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Abstract: In this paper, authors established the generalized Ulam - Hyers stability of a 2 - variable AC - mixed type functional
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1. Introduction

The stability problem of functional equations originated from a question of Ulam [32] concerning the stability of group

homomorphisms. Hyers [11] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers

theorem was generalized by Aoki [2] for additive mappings and by Rassias [24] for linear mappings by considering an

unbounded Cauchy difference. A generalization of Rassias theorem was obtained by Gavruta [8] by replacing the unbounded

Cauchy difference by a general control function in the spirit of Rassias approach. In 1982, Rassias [21] followed the innovative

approach of the Rassias theorem [24] in which he replaced the factor ||x||p + ||y||p by ||x||p · ||y||q for p, q ∈ R with p+ q 6= 1.

In 2008, a special case of Gavruta’s theorem for the unbounded Cauchy difference was obtained by Ravi etal., [27] by

considering the summation of both the sum and the product of two p−norms in the spirit of Rassias approach. These

terminologies are also applied to the case of other functional equations. For more detailed definitions of such terminologies,

one can refer to [5, 12–14, 25].

∗ Proceedings : National Conference on Recent Trends in Applied Mathematics held on 22 & 23.07.2016, organized by
Department of Mathematics, St. Joseph’s College of Arts & Science, Manjakuppam, Cuddalore (Tamil Nadu), India.
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Over the last six or seven decades, the above problem was tackled by numerous authors and its solutions via various forms

of functional equations like additive, quadratic, cubic, quartic, mixed type functional equations which involves only these

types of functional equations were discussed. We refer the interested readers for more information on such problems to the

monographs [1, 5, 10, 12–14, 23, 25, 28, 29, 34]. Recently, M. Arunkumar et al., [3] first time introduced and investigated

the solution and generalized Ulam-Hyers stability of a 2 - variable AC - mixed type functional equation

f(2x+ y, 2z + w)− f(2x− y, 2z − w) = 4[f(x+ y, z + w)− f(x− y, z − w)]− 6f(y, w) (1)

having solutions

f(x, y) = ax+ by (2)

and

f(x, y) = ax3 + bx2y + cxy2 + dy3 (3)

in Banach space via direct and fixed point approach. The solution of the AC functional equation (1) is given in the following

lemmas.

Lemma 1.1 ([3]). If f : U2 → V be a mapping satisfying (1) and let g : U2 → V be a mapping given by

g(x, x) = f(2x, 2x)− 8f(x, x) (4)

for all x ∈ U then

g(2x, 2x) = 2g(x, x) (5)

for all x ∈ U such that g is additive.

Lemma 1.2 ([3]). If f : U2 → V be a mapping satisfying (1) and let h : U2 → V be a mapping given by

h(x, x) = f(2x, 2x)− 2f(x, x) (6)

for all x ∈ U then

h(2x, 2x) = 8h(x, x) (7)

for all x ∈ U such that h is cubic.

Remark 1.3 ([3]). If f : U2 → V is a mapping satisfying (1) and let g, h : U2 → V be a mapping defined in (4) and (6)

then

f(x, x) =
1

6
(h(x, x)− g(x, x)) (8)

for all x ∈ U .

Very recently, Choonkil Park and Jung Rye Lee [20] investigated the Hyers - Ulam stability of the following additive -

quadratic - cubic - quartic functional equation

f(x+ 2y) + f(x− 2y) = 4f(x+ y) + 4f(x− y)− 6f(x) + f(2y) + f(−2y)− 4f(y)− 4f(−y) (9)

in paranormed spaces.

In this paper, we obtain the generalized Ulam - Hyers stability of a 2 - variable AC - mixed type functional equation (1) in

paranormed spaces using direct and fixed point methods. The generalized Ulam-Hyers stability in paranormed using direct

and fixed point method is discussed in Section 3 and Section 4, respectively.
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2. Basic Concepts on Paranormed Spaces

The concept of statistical convergence for sequences of real numbers was introduced by Fast [6] and Steinhaus [31] indepen-

dently and since then several generalizations and applications of this notion have been investigated by various authors (see

[7, 15, 18, 19, 30]). This notion was defined in normed spaces by Kolk [16]. We recall some basic facts concerning Fréchet

spaces.

Definition 2.1 ([33]). Let X be a vector space. A paranorm P : X → [0,∞) is a function on X such that

(P1) P (0) = 0;

(P2) P (−x) = P (x);

(P3) P (x+ y) ≤ P (x) + P (y) (triangle inequality);

(P4) If {tn} is a sequence of scalars with tn → t and {xn} ⊂ X with P (xn − x) → 0, then P (tn xn − tx) → 0 (continuity

of multiplication).

The pair (X,P ) is called a paranormed space if P is a paranorm on X.

Definition 2.2 ([33]). The paranorm is called total if, in addition, we have

(P5) P (x) = 0 implies x = 0.

Definition 2.3 ([33]). A Fréchet space is a total and complete paranormed space.

