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Abstract: In this paper, the complex dynamic behavior of a discrete time non-linear mathematical prey – predator model with a

disease in the prey population is analyzed. The existence, the boundedness and the stability of equilibrium points are
studied algebraically. The main objective of this work is to provide a mathematical framework to study the response of

a prey – predator model to a disease in the prey population and to understand the role of supplying alternative food to
predator as disease controller in the eco-epidemiological system.
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1. Introduction

Mathematical modelling allows us to identify the key parameters that determine the rich dynamics of ecological systems.

In the development of quantitative theory for prey-predator interactions, mathematical and experimental ecology are both

important. Predator-prey models with disease are a major concern and are now becoming an interesting field of study known

as eco-epidemiology. Epidemiology is the study of the patterns, causes and effects of health and disease conditions in defined

populations. Anderson and May [1] were the first who merged the above two fields and formulated a prey-predator model

where prey species were infected by some disease. In the subsequent time, many researchers have proposed and studied

different prey-predator models in the presence of disease [2-5, 17-18].Exploitation of biological resources and harvesting of

the species is a common practice in fishery, forestry, agriculture and wild life management. The mathematical model in this

area was first introduced by C.W. Clark [20].Harvesting or constant quota of harvesting has been studied by manyresearchers

in prey-predator models [21-24].

Most important initiatives of the 20th century in the field of applied ecology has been the control of populations of econom-

ically damaging species, particularly of agricultural weed and insect pests [6,7]. A major portion of the literature dealing

with biological control aspects assumes the role of pest for the prey. There are several chemical control measures for the

eradication of infectious diseases such as vaccination, treatment, isolation, insecticide etc. But there are many problems

associated with their continued deployment including increasing pressure to reduce chemical use in the environment in
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general, development of pesticide resistance in many pathogens and decreasing availability of active ingredients. Hence, a

non-chemical method of disease control continues to gain significance. Haque and Greenhalgh were the first who introduced

the first eco-epidemic model with alternative food for the predator [8]. The consequences of providing a predator with

alternative food and the corresponding effects on the prey-predator dynamics and its utility in biological control have been

an interesting topic of study for many researchers, due to its eco-friendly nature [9-11].Sahoo et.al proposed a food chain

model with seasonal effects on additional food and discussed the extinction criteria of species in a system depending on the

interaction functions and supply of the quantity of additional food [12-13, 19].

The main objective of this paper is to investigate the role of supplying alternative food to the predators for controlling

disease in an epidemic model. The paper is structured as follows. In section 2 an epidemic model representing the dynamics

of prey-predator system in presence of alternative food to predator is proposed. Section 3 contains the conditions for the

boundedness of the system. The conditions for the existence of the system for various equilibria are determined in section

4. Section 5 presents the local stability analysis of various equilibria that the model exhibits. Finally, Section 6 devotes to

conclusion and further research.

2. Model Formulation

A Mathematical model is proposed and analyzed to study the response of a predator – prey model to a disease in the prey

population. We impose the following assumptions to formulate the mathematical model.

(1). It is assumed that a parasite is infectious and it spreads among preys. In the presence of disease the prey population

consists of two sub classes, namely, the susceptible prey X1 (T ) and infected prey X2 (T ) and the density of the predator

is denoted by Y (T ) at time T.

(2). In the presence of disease, the susceptible prey population grows according to logistic law having carrying capacity K

and intrinsic birth rate a.

dX1

dT
= a X1

(
1− X1

K

)

(3). The Susceptible prey population becomes infected when it comes in contact with the infected prey and this contact

process is assumed to follow the simple mass action kinetics with α as the rate of conversion.

(4). The infected prey is removed with death rate D2 or by predation before the possibility of reproducing.

(5). We have considered Holling type-II functional response for the predation of susceptible prey and since infected preys

are easier to catch, Holling type-I is chosen for the predation of infected prey.

(6). Predators are provided with alternative food (additional food) of constant biomass F which is distributed uniformly in

the habitat.

(7). The predator population suffers loss due to death at constant rate D3.

(8). The number of encounters per predator with the alternative food is proportional to the density of the alternative food.

