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Abstract

This paper extends and generalizes the results of paper Padhan [14]. We show various fixed point

theorems for such mappings in a complete b-metric like space, and propose the novel ideas of

cyclic (α, β)-admissible mapping utilising γ-FG-contractive mapping. Adequate illustrations are

provided to validate the findings, along with the implications of the primary findings.
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1. Introduction

The most well-known conclusion in fixed point theory is the Banach contraction principle, which shows

that every contractive mapping in a full metric space has a distinct fixed point. Many applications

of this theory have been made by employing diverse contractive circumstances in different kinds

of inconsistencies. There have been a lot of intriguing but distinct generalisations of the Banach-

contraction principle in recent years have been provided by Wardowski [18] and Samet et al. [17].

Wardowski [18] first proposed this idea in 2012 of an F-contraction mapping and looked into whether

fixed points for these mappings exist. Wardowski and Van Dung [19], in addition to Piri and Kumam

[16], expanded upon the notion of F-contraction and demonstrated certain fixed and common fixed

point results. Parvaneh et al. [15] recently generalised the Wardowski fixed point findings in b-metric

and ordered b-metric spaces using a slightly modified family of functions, shown by ∆G,β. However,

Samet et al. [17] generalised BCP by introducing the idea of α-admissible mappings and providing the

idea of α-ψ-contractive mapping. Following then, a number of additional writers obtained different

fixed point conclusions by using α-admissible mappings. In keeping with this vein, Alizadeh et al.
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[2], Padhan et al. [7,13] established the concept of cyclic (α, β)-admissible mapping and demonstrated

fundamental fixed point outcomes. In this work, we continue this line of inquiry by introducing

new ideas for cyclic (α, β)-type γ-FG-contractive mapping and proving some fixed point theorems

pertaining to such contractive mapping, supported by several instances. The cyclic mapping findings

are presented with some implications. A nonlinear integral equation’s solution is provided as an

application, along with an example to illustrate it.

2. Preliminaries

Throughout this paper, we denote by N, R+ and R the sets of positive integers, nonnegative real

numbers and real numbers, respectively.

Definition 2.1 ([5]). Let X be a nonempty set, let k ≥ 1 be a given real number. A function d : X × X → [0, ∞)

is called a b-metric if for all x, y, z ∈ X the following conditions holds:

(S1) d(x, y) = 0 if and only if x = y;

(S2) d(x, y) = d(y, x);

(S3) d(x, y) ≤ k[d(x, z) + d(z, y)].

Then (X, d) is said to be a b-metric space. The coefficient of (X, d) is k ≥ 1.

Definition 2.2 ([20]). Let F be a nonempty set and a mapping σ : F ×F → R+ is such that ∀ u, v, z ∈ F , it

satisfies

(σ1) σ(u, v) = 0 implies u = v

(σ2) σ(u, v) = σ(v, u);

(σ3) σ(u, v) ≤ σ(u, z) + σ(z, v).

Then (F , σ) is said to be a metric-like space.

Examples of metric-like spaces are as follows.

Example 2.3 ([23]). Let F = R; then the mappings σi : F ×F → R+(i ∈ {2, 3, 4}), defined by

σ2(u, v) = |u|+ |v|+ a, σ3(u, v) = |u − b|+ |v − b|, σ4(u, v) = u2 + v2, (1)

are metric-like on F , where a ≥ 0 and b ∈ R.

Definition 2.4 ([21]). Let F be a nonempty set and k ≥ 1 be a real number. A function σb : F ×F → R+ is

b-metric-like if ∀ u, v, z ∈ F , the following assertions hold:

(σb1) σb(u, v) = 0 implies u = v



Existence of Fixed Points for γ-FG-contractive Condition... / Sudip Kumar, Jagannadha Rao, P. Sudheer Kumar 55

(σb2) σb(u, v) = σb(v, u)

(σb3) σb(u, v) ≤ k[σb(u, z) + σb(z, v)].

The pair (F , σb) is called a b-metric-like space with the coefficient k.

In a b-metric-like space (F , σb) if u, v ∈ F and σb(u, v) = 0, then u = v, but the converse may not

be true and σb(u, u) may be positive for u ∈ F . Clearly, every b-metric and every partial b-metric is

a b-metric-like with the same coefficient k. However, the converses of these facts need not hold [22].