3. Stability Results in Paranormed Space: Direct Method

In this section, we investigate the generalized Ulam-Hyers stability of the functional equation (1) in paranormed using

direct method. Through out this section let (U,P ) be a Fréchet space and (V, || · ||) be a Banach space. Define a mapping

F : U2 → V by

F (x, y, z, w) = f(2x+ y, 2z + w)− f(2x− y, 2z − w)− 4f(x+ y, z + w) + 4f(x− y, z − w)] + 6f(y, w)

for all x, y, z, w ∈ U .

Theorem 3.1. Let j = ±1. Let f : U2 → V be a mapping for which there exist a function α : U4 → [0,∞) with the

condition

lim
n→∞

1

2nj
α(2njx, 2njy, 2njz, 2njw) = 0 (10)

such that the functional inequality

P (F (x, y, z, w)) ≤ α(x, y, z, w) (11)

for all x, y, z, w ∈ U . Then there exists a unique 2-variable additive mapping A : U2 → V satisfying the functional equation

(1) and

P (f(2x, 2x)− 8f(x, x)−A(x, x)) ≤ 1

2

∞∑
k= 1−j

2

β(2kjx)

2kj
(12)

for all x ∈ U . The mapping β(2kjx) and A(x, x) are defined by

β(2kjx) = 4 α(2kjx, 2kjx, 2kjx, 2kjx) + α(2kjx, 2(k+1)jx, 2kjx, 2(k+1)jx) (13)
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P

(
lim
n→∞

1

2nj

(
f(2(n+1)jx, 2(n+1)jx)− 8f(2njx, 2njx)

)
−A(x, x)

)
→ 0 (14)

for all x ∈ U .

Proof. Assume j = 1. Letting (x, y, z, w) by (x, x, x, x) in (11), we obtain

P (f(3x, 3x)− 4f(2x, 2x) + 5f(x, x)) ≤ α(x, x, x, x) (15)

for all x ∈ U . Replacing (x, y, z, w) by (x, 2x, x, 2x) in (11), we get

P (f(4x, 4x)− 4f(3x, 3x) + 6f(2x, 2x)− 4f(x, x)) ≤ α(x, 2x, x, 2x) (16)

for all x ∈ U . Now, from (15) and (16) and using (P3), we have

P (f(4x, 4x)− 10f(2x, 2x) + 16f(x, x)) ≤ 4α(x, x, x, x) + α(x, 2x, x, 2x) (17)

for all x ∈ U . From (17), we arrive

P (f(4x, 4x)− 10f(2x, 2x) + 16f(x, x)) ≤ β(x) (18)

where

β(x) = 4α(x, x, x, x) + α(x, 2x, x, 2x) (19)

for all x ∈ U . It is easy to see from (18) that

P (f(4x, 4x)− 8f(2x, 2x)− 2(f(2x, 2x)− 8f(x, x))) ≤ β(x) (20)

for all x ∈ U . Using (4) in (20), we obtain

P (g(2x, 2x)− 2g(x, x)) ≤ β(x) (21)

for all x ∈ U . From (21), we arrive

P

(
g(2x, 2x)

2
− g(x, x)

)
≤ β(x)

2
(22)

for all x ∈ U . Now replacing x by 2x and dividing by 2 in (22), we get

P

(
g(22x, 22x)

22
− g(2x, 2x)

2

)
≤ β(2x)

22
(23)

for all x ∈ U . From (22) and (23), we obtain

P

(
g(22x, 22x)

22
− g(x, x)

)
≤ P

(
g(2x, 2x)

2
− g(x, x)

)
+ P

(
g(22x, 22x)

22
− g(2x, 2x)

2

)
≤ 1

2

[
β(x) +

β(2x)

2

]
(24)
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for all x ∈ U . Proceeding further and using induction on a positive integer n , we get

P

(
g(2nx, 2nx)

2n
− g(x, x)

)
≤ 1

2

n−1∑
k=0

β(2kx)

2k

≤ 1

2

∞∑
k=0

β(2kx)

2k
(25)

for all x ∈ U . In order to prove the convergence of the sequence

{
g(2nx, 2nx)

2n

}
, replacing x by 2mx and dividing by 2m in

(25), for any m,n > 0 , we deduce

P

(
g(2n+mx, 2n+mx)

2(n+m)
− g(2mx, 2mx)

2m

)
=

1

2m
P

(
g(2n · 2mx, 2n · 2mx)

2n
− g(2mx, 2mx)

)
≤ 1

2

∞∑
k=0

β(2k+mx)

2k+m
→ 0 as m→∞

for all x ∈ U. This shows that the sequence

{
g(2nx, 2nx)

2n

}
is Cauchy sequence. Since Y is complete, there exists a mapping

A(x, x) : U2 → V such that

P

(
lim
n→∞

g(2nx, 2nx)

2n
−A(x, x)

)
→ 0 ∀ x ∈ U.

By continuity of multiplication, we have

P

(
lim
n→∞

tn g(2nx, 2nx)

2n
− tA(x, x)

)
→ 0 ∀ x ∈ U.