The proportionality constant characterizes the ability of the predator to identify the alternative food [11].

Taking into account the aforementioned considerations, an epidemic mathematical model isformulated as follows:
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dX1

dT
= aX1

(
1− X1

K

)
− αX1X2 −

P1X1Y

(S +X1 + λµF )
−D1X1

dX2

dT
= αX1X2 −

P2X2Y

S + λµF
−D2X2 (1)

dY

dT
=
P1C1 (X1 + µF )Y

S + λµF +X1
+
P2C2X2Y

S + λµF
−D3Y

With the initial conditions X1 (0), X2 (0)and Y (0) > 0 and parameters are all positive. Model parameters are described

below.

Parameters Biological Description

a Logistic growth of susceptible prey

K Environmental carrying capacity

α Rate of transformation from infected prey to susceptible prey

β Rate of transformation from infected prey to susceptible prey

P1 Predation rate on S. prey

P2 Predation rate on I. prey

C1 Conversion efficiency on susceptible prey

C2 Conversion efficiency on infected prey

S Half saturation constant

D1 Natural death rate of Susceptible Prey

D2 Natural death rate of Infected Prey

D3 Natural death rate of predator

h1 Handling time of the predator per prey

h2 Handling time of the predator per unit quantity of alternative food

λ = h1
h2

Quality of the alternative food

a1 Ability of the predator to detect the prey item

a2 Ability of the predator to detect the alternative food

µF =
(
a1
a2

)
F Quantity of the alternative food supplied to predator

To reduce the number of parameters and to determine which combinations of parameters control the behavior of the system,

we non-dimensionalize the system (1) using x1 = X1
K

, x2 = X2
K

, y = Y
K

and t = aT .

dx1
dt

= x1 (1− x1)− βx1x2 −
qx1y

1 + ux1 + λv
− d1x1

dx2
dt

= βx1x2 −
rx2y

1 + vF
− d2x2 (2)

dy

dt
=

γ1 (x1 + e1v) y

(1 + λv + e2x1)
+
γ2x2y

1 + λv
− d3y

Where β = αK
a

, q = P1K
as

, r = P2K
as

, d1 = D1
a

, u = K
S

, v = µF
S

, γ1 = P1C1K
as

, e1 = S
K

, e2 = K
S

, γ2 = P2C2K
as

, d3 = D3
a

and

x1 (t) ≥ 0, x2 (t) ≥ 0, y (t) ≥ 0 and 0 < γ1 < q, 0 < γ2 < r, 0 < d3 < d2 and 0 < e1 < 1.
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3. Boundedness of the System

For the system to be biologically valid and well behaved in a theoretical eco-epidemiology, all its solution must be within a

certain region of confinement. This will only happen if the following theorem is satisfied.

Theorem 3.1. All the solutions of the system (2) are uniformly bounded within R3
+.

Proof. Let {x1 (t) , x2 (t) , y (t)} be any solution of the system (2). Define a positive definite function W as W = x1+x2+y.

From (2), d
dt

(x1 + x2 + y) ≤ x1 (1− x1)−d1x1−d2x2−d3y. For arbitrarily chosenη, this simplifies to d
dt

(W )+ηW ≤ x1(1−

x1−η). Applying the theorem of differential inequalities, the above equation has the solution W ≤ x1
η

(1− x1 − η)
(
1− e−ηt

)
.

As t −→∞, W ≤ x1
η

(1− x1 − η) . This implies that the solution is bounded for 0 ≤W ≤ x1
η

(1− x1 − η). This shows that

all the solutions of the system (2) in R3
+ are uniformly bounded in the region Γ = {(x1, x2, y) ∈ R3

+ : W ≤ x1
η

(1− x1 − η)+ε}

for all ε > 0 and t −→ ∞. This shows that we can sufficiently study the dynamics of the system (2) within Γ and hence

consider the system (2) to epidemiologically and mathematically well-formed within Γ.