Every b-metric-like σb on F generates a topology τσb on F whose base is the family of all open σb-balls

{Bσb(u, δ) : u ∈ F , δ > 0}, where Bσb(u, δ) = {v ∈ F : |σb(u, v)− σb(u, u)| < δ}, ∀ u ∈ F and δ > 0.

Definition 2.5 ([21,22]). Let (F , σb) be a b-metric-like space with coefficient k, let {un} be a sequence in F and

u ∈ F . Then

(i) {un} is called convergent to u w.r.t. τσb , if lim
n→∞

σb(un, u) = σb(u, u);

(ii) {un} is called a Cauchy sequence in (F , σb) if lim
n,m→∞

σb(un, um) exists (and is finite).

(iii) (F , σb) is called a complete b-metric-like space if for every Cauchy sequence {un} in F there exists u ∈ F

such that

lim
n,m→∞

σb(un, um) = lim
n→∞

σb(un, u) = σb(u, u). (2)

It is clear that the limit of a sequence is usually not unique in a b-metric-like space (already partial

metric spaces have this property).

Proposition 2.6 ([12]). Every partial ordered b-metric-like σb defines a b-metric-like dσb , where

dσb(x, y) = 2σb(x, y)− σb(x, x)− σb(y, y), for all x, y ∈ F (3)

Definition 2.7 ([12]). Let (F ,⪯) be a partially ordered set and P : F → F be a mapping. We say that P is

nondecreasing with respect to ⪯ if

x, y ∈ F , x ⪯ y ⇒ Px ⪯ Py.

Definition 2.8 ([12]). Let (F ,⪯) be a partially ordered set. A sequence {xn} is said to be a nondecreasing with

respect to ⪯ if xn ⪯ xn+1. for all n ∈ ♮.

Definition 2.9 ([12]). A triple (F ,⪯, σb) is called an ordered b-metric-like space if (F ,⪯) is a partially ordered

set and σb is a b-metric-like on F .

Lemma 2.10 ([6]). Let (F , σb) be a partial b-metric-like space with the coefficient s > 1 and suppose that {xn}

and {yn} are convergent to x and y, respectively. Then we have

1
s2 σb(x, y)− 1

s
σb(x, x)− σb(y, y) ≤ lim inf

n→∞
pb(xn, yn)
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≤ lim sup
n→∞

σb(xn, yn)

≤ sσb(x, x) + s2σb(y, y) + s2σb(x, y).

Alizadeh et al. [2] introduced the concept of cyclic (α, β)-admissible mapping as follows:

Definition 2.11 ([2]). Let X be a nonempty set, f be a self-mapping on X and α, β : X → [0, ∞) be two

mappings. We say that the mapping f is a cyclic (α, β)-admissible mapping if

x ∈ X, with α(x) ≥ 1 ⇒ β( f x) ≥ 1.

x ∈ X, with β(x) ≥ 1 ⇒ α( f x) ≥ 1.

3. Main Results

In this section, we extends and generalizes the results of paper Padhan et al. [14] and investigate some

fixed point results for cyclic (α, β)-type γ-FG-contractive mappings and then we prove some fixed

point results in b-metric like and partially ordered b-metric like spaces. To prove our main result we

will use the following notations cited in Parvaneh et al. [15]. We will consider the following classes of

functions. ∆F will denote the set of all functions F : R+ → R such that

(∆1) F is continuous and strictly increasing;

(∆2) for each sequence {tn} ⊆ R+, lim
n→∞

tn = 0 iff lim
n→∞

F(tn) = −∞.

∆G,γ will denote the set of pairs (G, γ), where G : R+ → R and γ : [0, ∞) → [0, 1), such that

(∆3) for each sequence {tn} ⊆ R+, lim sup
n→∞

G(tn) ≥ 0 iff lim sup
n→∞

tn ≥ 1;

(∆4) for each sequence {tn} ⊆ [0, ∞), lim sup
n→∞

γ(tn) = 1 implies lim
n→∞

tn = 0;

(∆5) for each sequence {tn} ⊆ R+, ∑∞
n=1 G(γ(tn)) = −∞.

Example 3.1 ([15]). If F(t) = G(t) = ln t and γ(t) = k ∈ (0, 1), then F ∈ ∆F and (G, γ) ∈ ∆G,γ. Let

F(t) = − 1√
t
, G(t) = ln t and γ(t) = 1

k e−t for t > 0 and γ(t) = 0. Then F ∈ ∆F and (G, γ) ∈ ∆G,γ.