Letting n→∞ in (25) and using (4), we see that (12) holds for all x ∈ U . To show that A satisfies (1), replacing (x, y, z, w)

by (2nx, 2ny, 2nz, 2nw) and dividing by 2n in (11), we obtain

1

2n
P
(
F (2nx, 2ny, 2nz, 2nw)

)
≤ 1

2n
α(2nx, 2ny, 2nz, 2nw)

for all x, y, z, w ∈ X. Letting n→∞ in the above inequality and using the definition of A(x, x), we see that

P (A(2x+ y, 2z + w)−A(2x− y, 2z − w)− 4[A(x+ y, z + w)−A(x− y, z − w)] + 6A(y, w)) = 0, (26)

for all x, y, z, w ∈ X. Using (P5) in (26), we arrive

A(2x+ y, 2z + w)−A(2x− y, 2z − w) = 4[A(x+ y, z + w)−A(x− y, z − w)]− 6A(y, w).

Hence A satisfies (1) for all x, y, z, w ∈ X. To prove A is unique 2-variable additive function satisfying (1), we let B(x, x)

be another 2-variable additive mapping satisfying (1) and (12), then

(A(x, x)−B(x, x)) ≤ 1

2n
{
P
(
A(2nx, 2nx)− f(2n+1x, 2n+1x) + 8f(2nx, 2nx)

)
+P

(
f(2n+1x, 2n+1x)− 8f(2nx, 2nx)−B(2nx, 2nx)

)}
≤
∞∑
k=0

β(2k+nx)

2(k+n)
→ 0 as n→∞

for all x ∈ X. Hence A is unique. For j = −1, we can prove a similar stability result. This completes the proof of the

theorem.
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The following Corollary is an immediate consequence of Theorem 3.1 concerning the stability of (1).

Corollary 3.2. Let F : U2 → V be a mapping and there exits real numbers λ and s such that

P (F (x, y, z, w)) ≤



λ,

λ {||x||s + ||y||s + ||z||s + ||w||s} , s < 1 or s > 1;

λ ||x||s||y||s||z||s||w||s, s < 1
4

or s > 1
4

;

λ
{
||x||s||y||s||z||s||w||s +

{
||x||4s + ||y||4s + ||w||4s + ||z||4s

}}
, s < 1

4
or s > 1

4
;

(27)

for all x, y, z, w ∈ U , then there exists a unique 2- variable additive function A : U2 → V such that

P (f(2x, 2x)− 8f(x, x)−A(x, x)) ≤



5λ,

(18 + 2s+1)λ||x||s

|2− 2s| ,

(4 + 22s)λ||x||4s

|2− 24s|(
(22 + 22s)

|2− 24s| +
2 · 24s

|2− 22s|

)
λ||x||4s

(28)

for all x ∈ U.

Corollary 3.3. Let F : U2 → V be a mapping and there exits real numbers λ and s such that

‖F (x, y, z, w))‖ ≤



λ,

λ {P (x)s + P (y)s + P (z)s + P (w)s} , s < 1 or s > 1;

λ P (x)sP (y)sP (z)sP (w)s, s < 1
4

or s > 1
4

;

λ
{
P (x)sP (y)sP (z)sP (w)s +

{
P (x)4s + P (y)4s + P (w)4s + P (z)4s

}}
, s < 1

4
or s > 1

4
;

(29)

for all x, y, z, w ∈ U , then there exists a unique 2- variable additive function A : U2 → V such that

‖f(2x, 2x)− 8f(x, x)−A(x, x)‖ ≤



5λ,

(18 + 2s+1)λP (x)s

|2− 2s| ,

(4 + 22s)λP (x)4s

|2− 24s|(
(22 + 22s)

|2− 24s| +
2 · 24s

|2− 22s|

)
λP (x)4s

(30)

for all x ∈ U.

Theorem 3.4. Let j = ±1. Let F : U2 → V be a mapping for which there exist a function α : U4 → [0,∞) with the

condition

lim
n→∞

1

8nj
α(2njx, 2njy, 2njz, 2njw) = 0 (31)

such that the functional inequality

P (F (x, y, z, w)) ≤ α(x, y, z, w) (32)

for all x, y, z, w ∈ U . Then there exists a unique 2-variable cubic mapping C : U2 → V satisfying the functional equation (1)

and

P (f(2x, 2x)− 2f(x, x)− C(x, x)) ≤ 1

8

∞∑
k= 1−j

2

β(2kjx)

8kj
(33)
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for all x ∈ U . The mapping β(2kjx) and C(x, x) are defined by

β(2kjx) = 4α(2kjx, 2kjx, 2kjx, 2kjx) + α(2kjx, 2(k+1)jx, 2kjx, 2(k+1)jx) (34)

P

(
lim
n→∞

1

8nj

(
f(2(n+1)jx, 2(n+1)jx)− 2f(2njx, 2njx)

)
− C(x, x)

)
→ 0 (35)

for all x ∈ U .