4. Existence of Equilibrium States of the System (2)

In this section, the conditions for the existence of all possible equilibrium points of the system (2) are discussed. It is easy

to check that the system (2) possesses the following equilibrium points.

a). The trivial equilibrium point E0 (0, 0, 0) always exists.

b). The axial equilibrium point E1(1− d1, 0, 0) always exists.

c). The disease free boundary equilibrium point E2 (x1, 0, y) where x1 = d3+λvd3−γ1e1v
γ1−d3e2

and y = (1−d1)+(u−1−γv)x−ux2

q
exists

only when x1 < 1, γ1 > d3e2 and (1− d1) + (u− 1− λv)x1 − ux12 > 0.

d). The predator free boundary equilibrium point E3( d2
β
, 1
β2 (β − d2 − βd1) , 0) exists if β> d2

1−d1
and d1 < 1.

e). The endemic equilibrium point E4 (x1
∗, x2

∗, y∗) where y∗ = g2
q

(βx1
∗ − d2), x2

∗ = g1
β

(
d3 −

γ1(x1∗+e1v)
(1+λv+e2x1∗)

)
and x1

∗ is the positive root of the equation Q1x1
∗3 + Q2x1

∗2 + Q3x1
∗ + Q4 = 0 where Q1 = e2u, Q2 =

e2 (1− u+ ug1d3 + λv + βg2 + ud1) + u (1 + λv + γ1g1), Q3 = 1 + e2 (g1d3 − 1− λv + g1d3λv − d2g2 + d1 + λvd1) +

γv (2− u+ ug1d3 + 1 + λv − γ1g1 + βg2 + ud1) + u (g1d3 − 1− γ1g1e1v + d1) − γ1g1 + βg2, Q4 =

λv (2g1d3 − 2− λv + λvg1d3 − γ1g1e1v − d2g2 + 2d1 + λvd1) + g1d3 − γ1g1e1v − d2g2 + d1 − 1 exists only when

d2
β
x∗1 <

d3+λvd3−γ1e1v
γ1−d3e2

.

Therefore, the existence conditions of the equilibrium points E2, E3 and E4 depend on the parameters λ and v.

5. Stability Analysis

In this section, we obtain the sufficient conditions of local asymptotically stable for each equilibrium point.The conditions

for the stability of E1 and E2 are derived by using the next generation matrix approach introduced in [14] and the conditions

for the stability of E0, E3 and E4 are obtained by applying linearization approach.

5.1. The Next Generation Matrix Method

The non-linear vector function f(x1, x2, y) for the system (2) is f = F − V where the matrix F represents the transmission

matrix and V represents the transition matrix. The transmission constitutes all epidemiological events that involve new
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infection and all other events are incorporated in V. Hence we have F =


0

βx1x2

0

 and V =


x21 − x1 + qx1y

1+ux1+λv
+ d1x1

rx2y
1+vF

+ d2x2

−γ1(x1+e1v)y
1+λv+e2x1

− γ2x2y
1+λv

+ d3y

.

The Jacobian matrices of the functions F = DF and v = DV are obtained as below. F = [fij ]3×3 =


0 βx2 0

0 βx1 0

0 0 0

 and

V = [vij ]3×3 =


2x1 − 1 + qy

1+ux1+λv
− qx1yu

(1+ux1+λv)
2 + d1 0 qx1

1+ux1+λv

0 ry
1+vF

+ d2
rx2

1+vF

−γ1y
1+λv+e2x1

+ γ1x1ye2
(1+λv+e2x1)

2
−γ2y
1+λv

−γ1(x1+e1v)
1+λv+e2x1

− γ2x2
1+λv

+ d3


We call, FV −1, the next generation matrix for the model and set R0 = ρ(FV −1), where ρ(A) denotes the spectral radius

of a matrix A. By applying the Theorem 2 in [12], if x0 is a disease free equilibrium (DFE) of the model, then x0 is locally

asymptotically stable if R0 < 1, but unstable if R0 > 1.

Proposition 5.1. Let R01 = β(1−d1)
d2

. The equilibrium point E1 of system (2) is locally asymptotically stable if R01 < 1,

otherwise,unstable.

Proof. The Jacobian matrices F and V for the equilibrium E1 are as follows.

