(u4)

4
− `(u2)

2

∣∣∣∣+

∣∣∣∣ `(u2)

2
− `(u)

∣∣∣∣
≤ 1

2

[
ζ (u, u) + +|`(1)|+

ζ
(
u2, u2

)
+ |`(1)|

2

]
(17)

for all u ∈ R. Proceeding further and using induction on a positive integer n , we get∣∣∣∣∣∣
`
(
u2n
)

2n
− `(u)

∣∣∣∣∣∣ ≤ 1

2

n−1∑
k=0

ζ
(
u2k , u2k

)
+ |`(1)|

2k
(18)

≤ 1

2

∞∑
k=0

ζ
(
u2k , u2k

)
+ |`(1)|

2k

for all u ∈ R. In order to prove the convergence of the sequence{
`(u2n)

2n

}
,

replace u by u2m and dividing by 2m in (18), for any m,n > 0 , we deduce∣∣∣∣∣ `(u2(n+m)

)

2(n+m)
− `(u2m)

2m

∣∣∣∣∣ =
1

2m

∣∣∣∣∣ `(u2n · u2m)

2n
− `(u2m)

∣∣∣∣∣
≤ 1

2

n−1∑
k=0

ζ
(
u2k+m

, u2k+m
)

+ |`(1)|

2k+m

≤ 1

2

∞∑
k=0

ζ
(
u2k+m

, u2k+m
)

+ |`(1)|

2k+m

→ 0 as m→∞

for all u ∈ R. Hence the sequence

{
`(u2n)

2n

}
is Cauchy sequence. Since R is complete, there exists a mapping L : R → R

such that

L(U) = lim
n→∞

`
(
u2n
)

2n
∀ u ∈ U.

Letting n→∞ in (18) we see that (13) holds for all u ∈ R. To prove that L satisfies (8), replacing (u, v) by (u2n , v2
n

) and

dividing by 2n in (12), we obtain

1

2n

∣∣∣`(u2n · v2
n

) + `

(
u2n

v2n

)
− 2`(u2n)

∣∣∣ ≤ 1

2n
ζ(u2n , v2

n

)

for all u, v ∈ R. Letting n→∞ in the above inequality and using the definition of L(u), we see that

L(uv) + L
(u
v

)
= 2L(u)

Hence L satisfies (8) for all u, v ∈ R. To prove that L is unique, let M(u) be another logarithmic mapping satisfying (8)

and (13), then

|L(u)−M(u)| = 1

2n

∣∣∣L(u2n)−M(v2
n

)
∣∣∣

≤ 1

2n

{∣∣∣L(u2n)− `(v2
n

)
∣∣∣+
∣∣∣`(u2n)−M(v2

n

)
∣∣∣}

≤
∞∑
k=0

ζ(u2n+k

, u2n+k

) + |`(1)|
2(k+n)

→ 0 as n→∞
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for all u ∈ R. Hence L is unique. For j = −1, we can prove a similar stability result. This completes the proof of the

theorem.

The following Corollary is an immediate consequence of Theorem 3.1 concerning the Ulam-Hyers [10], Ulam-Hyers-Rassias

[21], Ulam-Gavruta-Rassias [20] and Ulam-JRassias [24] stabilities of (8).

Corollary 3.2. Let ρ and s be nonnegative real numbers. Let a function f : R→ R satisfies the inequality with `(1) = 0

∣∣∣`(uv) + `
(u
v

)
− 2`(u)

∣∣∣ ≤


ρ,

ρ {|u|s + |v|s} ,

ρ |u|s|v|s,

ρ
{
|u|s|v|s +

{
|u|2s + |v|2s

}}
,

(19)

for all u, v ∈ R. Then there exists a unique logarithmic function L : R→ R such that

|`(u)− L(u)| ≤



ρ,

2ρ

|2− u2s | ,
ρ

|2− u22s |
3ρ

|2− u22s |

(20)

for all u ∈ R.

4. The Alternative of Fixed Point

Now we will recall the fundamental results in fixed point theory.