Proof. It is easy to see from (18) that

P (f(4x, 4x)− 2f(2x, 2x)− 8(f(2x, 2x)− 2f(x, x))) ≤ β(x) (36)

for all x ∈ U . Using (6) in (36), we obtain

P (h(2x, 2x)− 8h(x, x)) ≤ β(x) (37)

for all x ∈ U . From (37), we arrive

P

(
h(2x, 2x)

8
− h(x, x)

)
≤ β(x)

8
(38)

for all x ∈ U . Now replacing x by 2x and dividing by 8 in (38), we get

P

(
h(22x, 22x)

82
− h(2x, 2x)

8

)
≤ β(2x)

82
(39)

for all x ∈ U . From (38) and (39), we obtain

P

(
h(22x, 22x)

82
− h(x, x)

)
≤ P

(
h(2x, 2x)

8
− h(x, x)

)
+ P

(
h(22x, 22x)

82
− h(2x, 2x)

8

)
≤ 1

8

[
β(x) +

β(2x)

8

]
(40)

for all x ∈ U . Proceeding further and using induction on a positive integer n , we get

P

(
h(2nx, 2nx)

8n
− h(x, x)

)
≤ 1

8

n−1∑
k=0

β(2kx)

8k
≤ 1

8

∞∑
k=0

β(2kx)

8k
(41)

for all x ∈ U . In order to prove the convergence of the sequence

{
h(2nx, 2nx)

8n

}
, replacing x by 2mx and dividing by 8m in

(41), for any m,n > 0 , we deduce

P

(
h(2n+mx, 2n+mx)

8(n+m)
− h(2mx, 2mx)

8m

)
=

1

8m
P

(
h(2n · 2mx, 2n · 2mx)

8n
− h(2mx, 2mx)

)
≤ 1

8

n−1∑
k=0

β(2k+mx)

8k+m
≤ 1

8

∞∑
k=0

β(2k+mx)

8k+m
→ 0 as m→∞

for all x ∈ U. This shows that the sequence

{
h(2nx, 2nx)

8n

}
is Cauchy sequence. Since Y is complete, there exists a mapping

C(x, x) : U2 → V such that

P

(
lim
n→∞

h(2nx, 2nx)

8n
− C(x, x)

)
→ 0 ∀ x ∈ U.

By continuity of multiplication, we have

P

(
lim
n→∞

tn h(2nx, 2nx)

8n
− tC(x, x)

)
→ 0 ∀ x ∈ U.

Letting n→∞ in (41) and using (6), we see that (33) holds for all x ∈ U . To show that C satisfies (1) and it is unique the

proof is similar to that of Theorem 3.1. For j = −1, we can prove a similar stability result. This completes the proof of the

theorem.
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The following Corollary is an immediate consequence of Theorem 3.4 concerning the stability of (1).

Corollary 3.5. Let F : U2 → V be a mapping and there exits real numbers λ and s such that

P (F (x, y, z, w)) ≤



λ,

λ {||x||s + ||y||s + ||z||s + ||w||s} , s < 3 or s > 3;

λ ||x||s||y||s||z||s||w||s, s < 3
4

or s > 3
4

;

λ
{
||x||s||y||s||z||s||w||s +

{
||x||4s + ||y||4s + ||w||4s + ||z||4s

}}
, s < 3

4
or s > 3

4
;

(42)

for all x, y, z, w ∈ U , then there exists a unique 2- variable cubic function C : U2 → V such that

P (f(2x, 2x)− 2f(x, x)− C(x, x)) ≤



5λ

7
,

(18 + 2s+1)λ||x||s

7|8− 2s| ,

(4 + 22s)λ||x||4s

7|8− 24s|(
(22 + 22s)

7|8− 24s| +
2 · 24s

7|8− 22s|

)
λ||x||4s

(43)

for all x ∈ U.

Corollary 3.6. Let F : U2 → V be a mapping and there exits real numbers λ and s such that

‖F (x, y, z, w)‖ ≤



λ,

λ {P (x)s + P (y)s + P (z)s + P (w)s} , s < 3 or s > 3;

λ P (x)sP (y)sP (z)sP (w)s, s < 3
4

or s > 3
4

;

λ
{
P (x)sP (y)sP (z)sP (w)s +

{
P (x)4s + P (y)4s + P (w)4s + P (z)4s

}}
, s < 3

4
or s > 3

4
;

(44)

for all x, y, z, w ∈ U , then there exists a unique 2- variable cubic function C : U2 → V such that

P (f(2x, 2x)− 2f(x, x)− C(x, x)) ≤



5λ

7
,

(18 + 2s+1)λP (x)s

7|8− 2s| ,

(4 + 22s)λP (x)4s

7|8− 24s|(
(22 + 22s)

7|8− 24s| +
2 · 24s

7|8− 22s|

)
λP (x)4s

(45)

for all x ∈ U.

Now, we are ready to prove our main stability results.