Definition 3.2. Let (X, σ) be a b-metric like space with coefficient k ≥ 1. Also suppose that α, β and f :

X × X → [0, ∞) are mappings. Then f is called cyclic (α, β)-type γ-FG- contractive mapping if there exist

F ∈ ∆F, (G, γ) ∈ ∆G,γ such that the following condition holds:

α(x)β(y) ≥ 1, σ( f x, f y) > 0 ⇒ α(x)β(y)F(k3σ( f x, f y)) ≤ F(Mk(x, y)) + G(γ(Mk(x, y))) (4)

for all x, y ∈ X

where

Mk(x, y) = max
{

σ(x, y), σ(y, f y), σ(x, f x),
σ(x, f y) + σ(y, f x)

2k

}
. (5)
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Theorem 3.3. Let (X, σ) be a σb-complete b-metric like space with coefficient k ≥ 1, let α, β : X → [0, ∞) and

f : X → X be a cyclic (α, β)-type γ-FG-contractive mapping satisfying the following conditions:

(1) one of the following conditions holds:

(a) There exists x0 ∈ X such that α(x0) ≥ 1;

(b) There exists y0 ∈ X such that β(y0) ≥ 1;

(2) f is σb-continuous;

(3) f is a cyclic (α, β)-admissible mapping.

Then f has a unique fixed point. Moreover, if the sequence {xn} in X defined by xn = f xn−1 for all n ∈ N

is such that x0 is an initial point in condition (a) and the sequence {yn} in X defined by yn = f yn−1 for all

n ∈ N is such that y0 is an initial point in condition (b), then {xn} and {yn} converges to a fixed point of f .

Proof.

Case 1: Let x0 ∈ X such that α(x0) ≥ 1. Define the sequence {xn} by xn+1 = f xn. If there exists n0 ∈ N,

such that xn0 = xn0+1, then xn0 is the fixed point of f , and hence the proof is completed. So we assume

that xn ̸= xn+1 for all n ∈ N. It follows that

σ(xn, xn+1) > 0, ∀ n ∈ N.

Now we need to prove that

lim
n→∞

σ(xn, xn+1) = 0. (6)

Since f is cyclic (α, β)-admissible mapping, we have

α(x0) ≥ 1 ⇒ β(x1) = β( f x0) ≥ 1 ⇒ α(x2) = α( f x1) ≥ 1. (7)

By induction, we obtain

α(x2k) ≥ 1 and β(x2k+1) ≥ 1 (8)

for all k ∈ N. Since α(x0)β(x1) ≥ 1, we get

F(σ( f x0, f x1)) ≤ α(x0)β(x1)F(k3σ( f x0, f x1))

≤ F(Mk(x0, x1)) + G(γ(Mk(x0, x1))).

Proceeding in the same manner, we get α(xn)β(xn+1) ≥ 1, for all n ∈ N.

F(σ( f xn, f xn+1)) ≤ α(xn)β(xn+1)F(k3σ( f xn, f xn+1))

≤ F(Mk(xn, xn+1)) + G(γ(Mk(xn, xn+1))).
(9)
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Note that for each n ∈ N, we have

Mk(xn, xn+1) = max
{

σ(xn, xn+1), σ(xn+1, f xn+1), σ(xn, f xn),
σ(xn, f xn+1) + σ(xn+1, f xn)

2k

}
= max

{
σ(xn, xn+1), σ(xn+1, xn+2),

σ(xn, xn+2)

2k

}
≤ max

{
σ(xn, xn+1), σ(xn+1, xn+2)

k[σ(xn, xn+1) + σ(xn+1, xn+2)]

2k

}
≤ max

{
σ(xn, xn+1), σ(xn+1, xn+2),

σ(xn, xn+1) + σ(xn+1, xn+2)

2

}
≤ max

{
σ(xn, xn+1), σ(xn+1, xn+2)

}
.

(10)

If Mk(xn, xn+1) = σ(xn+1, xn+2) for some n ∈ N, then inequality (9) implies that

F(σ(xn+1, xn+2)) ≤ α(xn)β(xn+1)F(k3σ(xn+1, xn+2))

< F(σ(xn+1, xn+2)) + G(γ(Mk(xn, xn+1))).

