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Abstract

In this note we present a self-contained discussion of the Bernoulli numbers and apply the

Summation Theorem to show an alternative method to verifying the identity for Riemann zeta

function at positive even integers.
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1. Introduction

The formula known as the Riemann zeta function at positive even integers is

ζ(2q) =
(−1)q−1B2q π2q 2(2q−1)

(2q)!
, for any positive integer q and ζ (s) =

∞

∑
n=1

1
ns .

The complete derivation of the formula is omitted in many undergraduate textbooks and suggested as

projects; see Rudin [1], and Kumanduri and Romero [2]. Yet, this exact value is well known and can

be derived using different methods [3–6]. For example, Alladi and Defant [3] used Parseval’s identity

for the Fourier coefficients of xq, while Tuo et. al. [4] used the hyperbolic cotangent function to find

the value. In this note, we discuss the Bernoulli numbers and alternatively apply the Summation

Theorem to derive the exact formula. The approach is simple, self-contained, and can be discussed

in undergraduate courses on Elementary Analysis. First, we present a discussion of the Bernoulli

numbers.

2. Bernoulli Numbers

The Bernoulli numbers were discovered by Jacob Bernoulli (1654-1705), and the numbers have

applications in many branches of Mathematics and the sciences. The first published sophisticated
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computer program was about Bernoulli numbers (see, Kim and Toole [7]). The Bernoulli numbers Bn

are a sequence of rational numbers where the odd-numbered B′s vanish, except for B1 = − 1
2 or

B1 = 1
2 which are explicitly defined by the following respective Generating Functions:

z
ez − 1

=
∞

∑
n=0

Bn
zn

n!
with B1 = −1

2
or

z
1 − e−z =

∞

∑
n=0

Bn
zn

n!
with B1 =

1
2

Many literatures have discussed the Bernoulli numbers; see [8] and [9]. Apostol [8] credits Leonhard

Euler (1707 - 1783) for discovering that the Bernoulli numbers occur as coefficients in the Generating

Function given by the following power series expansions:

f (z) =
z

ez − 1
=

∞

∑
n=0

Bn
zn

n!
for |z| < 2π and Bn =

n

∑
k=0

1
k + 1

k

∑
j=0

(−1)j

 k

j

 jn for n ≥ 0, (1)

with limiting value B0 = 1, f (0) .
= limz→0

z
ez−1 = 1; and B1 = − 1

2 , B2 = 1
6 , B3 = 0, B4 = − 1

30 , B5 = 0, . . . .

One way to obtain the formula for Bn is by considering the Taylor series expansion of ln(x) at x = 1

[6].

ln(x) =
∞

∑
k=1

(−1)k−1(x − 1)k

k
;

so that

ln(1 − x) =
∞

∑
k=1

(−1)k−1 ([1 − x]− 1)k

k
=

∞

∑
k=1

(−1)k−1(−x)k

k
= −

∞

∑
k=1

xk

k
.

Then observe that ln
[
1 −

(
1 − et)] = ln

(
et) = t, so

t = ln
[
1 −

(
1 − et)] = −

∞

∑
k=1

(
1 − et)k

k
, and x = −

∞

∑
k=1

(1 − ex)k

k
for |1 − ex| < 1.

Therefore,

f (x) =
x

ex − 1
= − 1

ex − 1

∞

∑
k=1

(1 − ex)k

k
=

∞

∑
k=1

(1 − ex)k

k (1 − ex)
=

∞

∑
k=1

(1 − ex)k−1

k
=

∞

∑
k=0

(1 − ex)k

k + 1
.

By considering the Taylor series expansion for f (x) = x
ex−1 at x = 0, and matching results with the kth

term in the resulting summation above

f (x) =
∞

∑
n=0

Bn

n!
xn =

∞

∑
k=0

f (n)(0)
n!

xn;

where

Bn = f (n)(0) =
dn

dxn

(
x

ex − 1

)∣∣∣∣
x=0

=
dn

dxn

(
∞

∑
k=0

(1 − ex)k

k + 1

)∣∣∣∣∣
x=0

=
dn

dxn

 ∞

∑
k=0

1
k + 1

k

∑
j=0

 k

j

 (−1)jejx

∣∣∣∣∣∣
x=0

=
∞

∑
k=0

1
k + 1

k

∑
j=0

 k

j

 (−1)j dn

dxn

(
ejx
)∣∣∣∣

x=0
=

∞

∑
k=0

1
k + 1

k

∑
j=0

 k

j

 (−1)j jn.1 =
n

∑
k=0

1
k + 1

k

∑
j=0

 k

j

 (−1)j jn;
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and f (n)(0) = 0 f or k ≥ n + 1. Hence

x
ex − 1

=
∞

∑
n=0

Bn

n!
xn =

∞

∑
n=0

1
n!

 ∞

∑
k=0

1
k + 1

k

∑
j=0

 k

j

 (−1)j jn

 xn and Bn =
n

∑
k=0

1
k + 1

k

∑
j=0

(−1)j

 k

j

 jn f or n ≥ 0.