F =


0 0 0

0 β(1− d1) 0

0 0 0

 and V =


2β (1− d1)− 1 + d1 0 qβ(1−d1)

1+uβ(1−d1)+γv

0 d2 0

0 0 −γ1(β(1−d1)+e1v)
1+λv+e1β(1−d1)

+ d3


So, R01 = ρ

(
FV −1

)
= f22

v22
= β(1−d1)

d2
. Thus, if R01 < 1, the equilibrium point E1 is locally asymptotically stable. Otherwise,

E1 is unstable.

Proof. Let R02 = (1+vF )βx
(1+vF )d2+ry

. The equilibrium point E2 of system (2) is locally asymptotically stable if R02 < 1,

otherwise, unstable.

Proof. The Jacobian matrices F and V for the equilibrium E2 are as follows.

F =


0 0 0

0 β
(
d3+λvd3−γ1e1v

γ1−d3e2

)
0

0 0 0

 and V =


2x− 1 + qy

1+ux+λv
− qxyu

(1+ux+λv)2
+ d1 0 qx

1+ux+λv

0 ry
1+vF

+ d2 0

−1y
1+λv+e2x

+ γ1xye2
(1+λv+e2x)

2
−γ2y
1+λv

−γ1(x+e1v)
1+λv+e2x

+ d3


So, R02 = ρ

(
FV −1

)
= f22

v22
= (1+vF )x

(1+vF )d2+ry
. Thus, if R02 < 1, the equilibrium point E2 is locally asymptotically stable.

Otherwise, E2 is unstable.

5.2. Linear Stability Analysis

The Jacobian matrix of the system (2) at state variable is given by

J =


1− 2x1 − βx2 − qy

1+ux1+λv
+ quyx1

(1+ux1+λv)
2 − d1 βx2

γ1y
1+λv+e2x1

− γ1x1ye2
(1+λv+e2x1)

2 − d1

−βx1 βx1 − ry
1+vF

− d2 γ2y
1+λv

−qx1
1+ux1+λv

−rx2
1+vF

γ1(x1+e1v)
1+λv+e2x1

+ γ2x2
1+λv

− d3


The linearized stability technique for analyzing the local behavior of the non-linear system (2) is given in the following

theorem.
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Theorem 5.2. Let p (λ) = λ3 +Bλ2 + C +D. There are atmost three roots of the equation p (λ) = 0. Then the following

statements are true:

(a). If every root of the equation has absolute value less than one, then the fixed point of the system is locally asymptotically

stable and fixed point is called a sink.

(b). If at-least one of the roots of the equation has absolute value greater than one, then the fixed point of the system is

unstable and fixed point is called saddle.

(c). If every root of the equation has absolute value greater than one, then the system is source.

(d). The fixed point of the system is called hyperbolic if no root of the equation has absolute value equal to one. If there exists

a root of the equation with absolute value equal to one, then the fixed point is called Non-hyperbolic [15].

• Stability of Equilibrium E0: The Jacobian matrix J(E0) at the equilibrium point E0 is given as follows.

J(E0) =


1− d1 0 0

β −d2 0

0 0 γ1e1v
1+λv

− d3


The Eigen values are λ1 = 1 − d1, λ2 = −d2 and λ3 = γ1e1v

1+λv
− d3. Thus, the trivial equilibrium point E0 of system (2) is

locally asymptotically stable if d1 > 1 and γ1e1v < d3(1 + λv) otherwise, E0 is unstable. We summarize the result in the

following proposition.

Proposition 5.3. The trivial equilibrium point E0 of system (2) is locally asymptotically stable if d1 > 1 and γ1e1v <

d3(1 + λv) otherwise, E0 is unstable.

• Dynamical behavior of the system (2) around the equilibrium point E3: The Jacobian matrix J(E3) at the

equilibrium point E3 is given as follows.