Theorem 3.7. Let j = ±1. Let F : U2 → V be a mapping for which there exist a function α : U4 → [0,∞) with the

condition given in (10) and (31) respectively, such that the functional inequality

P (F (x, y, z, w)) ≤ α(x, y, z, w) (46)

for all x, y, z, w ∈ U . Then there exists a unique 2-variable additive mapping A : U2 → V and a unique 2-variable cubic

mapping C : U2 → V satisfying the functional equation (1) and

P (f(x, x)−A(x, x)− C(x, x)) ≤ 1

6

1

2

∞∑
k= 1−j

2

β(2kjx)

2kj
+

1

8

∞∑
k= 1−j

2

β(2kjx)

8kj

 (47)

for all x ∈ U . The mapping β(2kjx), A(x, x) and C(x, x) are respectively defined in (13), (14) and (35) for all x ∈ U .
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Proof. By Theorems 3.1 and 3.4, there exists a unique 2-variable additive function A1 : U2 → V and a unique 2-variable

cubic function C1 : U2 → V such that

P (f(2x, 2x)− 8f(x, x)−A1(x, x)) ≤ 1

2

∞∑
k= 1−j

2

β(2kjx)

2kj
(48)

and

P (f(2x, 2x)− 2f(x, x)− C1(x, x)) ≤ 1

8

∞∑
k= 1−j

2

β(2kjx)

8kj
(49)

for all x ∈ U . Now from (48) and (49), one can see that

P

(
f(x, x) +

1

6
A1(x, x)− 1

6
C1(x, x)

)
= P

({
−f(2x, 2x)

6
+

8f(x, x)

6
+
A1(x, x)

6

}
+

{
f(2x, 2x)

6
− 2f(x, x)

6
− C1(x, x)

6

})
≤ 1

6
{P (f(2x, 2x)− 8f(x, x)−A1(x, x)) + P (f(2x, 2x)− 2f(x, x)− C1(x, x))}

≤ 1

6

1

2

∞∑
k= 1−j

2

β(2kjx)

2kj
+

1

8

∞∑
k= 1−j

2

β(2kjx)

8kj


for all x ∈ U . Thus we obtain (49) by defining A(x, x) = −1

6
A1(x, x) and C(x, x) = 1

6
C1(x, x), β(2kjx), A(x, x) and C(x, x)

are respectively defined in (13), (14) and (35) for all x ∈ U .

The following corollary is the immediate consequence of Theorem 3.7, using Corollaries 3.2 and 3.5 concerning the stability

of (1).

Corollary 3.8. Let F : U2 → V be a mapping and there exits real numbers λ and s such that

P (F (x, y, z, w)) ≤



λ,

λ {||x||s + ||y||s + ||z||s + ||w||s} , s < 1 or s > 1;

λ ||x||s||y||s||z||s||w||s, s < 1
4

or s > 1
4

;

λ
{
||x||s||y||s||z||s||w||s +

{
||x||4s + ||y||4s + ||w||4s + ||z||4s

}}
, s < 1

4
or s > 1

4
;

(50)

for all x, y, z, w ∈ U , then there exists a unique 2-variable additive mapping A : U2 → V and a unique 2-variable cubic

mapping C : U2 → V such that

P (f(x, x)−A(x, x)− C(x, x)) ≤



5λ

6

(
1 +

1

7

)
,

(18 + 2s+1)

6

(
1

|2− 2s| +
1

7|8− 2s|

)
λ||x||s,

(4 + 22s)

6

(
1

|2− 24s| +
1

7|8− 24s|

)
λ||x||4s

(22+22s)
6

((
1

|2−24s| + 1
7|8−24s|

)
+

(2 · 24s)

6

(
1

|2− 22s| +
1

7|8− 22s|

))
λ||x||4s

(51)

for all x ∈ U.

Corollary 3.9. Let F : U2 → V be a mapping and there exits real numbers λ and s such that

‖F (x, y, z, w)‖ ≤



λ,

λ {P (x)s + P (y)s + P (z)s + P (w)s} , s < 1 or s > 1;

λ P (x)sP (y)sP (z)sP (w)s, s < 1
4

or s > 1
4

;

λ
{
P (x)sP (y)sP (z)sP (w)s +

{
P (x)4s + P (y)4s + P (w)4s + P (z)4s

}}
, s < 1

4
or s > 1

4
;

(52)
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for all x, y, z, w ∈ U , then there exists a unique 2-variable additive mapping A : U2 → V and a unique 2-variable cubic

mapping C : U2 → V such that

‖f(x, x)−A(x, x)− C(x, x)‖ ≤



5λ

6

(
1 +

1

7

)
,

(18 + 2s+1)

6

(
1

|2− 2s| +
1

7|8− 2s|

)
λP (x)s,

(4 + 22s)

6

(
1

|2− 24s| +
1

7|8− 24s|

)
λP (x)4s

(22+22s)
6

((
1

|2−24s| + 1
7|8−24s|

)
+ (2·24s)

6

(
1

|2−22s| + 1
7|8−22s|

))
λP (x)4s

(53)

for all x ∈ U.