So, G(γ(Mk(xn, xn+1))) ≥ 0, which implies that γ(Mk(xn, xn+1)) ≥ 1, a contradiction. Therefore, for

all n ∈ N.

Mk(xn, xn+1) = σ(xn, xn+1).

From (4), we have

F(σ(xn+1, xn+2)) =α(xn)β(xn+1)F(k3σ(xn+1, xn+2))

≤F(σ(xn, xn+1)) + G(γ(Mk(xn, xn+1)))
(11)

for all n ∈ N. Consequently, we deduce that

F(σ(xn+1, xn+2)) ≤ F(σ(xn−1, xn)) + G(γ(Mk(xn−1, xn))) + G(γ(Mk(xn, xn+1))).

Iteratively, we find that

F(σ(xn, xn+1)) ≤ F(σ(x0, x1)) +
n

∑
i=1

G(γ(Mk(xi−1, xi))). (12)

By taking n → ∞ in above equation we obtain lim
n→∞

F(σ(xn, xn+1)) = −∞, since (G, γ) ∈ ∆G,γ and since,

F ∈ ∆F gives

lim
n→∞

σ(xn, xn+1) = 0. (13)

Next, we prove that {xn} is a b-Cauchy sequence in X. Arguing by contradiction, then there exists

ϵ0 > 0 for which we can find subsequences {xp(r)} and {xq(r)} of {xn} such that p(r) > q(r) ≥ r and

σ(xp(r), xq(r)) ≥ ϵ0 (14)
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and q(r) is the smallest number such that (14) holds.

σ(xp(r), xq(r)−1) < ϵ0. (15)

By (S3), (14) and (15), we get

ϵ0 ≤ σ(xp(r), xq(r)) ≤ kσ(xp(r), xq(r)−1) + kσ(xq(r)−1, xq(r))

< kϵ0 + kσ(xq(r)−1, xq(r)).
(16)

Taking the limit supremum as r → ∞ in above inequality, which together with (13) shows

lim sup
r→∞

σ(xp(r), xq(r)) < kϵ0, ∀ N, (17)

using the triangular inequality and we deduce,

σ(xp(r), xq(r)) ≤ k[σ(xp(r), xq(r)+1) + σ(xq(r)+1, xq(r))] (18)

and

σ(xp(r), xq(r)+1) ≤ k[σ(xp(r), xq(r)) + σ(xq(r), xq(r)+1)]. (19)

Letting r → +∞ in (18),(19) by (13) and (17) we obtain

ϵ0 ≤ k lim sup
r→∞

σ(xp(r), xq(r)+1) (20)

and

lim sup
r→∞

σ(xp(r), xq(r)+1) ≤ k2ϵ0. (21)

This implies that
ϵ0

k
≤ lim sup

r→∞
σ(xp(r), xq(r)+1) ≤ k2ϵ0. (22)

Similarly, we obtain
ϵ0

k
≤ lim sup

r→∞
σ(xq(r), xp(r)+1) ≤ k2ϵ0. (23)

Finally, we obtain that

σ(xq(r), xp(r)+1) ≤ k[σ(xq(r), xq(r)+1) + σ(xq(r)+1, xp(r)+1)]. (24)

Taking the limit supremum as r → ∞ in (24), from (13) and (22), we obtain that

ϵ0

k2 ≤ lim sup
r→∞

σ(xq(r)+1, xp(r)+1) ≤ k3ϵ0. (25)
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Using the cyclic property of α, β we get

α(xp(r))β(xq(r)) ≥ 1.

Now
F(σ( f xp(r), f xq(r))) ≤ α(xp(r))β(xq(r))F(k3σ(xp(r)+1, xq(r)+1))

≤ F(Mk(xp(r), xq(r))) + G(γ(Mk(xp(r), xq(r)))).
(26)

where

Mk(xp(r), xq(r))

= max

{
σ(xp(r), xq(r)), σ(xp(r), f xp(r)), σ(xq(r), f xq(r)),

σ(xp(r), f xq(r)) + σ(xq(r), f xp(r))

2k

}

= max

{
σ(xp(r), xq(r)), σ(xp(r), xp(r)+1), σ(xq(r), xq(r)+1),

σ(xp(r), xq(r)+1) + σ(xq(r), xp(r)+1)

2k

} (27)

for all k ∈ N. Letting limit supremum as r → +∞ in (27) and using (13),(17),(22), and (23), we obtain