Theorem 4.1 (Banach’s contraction principle). Let (R, d) be a complete metric space and consider a mapping T : R → R

which is strictly contractive mapping, that is

(A1) d(Tx, Ty) ≤ Ld(x, y)

for some (Lipschitz constant) L < 1. Then,

(i) The mapping T has one and only fixed point x∗ = T (x∗);

(ii)The fixed point for each given element x∗ is globally attractive, that is

(A2) lim
n→∞

Tnx = x∗,

for any starting point x ∈ R;

(iii) One has the following estimation inequalities:

(A3) d(Tnx, x∗) ≤ 1
1−L d(Tnx, Tn+1x),∀ n ≥ 0, ∀ x ∈ R;

(A4) d(x, x∗) ≤ 1
1−L d(x, x∗), ∀ x ∈ X.

Theorem 4.2 (The alternative of fixed point [? ]). Suppose that for a complete generalized metric space (R, d) and a strictly

contractive mapping T : R→ R with Lipschitz constant L. Then, for each given element x ∈ R, either

(B1) d(Tnx, Tn+1x) =∞ ∀ n ≥ 0,

or

(B2) there exists a natural number n0 such that:

(i) d(Tnx, Tn+1x) <∞ for all n ≥ n0 ;

(ii) The sequence (Tnx) is convergent to a fixed point y∗ of T
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(iii) y∗ is the unique fixed point of T in the set Y = {y ∈ R : d(Tn0x, y) <∞};

(iv) d(y∗, y) ≤ 1
1−L d(y, Ty) for all y ∈ R.

5. Stability Using Fixed Point Method

In this section, we investigate the stability of the given functional equation using the alternative fixed point. Let R be a real

Banach space.

Theorem 5.1. Let α : R2 → [0,∞) be a function such that

lim
k→∞

α(uµ
k
i , vµ

k
i )

µki
= 0 (21)

for all u, v ∈ R , where µi = 2 if i = 0 and µi =
1

2
if i = 1. If f : R→ R satisfies

∣∣∣`(uv) + `
(u
v

)
− 2`(u)

∣∣∣ ≤ α(u, v) (22)

for all u, v ∈ R. If there exists κ = κ(i) < 1 such that the function with `(1) = 0,

x→ β(u) = α
(
u

1
2 , u

1
2

)
,

has the property

1

µi
β(uµi) = κ β (u) (23)

for all u ∈ R. Then there exists unique logarthamic function L : R→ R such that

|L(u)− `(u)| ≤ κ1−i

1− κβ(u) (24)

holds for all u ∈ R .

Proof. Consider the set X = {`/` : R→ R, `(0) = 0} and introduce the generalized metric on X,

d(y1, y2) = inf{K ∈ (0,∞) : |y1(u)− y2(u)| ≤ Kβ(u), u ∈ R}.

It is easy to see that (X, d) is complete. Define T : X → X by T`(u) = 1
µi
`(uµi), for all u ∈ R. Now y1, y2 ∈ X,

d(y1, y2) ≤ K ⇒|y1(u)− y2(u)| ≤ Kβ(u),∈ R.

⇒
∣∣∣∣ 1

µi
y1(uµi)− 1

µi
y2(uµi)

∣∣∣∣ ≤ 1

µi
Kβ(uµi), u ∈ R,

⇒
∣∣∣∣ 1

µi
y1(uµi)− 1

µi
y2(uµi)

∣∣∣∣ ≤ κKβ(u), u ∈ R,

⇒|Ty1(u)− Ty2(u)| ≤ κKβ(u), u ∈ R,

⇒dβ(y1, y2) ≤ κK.

This implies d(Ty1, T y2) ≤ κd(y1, y2), for all y1, y2 ∈ X . i.e., T is a strictly contractive mapping on X with Lipschitz

constant κ. Replacing v by u in (22) we get,

∣∣`(u2)− `(1)− 2`(u)
∣∣ ≤ α(u, u). (25)
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Hence,

∣∣`(u2)− 2`(u)
∣∣ ≤ α(u, u)

⇒
∣∣`(u2)− 2`(u)

∣∣ ≤ α(u, u)

⇒
∣∣∣∣ `(u2)

2
− `(u)

∣∣∣∣ ≤ 1

2
α(u, u).

Using (23) for the case i = 0 it reduces to

∣∣∣∣ `(u2)

µi
− `(u)

∣∣∣∣ ≤ 1

µi
β(uµi)

|T`(u)− `(u)| ≤ κβ(u)

for all u ∈ R, i.e., d(`, T`) ≤ κ = κ1 <∞. Again replacing u = u
1
2 in (25), we get,

∣∣∣`(u)− `(1)− 2`
(
u

1
2

)∣∣∣ ≤ α
(
u

1
2 , u

1
2

)
∣∣∣`(u)− 2`

(
u

1
2

)∣∣∣ ≤ α
(
u

1
2 , u

1
2

)
.