4. Stability Results: Fixed Point Method

In this section, we apply a fixed point method for achieving stability of the 2-variable AC functional equation (1). Now, we

present the following theorem due to B. Margolis and J.B. Diaz [17] for fixed point Theory.

Theorem 4.1 ([17]). Suppose that for a complete generalized metric space (Ω, δ) and a strictly contractive mapping T :

Ω→ Ω with Lipschitz constant L. Then, for each given x ∈ Ω , either

d(Tnx, Tn+1x) =∞ ∀ n ≥ 0,

or there exists a natural number n0 such that

(A1) d(Tnx, Tn+1x) <∞ for all n ≥ n0 ;

(A2) The sequence (Tnx) is convergent to a fixed to a fixed point y∗ of T

(A3) y∗ is the unique fixed point of T in the set ∆ = {y ∈ Ω : d(Tn0x, y) <∞};

(A4) d(y∗, y) ≤ 1
1−Ld(y, Ty) for all y ∈ ∆.

Using the above theorem, we now obtain the generalized Ulam - Hyers stability of (1).

Through out this section let (U,P ) be a Fréchet space and V be a Banach space. Define a mapping F : U2 → V by

F (x, y, z, w) = f(2x+ y, 2z + w)− f(2x− y, 2z − w)− 4f(x+ y, z + w) + 4f(x− y, z − w)] + 6f(y, w)

for all x, y, z, w ∈ U .

Theorem 4.2. Let F : U2 → V be a mapping for which there exists a function α : U4 → [0,∞) with the condition

lim
n→∞

1

µni
α(µni x, µ

n
i y, µ

n
i z, µ

n
i w) = 0 (54)

where µi = 2 if i = 0 and µ1 = 1
2

if i = 1 such that the functional inequality

P (F (x, y, z, w)) ≤ α(x, y, z, w) (55)

for all x, y, z, w ∈ U . If there exists L = L(i) < 1 such that the function

x→ γ(x) =
1

2
β (x) ,
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has the property

γ(x) ≤ L µi γ (µix) . (56)

Then there exists a unique 2-variable additive mapping A : U2 → V satisfying the functional equation (1) and

P (f(2x, 2x)− 8f(x, x)−A(x, x)) ≤ L1−i

1− Lγ(x) (57)

for all x ∈ U . The mapping β(x) and A(x, x) are defined in (19) and (14) respectively for all x ∈ U .

Proof. Consider the set Ω = {p/p : U2 → V, p(0, 0) = 0} and introduce the generalized metric on Ω, d(p, q) = dγ(p, q) =

inf{K ∈ (0,∞) : P (p(x, x)− q(x, x)) ≤ Kγ(x), x ∈ U}. It is easy to see that (Ω, d) is complete. Define T : Ω2 → Ω by

Tp(x, x) = 1
µi
p(µix, µix), for all x ∈ U . Now p, q ∈ Ω, implies d(Tp, Tq) ≤ Ld(p, q), for all p, q ∈ Ω . i.e., T is a strictly

contractive mapping on Ω with Lipschitz constant L. From (21), we arrive

P

(
g(2x, 2x)

2
− g(x, x)

)
≤ β(x)

2
(58)

for all x ∈ U . Using (56) for the case i = 0 it reduces to

P

(
g(2x, 2x)

2
− g(x, x)

)
≤ Lγ(x)

for all x ∈ U ,

i.e., dγ(g, Tg) ≤ L⇒ d(g, Tg) ≤ L ≤ L1 <∞.

Again replacing x = x
2

in (58), we get,

P
(
g(x, x)− 2g

(x
2
,
x

2

))
≤ β

(x
2

)
(59)

Using (56) for the case i = 1 it reduces to

P
(
g(x, x)− 2g

(x
2
,
x

2

))
≤ γ(x)

for all x ∈ U ,

i.e., dγ(g, Tg) ≤ 1⇒ d(g, Tg) ≤ 1 ≤ L0 <∞.

In both cases, we arrive d(g, Tg) ≤ L1−i. Therefore (A1) holds. By (A2), it follows that there exists a fixed point A of T in

Ω such that

P

(
lim
n→∞

1

µni
(f(µ

(n+1)
i x, µ

(n+1)
i x)− 8f(µni x, µ

n
i x))−A(x, x)

)
→ 0 (60)

for all x ∈ U .

To prove A : U2 → V is additive. Replacing (x, y, z, w) by (µni x, µ
n
i y, µ

n
i z, µ

n
i ) in (55) and dividing by µni , it follows from

(54) that

P (A(x, y, z, w)) = lim
n→∞

P

(
1

µni
F (µni x, µ

n
i y, µ

n
i z, µ

n
i )

)
≤ lim
n→∞

α(µni x, µ
n
i y, µ

n
i z, µ

n
i w)

µni
= 0

for all x, y, z, w ∈ U , i.e., A satisfies the functional equation (1). By (A3), A is the unique fixed point of T in the

set ∆ = {A ∈ Ω : d(f,A) < ∞}, A is the unique function such that P (f(2x, 2x)− 8f(x, x)−A(x, x)) ≤ Kγ(x) for

all x ∈ U and K > 0. Finally by (A4), we obtain d(f,A) ≤ 1
1−Ld(f, Tf) this implies d(f,A) ≤ L1−i

1−L which yields

P (f(2x, 2x)− 8f(x, x)−A(x, x)) ≤ L1−i

1−L γ(x) this completes the proof of the theorem.
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The following Corollary is an immediate consequence of Theorem 4.2 concerning the stability of (1).