Mk(xp(r), xq(r)) = max
{

kϵ0,
k2ϵ0 + k2ϵ0

2k

}
= kϵ0. (28)

Now
F(kϵ0) ≤ F(k3 ϵ0

k2 )

≤ F(k3 lim sup
r→∞

σ(xq(r)+1, xp(r)+1)

≤ lim sup
r→∞

F(Mk(xp(r), xq(r))) + lim sup
r→∞

G(γ(Mk(xp(r), xq(r))))

≤ F(kϵ0) + lim sup
r→∞

G(γ(Mk(xp(r), xq(r))))

(29)

which implies that

lim sup
r→∞

G(γ(Mk(xp(r), xq(r)))) ≥ 0.

This yields to lim sup
k→∞

γ(Mk(xp(r), xq(r))) ≥ 1, and since γ(t) < 1 for all t ≥ 0, we have

lim sup
k→∞

γ(Mk(xp(r), xq(r))) = 1.

Therefore,

lim sup
k→∞

Mk(xp(r), xq(r)) = 0,

a contradiction because of (14) and (27). Therefore {xn} is a b-Cauchy sequence in X. Now by using

the b-completeness of b-metric like space, there exists x∗ ∈ X such that

σ(x∗, x∗) = lim
n→∞

σ(xn, x∗) = lim
n,m→∞

σ(xn, xm) = 0. (30)
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By σb-continuity of f , we get

lim
n→∞

σ( f xn, f x) = 0.

Using (S3), we have

σ(x, f x) ≤ k[σ(x, f xn) + σ( f xn, f x)] (31)

for all n ∈ N. Taking the limit as n → ∞ in the above inequality, we obtain

σ(x, f x) = 0.

and then f x = x. Let x, y are fixed points of f , where x ̸= y. Now using (7), we have α(x)β(y) ≥ 1, and

then from
F(σ( f x, f y)) ≤ α(x)β(y)F(k3σ( f x, f y))

≤ F(Mk(x, y)) + G(γ(Mk(x, y)))
(32)

where,

Mk(x, y) =
{

σ(x, y), σ(x, f x), σ(y, f y),
σ(x, f y) + σ( f x, y)

2k

}
= σ(x, y)

we get

F(σ(x, y)) ≤ F(σ(x, y)) + G(γ(σ(x, y)))

so G(γ(σ(x, y))) ≥ 0 which yields that γ(σ(x, y)) ≥ 1, a contradiction. Hence x = y. Therefore, f has

unique fixed point.

Case 2: Assume that there exists y0 ∈ X such that β(y0) ≥ 1. Proceeding in a similar manner as above,

we get the conclusion.

Taking G(t) = ln t, γ(t) = k where k ∈ (0, 1) and putting τ = − ln k in the above theorem, we obtain a

generalization of the results from [18,19] in the setup of b-metric spaces.

Corollary 3.4. Let (X, σ) be a σb-complete b-metric like space with coefficient k ≥ 1, let α, β : X → [0, ∞) and

f : X → X be a mapping such that the mapping f satisfying the following conditions:

(1) one of the following conditions holds:

(a) There exists x0 ∈ X such that α(x0) ≥ 1;

(b) There exists y0 ∈ X such that β(y0) ≥ 1;

(2) α(x)β(y) ≥ 1, σ( f x, f y) > 0 ⇒ τ + α(x)β(y)F(k3σ( f x, f y)) ≤ F(Mk(x, y)) for some τ > 0, for all

x, y ∈ X and Mk is defined as earlier;

(3) f is σb-continuous;

(4) f is a cyclic (α, β)-admissible mapping.
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Then f has a unique fixed point. Moreover, if the sequence {xn} in X defined by xn = f xn−1 for all n ∈ N

is such that x0 is an initial point in condition (a) and the sequence {yn} in X defined by yn = f yn−1 for all

n ∈ N is such that y0 is an initial point in condition (b), then {xn} and {yn} converges to a fixed point of f .

Taking F(t) = G(t) = ln(t), and α(x)β(y) = 1 in the above theorem, we obtain the following result.