3. Example (Calculating a Few Terms of Bernoulli Numbers Using the Formula for Bn)

B1 =
1

∑
k=0

1
k + 1

k

∑
j=0

(−1)j

 k

j

 j1 =
1

0 + 1

0

∑
j=0

(−1)j

 0

j

 j1 +
1

1 + 1

1

∑
j=0

(−1)j

 1

j

 j1

= 0 +
1
2

.(0 − 1) = −1
2

B3 =
1

0 + 1

0

∑
j=0

(−1)j

 0

j

 j3 +
1

1 + 1

1

∑
j=0

(−1)j

 1

j

 j3 +
1

2 + 1

2

∑
j=0

(−1)j

 2

j

 j3 +
1

3 + 1

3

∑
j=0

(−1)j

 3

j

 j3

= 0

4. Theorem (Summation Theorem)

Let H(z) = P(z)
Q(z) be analytic in the complex plane C except for some finite set of poles z1, z2, . . . , zm that

are not integers and furthermore that H(z) is a rational function with degQ(z)− degP(z) ≥ 2. Then,

we have the summation formulas:

∞

∑
n=−∞

H(n) = −
m

∑
j=1

Res
[
πH(z) cot (πz) ; z = zj

]
,

∞

∑
n=−∞

(−1)nH(n) =
m

∑
j=1

Res[πH(z) csc (πz) ; z = zj]

A statement and discussion of the summation theorem is found in many analysis textbooks; see [10].

5. Application of Summation Theorem to Evaluating ζ (2q) for q ∈ Z+

We will use residue calculus to show that,

ζ(2q) =
(−1)q−1B2q π2q 2(2q−1)

(2q)!
where q ∈ Z+, and

z
ez − 1

=
∞

∑
k=0

Bk
zk

k!

Let H(z) = 1
z2q . We observe that H(z) has a pole of order 2q at z = 0 and cot(z) also has simple

pole at z = 0. Hence we generate the Laurent series for π H(z) cot (πz) to help determine the required

residue. We will first show that,

πz cot (πz) =
∞

∑
k=0

B2k
(−4)kπ2kz2k

(2k)!
+

2πz
2

.
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Consider

z
ez − 1

+
z
2
= z

(
1

ez − 1
+

1
2

)
= z

(
2 + ez − 1
2 (ez − 1)

)
=

z
2

(
ez + 1
ez − 1

)
=

z
2

(
e

z
2 + e−

z
2

e
z
2 − e−

z
2

)
=

z
2

coth
( z

2

)
.

We can substitute z = 2t into z
2 coth

( z
2

)
= z

ez−1 +
z
2 and observe that t coth(t) is even function so every

odd-number coefficient in the power series expansion of t coth(t) must be 0; then apply (1) above to

obtain:

t coth(t) =
2t

e2t − 1
+

2t
2

=
∞

∑
k=0

B2k
(2t)2k

(2k)!
+

2t
2

, since B3 = B5 = B7 = . . . = 0.

Also

z cot(z) = iz coth (iz) =

(
∞

∑
k=0

B2k
(2iz)2k

(2k)!
+

2iz
2

)
=

∞

∑
k=0

B2k

(
−4z2)k

(2k)!
+

2iz
2

=
∞

∑
k=0

B2k
(−4)kz2k

(2k)!
+

2iz
2

Hence,

πz cot (πz) =
∞

∑
k=0

B2k
(−4)kπ2kz2k

(2k)!
+

2iπz
2

,

π cot (πz) =
1
z

(
∞

∑
k=0

B2k
(−4)kπ2kz2k

(2k)!
+

2iπz
2

)
,

so that,

π H(z) cot (πz) =
π cot (πz)

z2q

=
1

z2q.z

(
∞

∑
k=0

B2k
(−4)kπ2kz2k

(2k)!
+

2iπz
2

)

=
1
z

(
∞

∑
k=0

B2k
(−4)kπ2kz2k−2q

(2k)!
+

2iπz1−2q

2

)

In the Laurent series expansion above, the coefficient of 1
z is attained when 2k − 2q = 0, in which case

the

Res
(

π
1

z2q cot (πz) ; z = 0
)
= B2q

(−4)qπ2q

(2q)!
=

(−1)qB2q π2q 2(2q)

(2q)!
.

So
∞

∑
n=−∞

1
n2q = −Res

(
π

1
z2q cot (πz) ; z = 0

)
and

∞

∑
n=1

1
n2q = −1

2
Res

(
π

1
z2q cot (πz) ; z = 0

)
,

and hence,

ζ(2q) =
∞

∑
n=1

1
n2q = −1

2
(−1)qB2q π2q 2(2q)

(2q)!
=

(−1)q−1B2q π2q 2(2q−1)

(2q)!
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and

ζ(2) =
∞

∑
n=1

1
n2 =

π2

6
.

The special case for k = 1 in which ζ(2) =
∞
∑

n=1

1
n2 = π2

6 , was first derived by Euler in 1734 [5].
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