Corollary 4.3. Let F : U2 → V be a mapping and there exits real numbers λ and s such that

‖F (x, y, z, w)‖ ≤



λ,

λ {P (x)s + P (y)s + P (z)s + P (w)s} , s < 1 or s > 1;

λ P (x)sP (y)sP (z)sP (w)s, s < 1
4

or s > 1
4

;

λ
{
P (x)sP (y)sP (z)sP (w)s +

{
P (x)4s + P (y)4s + P (w)4s + P (z)4s

}}
, s < 1

4
or s > 1

4
;

(61)

for all x, y, z, w ∈ U , then there exists a unique 2- variable additive function A : U2 → V such that

‖f(2x, 2x)− 8f(x, x)−A(x, x)‖ ≤



2(s−1)(18 + 2s+1)λP (x)s

|2− 2s| ,

2(4s−1)(4+22s)λP (x)4s

|2− 24s|
2(4s−1)

(
22 + 22s + 2 · 24s

)
λP (x)4s

2− 24s

(62)

for all x ∈ U.

Proof. Setting

α(x, y, z, w) =


λ {P (x)s + P (y)s + P (z)s + P (w)s},

λ P (x)sP (y)sP (z)sP (w)s

λ
{
P (x)sP (y)sP (z)sP (w)s +

{
P (x)4s + P (y)4s + P (w)4s + P (z)4s

}}
for all x, y, z, w ∈ U . Now

α(µni x, µ
n
i y, µ

n
i z, µ

n
i w)

µni
=



λ

µni
{P (µni x)s + P (µni y)s + P (µni z)

s + P (µni w)s},
λ

µni
P (µni x)s P (µni y)s P (µni z)

s P (µni w)s

λ

µni

{
P (µni x)s P (µni y)s P (µni z)

s P (µni w)s

+
{
P (µni x)4s + P (µni y)4s + P (µni z)

4s + P (µni w)4s
}}


→ 0 as n→∞,

→ 0 as n→∞,

→ 0 as n→∞.

Thus, (54) is holds. But we have γ(x) = 1
2
β (x) has the property γ(x) ≤ L · µi γ (µix) for all x ∈ U . Hence

γ(x) =
1

2
β(x) =

1

2
(4α(x, x, x, x) + α(x, 2x, x, 2x)) =


λ

2
(18P (x)s + 2P (2x)s),

λ

2

(
4 + 22s)P (x)4s,

λ

2

(
22 + 22s + 2 · 24s)P (x)4s.

Now,

1

µi
γ(µix) =


µs−1
i

λ

2

(
18 + 2s+1)P (x)s,

µ4s−1
i

λ

2

(
4 + 22s)P (x)4s,

µ4s−1
i

λ

2

(
22 + 22s + 2 · 24s)P (x)4s.


µs−1
i β(x),

µ4s−1
i β(x),

µ4s−1
i β(x).

Hence the inequality (56) holds either, L = 2s−1 for s < 1 if i = 0 and L = 1
2s−1 for s > 1 if i = 1. Now from (57), we prove

the following cases for condition (i).

Case:1 L = 2s−1 for s < 1 if i = 0

‖f(2x, 2x)− 8f(x, x)−A(x, x)‖ ≤

(
2(s−1)

)1−0

1− 2(s−1)

{
18 + 2(s+1)

2

}
λP (x)s ≤

2(s−1)
(

18 + 2(s+1)
)
λP (x)s

2− 2s
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Case:2 L = 1
2s−1 for s > 1 if i = 1

‖f(2x, 2x)− 8f(x, x)−A(x, x)‖ ≤

(
1

2(s−1)

)1−1

1− 1

2(s−1)

{
18 + 2(s+1)

2

}
λP (x)s ≤

2(s−1)
(

18 + 2(s+1)
)
λP (x)s

2s − 2

The rest of the cases is similar to that of Case 1 and 2 Hence the proof is complete

Theorem 4.4. Let F : U2 → V be a mapping for which there exists a function α : U4 → [0,∞) with the condition

lim
n→∞

1

µ3n
i

α(µni x, µ
n
i y, µ

n
i z, µ

n
i w) = 0 (63)

where µi = 2 if i = 0 and µ1 = 1
2

if i = 1 such that the functional inequality

P (F (x, y, z, w)) ≤ α(x, y, z, w) (64)

for all x, y, z, w ∈ U . If there exists L = L(i) < 1 such that the function x→ γ(x) = 1
2
β (x), has the property

γ(x) ≤ L µ3
i γ (µix) . (65)

Then there exists a unique 2-variable cubic mapping C : U2 → V satisfying the functional equation (1) and

P (f(2x, 2x)− 2f(x, x)− C(x, x)) ≤ L1−i

1− Lγ(x) (66)

for all x ∈ U . The mapping β(x) and C(x, x) are defined in (19) and (35) respectively for all x ∈ U .