Corollary 3.5. Let (X, σ) be a σb-complete b-metric like space with coefficient k ≥ 1, let α, β : X → [0, ∞), and

f : X → X be a mapping such that the mapping f satisfying the following conditions:

(1) one of the following conditions holds:

(1) There exists x0 ∈ X such that α(x0) ≥ 1;

(2) There exists y0 ∈ X such that β(y0) ≥ 1;

(2) k3σ( f x, f y) ≤ γ(Mk(x, y))Mk(x, y); σ( f x, f y) > 0 for all x, y ∈ X, and Mk is defined as earlier;

(3) f is σb-continuous;

(4) f is a cyclic (α, β)-admissible mapping.

Then f has a unique fixed point. Moreover, if the sequence {xn} in X defined by xn = f xn−1 for all n ∈ N

is such that x0 is an initial point in condition (a) and the sequence {yn} in X defined by yn = f yn−1 for all

n ∈ N is such that y0 is an initial point in condition (b), then {xn} and {yn} converges to a fixed point of f .

Taking F(t) = − 1√
t

and G(t) = ln(t), and α(x)β(y) = 1 in the above theorem, we obtain the following

result.

Corollary 3.6. Let (X, σ) be a σb-complete b-metric like space with coefficient k ≥ 1, let α, β : X → [0, ∞), and

f : X → X be a mapping such that the mapping f satisfying the following conditions:

(1) one of the following conditions holds:

(a) There exists x0 ∈ X such that α(x0) ≥ 1;

(b) There exists y0 ∈ X such that β(y0) ≥ 1;

(2) k3σ( f x, f y) ≤ Mk(x,y)
[1−

√
Mk(x,y) ln γ(Mk(x,y))]2

for some σ( f x, f y) > 0 for all x, y ∈ X, where (ln t, γ) ∈ ∆G,γ,

and Mk is defined as earlier;

(3) f is σb-continuous;

(4) f is a cyclic (α, β)-admissible mapping.

Then f has a unique fixed point. Moreover, if the sequence {xn} in X defined by xn = f xn−1 for all n ∈ N

is such that x0 is an initial point in condition (a) and the sequence {yn} in X defined by yn = f yn−1 for all

n ∈ N is such that y0 is an initial point in condition (b), then {xn} and {yn} converges to a fixed point of f .
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Taking γ(t) = r, where r ∈ (0, 1) and α(x)β(y) = 1 in the above corollary and denoting k′ = −k, we

obtain the following result.

Corollary 3.7. Let (X, σ) be a σb-complete b-metric like space with coefficient k ≥ 1, let α, β : X → [0, ∞), and

f : X → X be a mapping such that the mapping f satisfying the following conditions:

(1) one of the following conditions holds:

(a) There exists x0 ∈ X such that α(x0) ≥ 1;

(b) There exists y0 ∈ X such that β(y0) ≥ 1;

(2) k3σ( f x, f y) ≤ Mk(x,y)
[1+k′

√
Mk(x,y)]2

for some σ( f x, f y) > 0 for all x, y ∈ X, where k′ > 0, and Mk is defined as

earlier.

(3) f is σb-continuous;

(4) f is a cyclic (α, β)-admissible mapping.

Then f has a unique fixed point. Moreover, if the sequence {xn} in X defined by xn = f xn−1 for all n ∈ N

is such that x0 is an initial point in condition (a) and the sequence {yn} in X defined by yn = f yn−1 for all

n ∈ N is such that y0 is an initial point in condition (b), then {xn} and {yn} converges to a fixed point of f .

Taking F(t) = t, G(t) = (r − 1)t, γ(t) = r where r ∈ [0, ∞) and putting k = 1, α(x) = 1, β(x) = 1 in the

above theorem, we obtain a following result.

Corollary 3.8. Let (X, σ) be a σb-complete b-metric like space with coefficient k let α, β : X → [0, ∞), and

f : X → X be a mapping such that

σ( f x, f y) ≤ rM(x, y))

for some r ∈ [0, 1) and for all x, y ∈ X, and M is defined as earlier. Then f has a fixed point. Moreover, if the

sequence {xn} in X defined by xn = f xn−1 for all n ∈ N is such that x0 is an initial point then {xn} converges

to a fixed point of f .

Taking k = k3 and α(x)β(y) = 1 in Theorem 3.3, we obtain the result of Parvaneh et al. [15].