J(E3) =


b11 b12 b13

b21 b22 b23

b31 b32 b33


Where b11 = −d2

β
, b12 = 1− d2

β
− d1, b13 = 0, b21 = −d2, b22 = −2d2, b23 = 0, b31 = −qd2

β+ud2+λvβ
, b32 =

−r(β−d2−βd1)
β2(1+vF )

, b33 =

γ1(d2+e1βv)
β+βλv+e2d2

+ γ2(β−d2−βd1)
β2(1+λv)

− d3. The Eigen values are λ1,2 =
R1±
√
R2

1−4R2

2
, where R1 = b11 + b22 and R2 = b11b22 − b12b21

and λ3 = b33. By Theorem 5.2, E3 is locally asymptotically stable if and only if R1 +
√
R2

1 − 4R2 < 2, R1−
√
R2

1 − 4R2 < 2

and β2γ1 (d2 + e1βv) (1 + λv) + γ2 (β − d2 − βd1) (β + λvβ + e2d2) < 1 + d3β
2 (1 + λv) [β (1 + λv) + e2d2].

• Local Stability of the system (2) around the interior equilibrium point E4: The Jacobian matrix of system (2)

at the equilibrium point E4(x∗1, x
∗
2, y

∗) is given below.

J(E4) =


H11 H12 H13

H21 H22 H23

H31 H32 H33


Where H11 = 1 − 2x∗1 − βx∗2 − qy∗

1+ux∗1+λv
+ quy∗x1

(1+ux∗1+λv)
2 − d1, H12 = βx∗2, H13 = γ1y

∗

1+λv+e2x
∗
1
− γ1x

∗
1y

∗e2
(1+λv+e2x

∗
1)

2 , H21 = −βx∗1,

H22 = βx∗1 − ry∗

1+vF
− d2, H23 = γ2y

∗

1+λv
, H31 =

−qx∗1
1+ux∗1+λv

, H32 =
−x∗2
1+vF

and H33 =
γ1(x

∗
1+e1v)

1+λv+e2x
∗
1

+
γ2x

∗
2

1+λv
− d3. The characteristic

equation of J(E4) is λ3 +A1λ
2 +A2λ+A3 = 0, where A1 = −(H11 +H22 +H33), A2 = H11H22−H12H21−H23H32 +H11H33

and A3 = H11H23H32 −H11H22H33 + H12H21H33. According to the Routh-Hurwitz criterion [16], E4(x∗, y∗, z∗) is locally

asymptotically stable if only A1 > 0, A3 > 0 and A1A2 > A3. Thus, the sufficient conditions for the existence and the local

stability of equilibria for the system (2) are summarized in the following table.
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Equilibria Existence Condition Stability Condition

E0 (0, 0, 0) Always exists d1 > 1 and γ1e1v < d3(1 + λv)

E1(1− d1, 0, 0) d1 < 1 R01 < 1

E2 (x1, 0, y) x1 < 1, γ1 > d3e2 and (1− d1)+

(u− 1− λv)x1 − ux12 > 0
R02 < 1

E3

(
d2
β
, 1
β2 (β − d2 − βd1) , 0

)
β > d2

1−d1
and d1 < 1 R1 +

√
R2

1 − 4R2 < 2,

R1 −
√
R2

1 − 4R2 < 2 and

β2γ1 (d2 + e1βv) (1 + λv) +

γ2 (β − d2 − βd1) (β + λvβ + e2d2) <

1 + d3β2 (1 + λv) [β (1 + λv) + e2d2]

E4 (x1∗, x2∗, y∗)
d2
β
< x∗1 <

d3+λvd3−γ1e1v
γ1−d3e2

A1 > 0, A3 > 0 and A1A2 > A3

Therefore, we observe that the stability conditions for every equilibrium point depend on the parameters λ and v.

6. Conclusion and Further Research

Mathematical modelling has been a great tool for understanding disease dynamics as well as disease control policies which

allow us to obtain useful biological insights and enable us to make correct decision to obtain disease free system in nature.

In this paper, we proposed an epidemic prey-predator model with disease in prey in presence of alternative food to predator.

The conditions for the existence and the local stability of various equilibria of the system were obtained algebraically and

we observe that these conditions depend on the quality and quantity of alternative food supplied to predator. Therefore,

Suitable alternative food to predator has the capability to make the system disease free. This non-chemical method of

disease control will be useful for the biological conservation of prey species in real world biological systems.

Analytical findings always remain incomplete without numerical verification of the results. In future, it is interesting to see

the dynamical behavior of the system (2) by performing numerical simulation with variation in the infection rate β, the

quality of alternative food λ and the quantity of alternative food v within specified range.
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