Corollary 4.5. Let F : U2 → V be a mapping and there exits real numbers λ and s such that

‖F (x, y, z, w)‖ ≤


λ {P (x)s + P (y)s + P (z)s + P (w)s} , s < 1 or s > 1;

λ P (x)sP (y)sP (z)sP (w)s, s < 1
4

or s > 1
4

;

λ
{
P (x)sP (y)sP (z)sP (w)s +

{
P (x)4s + P (y)4s + P (w)4s + P (z)4s

}}
, s < 3

4
or s > 3

4
;

(67)

for all x, y, z, w ∈ U , then there exists a unique 2- variable cubic function C : U2 → V such that

‖f(2x, 2x)− 2f(x, x)− C(x, x)‖ ≤



2(s−1)(18 + 2s+1)λP (x)s

7|8− 2s| ,

2(4s−1)(4 + 22s)λP (x)4s

7|8− 24s|
2(4s−1)

(
22 + 22s + 2 · 24s

)
λP (x)4s

7|8− 24s|

(68)

for all x ∈ U.

Now, we are ready to prove the main fixed point stability results.

Theorem 4.6. Let F : U2 → V be a mapping for which there exists a function α : U4 → [0,∞) with the conditions (54)

and (63) where µi = 2 if i = 0 and µ1 = 1
2

if i = 1 such that the functional inequality

P (F (x, y, z, w)) ≤ α(x, y, z, w) (69)

for all x, y, z, w ∈ U . If there exists L = L(i) < 1 such that the function x → γ(x) = 1
2
β (x), has the properties (56) and

(65). Then there exists a unique 2-variable additive mapping A : U2 → V and a unique 2-variable cubic mapping C : U2 → V

satisfying the functional equation (1) and

P (f(x, x)−A(x, x)− C(x, x)) ≤ 1

3

L1−i

1− Lγ(x) (70)

for all x ∈ U . The mapping β(x), A(x, x) and C(x, x) are defined in (19), (14) and (35) respectively for all x ∈ U .
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Proof. By Theorems 4.2 and 4.4, there exists a unique 2-variable additive function A1 : U2 → V and a unique 2-variable

cubic function C1 : U2 → V such that

P (f(2x, 2x)− 8f(x, x)−A1(x, x)) ≤ L1−i

1− Lγ(x) and (71)

P (f(2x, 2x)− 2f(x, x)− C1(x, x)) ≤ L1−i

1− Lγ(x) (72)

for all x ∈ U . Now from (71) and (72), one can see that

P

(
f(x, x) +

1

6
A1(x, x)− 1

6
C1(x, x)

)
≤ 1

6
{P (f(2x, 2x)− 8f(x, x)−A1(x, x)) + P (f(2x, 2x)− 2f(x, x)− C1(x, x))}

≤ 1

6

{
L1−i

1− Lγ(x) +
L1−i

1− Lγ(x)

}

for all x ∈ U . Thus we obtain (70) by defining A(x, x) = −1
6
A1(x, x) and C(x, x) = 1

6
C1(x, x) ,β(x), A(x, x) and C(x, x) are

respectively defined in (19), (14) and (35) for all x ∈ U .

The following Corollary is an immediate consequence of Theorem 4.6, using Corollaries 4.3 and 4.5 concerning the stability

of (1).

Corollary 4.7. Let F : U2 → V be a mapping and there exits real numbers λ and s such that

‖F (x, y, z, w)‖ ≤


λ {P (x)s + P (y)s + P (z)s + P (w)s} , s < 1 or s > 1;

λ P (x)sP (y)sP (z)sP (w)s, s < 1
4

or s > 1
4

;

λ
{
P (x)sP (y)sP (z)sP (w)s +

{
P (x)4s + P (y)4s + P (w)4s + P (z)4s

}}
, s < 1

4
or s > 1

4
;

(73)

for all x, y, z, w ∈ U , then there exists a unique 2-variable additive mapping A : U2 → V and a unique 2-variable cubic

mapping C : U2 → V such that

‖f(x, x)−A(x, x)− C(x, x)‖ ≤



2(s−1)(18 + 2s+1)

3

(
1

|2− 2s| +
1

7|8− 2s|

)
λP (x)s,

2(4s−1)(4 + 22s)

3

(
1

3|2− 2s| +
1

7|8− 2s|

)
λP (x)4s,

2(4s−1)
(
22 + 22s + 2 · 24s

)
3

(
1

|2− 2s| +
1

7|8− 2s|

)
λP (x)4s

(74)

for all x ∈ U.
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