Corollary 3.9. Let (X, σ) be a σb-complete b-metric space with coefficient k > 1, let α, β : X → [0, ∞), and

f : X → X be a mapping such that the mapping f satisfying the following conditions:

(1) one of the following conditions holds:

(a) There exists x0 ∈ X such that α(x0) ≥ 1;

(b) There exists y0 ∈ X such that β(y0) ≥ 1;

(2)

α(x)β(y) ≥ 1, σ( f x, f y) > 0 ⇒ F(kσ( f x, f y)) ≤ F(M(x, y)) + G(γ(M(x, y))) (33)
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for all x, y ∈ X, and

M(x, y) = max
{

σ(x, y), σ(y, f y), σ(x, f x),
σ(x, f y) + σ(y, f x)

2

}
;

(3) f is σb-continuous;

(4) f is a cyclic (α, β)-admissible mapping.

Then f has a unique fixed point. Moreover, if the sequence {xn} in X defined by xn = f xn−1 for all n ∈ N

is such that x0 is an initial point in condition (a) and the sequence {yn} in X defined by yn = f yn−1 for all

n ∈ N is such that y0 is an initial point in condition (b), then {xn} and {yn} converges to a fixed point of f .

Taking F(t) = t, G(t) = (1 − k)t, γ(t) = k where k ∈ [0, ∞) and putting α(x) = 1, β(x) = 1 in the above

theorem, we obtain a following result.

Corollary 3.10. Let (X, σ) be a σb-complete b-metric like space with coefficient k ≥ 1, let α, β : X → [0, ∞),

and f : X → X be a mapping such that

k3σb( f x, f y) ≤ rMk(x, y))

for some r ∈ [0, 1) and for all x, y ∈ X, and Mk is defined earlier. Then f has a fixed point. Moreover, if the

sequence {xn} in X defined by xn = f xn−1 for all n ∈ N is such that x0 is an initial point then {xn} converges

to a fixed point of f .

Example 3.11. Let X = [0, ∞) and let σ : X × X → [0, ∞) be defined by σ(x, y) = |x − y|2 for all x, y ∈ X.

Then (X, σb) is a complete b-metric like space with k = 2. Define the mappings α, β, : X → [0, ∞), γ : [0, ∞) →

[0, 1) and f : X → X as follows:

α(x) =

 x+7
2 , x ∈ [0, 1

2 ],

0, otherwise ,
and β(x) =

 x+6
2 , x ∈ [0, 1

2 ],

1, otherwise

and

f (x) =

 x2

3 , x ∈ [0, 1
2 ],

x + 0.01, otherwise
and γ(t) =

2
9

.

Now, we will prove that f is a cyclic (α, β)-admissible mapping. For x ∈ [0, 1
2 ], we have

α(x) ≥ 1 ⇒ β( f x) = β

(
x2

3

)
=

(( x+6
2

)2

3

)
≥ 1

and

β(x) ≥ 1 ⇒ α( f x) = α

(
x2

3

)
=

(( x+7
2

)2

3

)
≥ 1.
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Therefore, f is a cyclic (α, β)-admissible mapping. Next, we will prove that f satisfy the contractive condition

(33), with the mappings F, G : R+ → R as F(t) = G(t) = ln t, for all t ∈ [0, ∞), Assume that x, y ∈ X are

such that α(x)β(y) ≥ 1. Then we have x, y ∈ [0, 1
2 ] and hence

kσ( f x, f y) = 2
∣∣∣∣ x2

3
− y2

3

∣∣∣∣2
≤ 2

9
|x2 − y2|2

≤ 2
9
(|x − y|2)

≤ γ(M(x, y))σ(x, y)

≤ γ(M(x, y))M(x, y)

and hence,

F(kσ( f x, f y)) ≤ F(M(x, y)) + G(γ(M(x, y))).

Therefore, f satisfies all the conditions of Corollary 3.9, hence f has a unique fixed point x∗ = 0.

Example 3.12. Let X = [0, ∞) and let σ : X × X → [0, ∞) be defined by σ(x, y) = |x − y|2 for all x, y ∈ X.

Then (X, σ) is a complete b-metric like space with k = 2. Define the mappings α, β, : X → [0, ∞), γ : [0, ∞) →

[0, 1) and f : X → X as follows:

α(x) =

 x2+3
2 , x ∈ [0, 1],

0, otherwise ,
and β(x) =

 2x2+5
4 , x ∈ [0, 1],

1, otherwise

and

f (x) =


x

3
√

3+x2 , x ∈ [0, 1],

2x, otherwise
and γ(t) =

8
9

.