Using (23) for the case i = 1 it reduces to

∣∣∣∣`(u)− 1

µi
` (uµi)

∣∣∣∣ ≤ β(u)

|`(u)− T`(u)| ≤ β(u)

for all u ∈ R, i.e., d(`, T `) ≤ 1 = κ0 <∞. Now applying fixed point alternative in above cases and also using lim
n→∞

d(Tn`, L) =

0, it follows that there exists a fixed point L of T in X such that

L(x) = lim
k→∞

`(uµ
k
i )

µki
∀ u ∈ R. (26)

In order to prove L : R → R is logarthamic, replace (u, v) by
(
uµ

k
i , vµ

k
i

)
in (22) and dividing by µki , it follows from

(21) and (26), L satisfies (22) for all u, v ∈ R. i.e., L is logarthamic. Since L is the unique fixed point of T in the set

Y = {y ∈ X : d(y1, y2) <∞}, using the fixed point alternative result L is the unique function such that

|`(u)− L(u)| ≤ Kβ(u)

for all u ∈ R and K > 0. Again using the fixed point alternative, we obtain

d(`, L) ≤ 1

1− κd(`, T `)

this implies

d(`, L) ≤ κ1−i

1− κ .

Hence we conclude that

‖ `(u)− L(u) ‖≤ κ1−i

1− κβ(u).

This completes the proof of the theorem.
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From the above theorem, we obtain the following corollary concerning the Hyers-Ulam-Rassias stability for the functional

equation (22).

Corollary 5.2. Suppose that a function ` : R→ R satisfies the inequality

∣∣∣`(uv)− `
(u
v

)
− `(2u)

∣∣∣ ≤ ε (|u|s + |v|s) (27)

for all u, v ∈ R, where ε > 0, s 6= 2 are constants. Then there exists a unique logarthamic mapping L : R→ R such that

|`(u)− L(x)| ≤ ε

1− |u2s | (28)

for all x ∈ R.

Proof. Let α(u, v) = ε (|u|s + |v|s) for all u, v ∈ R. Then for s < 2, i = 0 and for s > 2, i = 1, we obtain

α(uµ
k
i , vµ

k
i )

µki
=

ε

µki

(
|uµ

k
i |s + |vµ

k
i |s
)

= 0 as k →∞.

Thus, (21) holds for all u, v ∈ R. But we have

β(u) = α
(
u

1
2 , v

1
2

)
.

Also it has the property
1

µi
β(uµi) = κβ(u) for all u ∈ X. Hence

β(u) = ε (|u|s + |u|s) = 2ε |u|s

for all u ∈ R. Replace u by uµi and divide by µi, we get

1

µi
β(uµi) =

2ε

µi
|uµi |s

= µ−1
i {2ε |u

µi |s}

=

 u2sε for i = 0

u−2s4ε for i = 1

for all u ∈ R. Hence (23) holds for κ = uµi , It follows from (24), we have

|L(u)− `(u)| ≤ κ1−i

1− κβ(u)

=


(u2s )1−0

1−u2s ε for i = 0

(u−2s )1−1

1−u−2s ε for i = 1

=


1

u2s−1
ε for i = 0

1
1−u−2s ε for i = 1
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6. Application

Consider the logarithmic functional equation (8), that is

`(uv) + `
(u
v

)
= 2`(u)

This functional equation can be used to find the consecutive terms of a geometric progression. Since f(u) = logu is the

solution of the functional equation, the above equation is written as follows

log(uv) + log
(u
v

)
= 2log(u)

Now, let us take the variables as consecutive terms, we note that, the twice log value of middle term of any three

consecutive terms of an geometric progression is always the sum of log values of other two terms. Any two

consecutive terms of an geometric progression differ by the common difference, d. So any three consecutive terms of an

geometric progression can be written as

b

d
, b, bd.

The middle term b can be represented by

2 log b = log

(
b

d

)
+ log(bd)

i.e., twice log value of b is the sum of log values of
b

d
and bd.
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