Now, we will prove that f is a cyclic (α, β)-admissible mapping. For x ∈ [0, 1], we have

α(x) ≥ 1 ⇒ β( f x) = β

(
x

3
√

3 + x2

)
=


(

2 x2

9(3+x2)

)
+ 5

4

 ≥ 1

and

β(x) ≥ 1 ⇒ α( f x) = α

(
x

3
√

3 + x2

)
=


(

x2

9(3+x2)

)
+ 3

2

 ≥ 1.

Therefore, f is a cyclic (α, β)-admissible mapping. Next, we will prove that f satisfy the contractive condition

(4), with the mappings F, G : R+ → R as F(t) = G(t) = ln t, for all t ∈ [0, ∞). Assume that x, y ∈ X are

such that α(x)β(y) ≥ 1. Then we have x, y ∈ [0, 1] and hence

k3σ( f x, f y) = 8

∣∣∣∣∣ x
3
√

3 + x2
− y

3
√

3 + y2

∣∣∣∣∣
2
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≤ 8
9
|x − y|2

≤ γ(M(x, y))σ(x, y)

≤ γ(M(x, y))M(x, y)

and hence,

F(k3σ( f x, f y)) ≤ F(M(x, y)) + G(γ(M(x, y))).

Therefore, f satisfies all the conditions of Theorem 3.3, hence f has a unique fixed point x∗ = 0.

In the following, we give some fixed point results involving cyclic mappings which can be regarded as

consequences of the previous results.

Definition 3.13. [9] Let A and B be nonempty subsets of a set X. A mapping f : A ∪ B → A ∪ B is called

cyclic if f (A) ⊆ B and f (B) ⊆ A.

Definition 3.14. Let (X, σ) be a b-metric like space with coefficient k ≥ 1. We say that a mapping f : A ∪ B →

A ∪ B is a (A, B)-γ-FG- contractive mapping if there exist F ∈ ∆F, (G, γ) ∈ ∆G,γ such that the following

condition holds:

A(x)B(y) ≥ 1, σ( f x, f y) > 0 ⇒ A(x)B(y)F(k3σ( f x, f y)) ≤ F(Mk(x, y)) + G(γ(Mk(x, y))) (34)

for all x ∈ A and y ∈ B, where,

Mk(x, y) = max
{

σ(x, y), σ(y, f y), σ(x, f x),
σ(x, f y) + σ(y, f x)

2k

}
(35)

Theorem 3.15. Let A and B be two nonempty subsets of the complete b-metric like space (X, σ) with coefficient

k ≥ 1 and f : A ∪ B → A ∪ B is a (A, B)-γ-FG-contractive mapping. Then f has a fixed point in A ∩ B.

Proof. Define mappings α, β : A ∪ B → [0, ∞) by

α(x) =


1, x ∈ A

0, otherwise
and β(x) =


1, x ∈ B

0, otherwise .

For x, y ∈ A ∪ B such that α(x)β(y) ≥ 1, we get x ∈ A and y ∈ B. Then we have

α(x)β(y) ≥ 1, σ( f x, f y) > 0 ⇒ α(x)β(y)F(k3σ( f x, f y)) ≤ F(Mk(x, y)) + G(γ(Mk(x, y)))

and thus the condition (4) holds. Therefore, f is an (α, β)-γ-FG-contractive mapping. It is easy to see

that f is a cyclic (α, β)-admissible mapping. Since A and B are nonempty subsets, there exists x0 ∈ A

such that α(x0) ≥ 1 and there exists y0 ∈ B such that β(y0) ≥ 1. Now, all conditions of Theorem 3.3



Existence of Fixed Points for γ-FG-contractive Condition... / Sudip Kumar, Jagannadha Rao, P. Sudheer Kumar 67

holds, so f has a fixed point in A ∪ B, say z. If z ∈ A, then z = f z ∈ B. Similarly, if z ∈ B, then z ∈ A.

Hence z ∈ A ∪ B.

Similarly, by replacing Mk(x, y) = σ(x, y) we obtain the following corollary.

Corollary 3.16. Let A and B be two nonempty subsets of the complete b-metric like space (X, σ) with coefficient

k ≥ 1 and f : A ∪ B → A ∪ B be a mapping such that

A(x)B(y) ≥ 1, σ( f x, f y) > 0 ⇒ A(x)B(y)F(k3σ( f x, f y)) ≤ F(σ(x, y)) + G(γ(σ(x, y))), (36)

Then f has a fixed point in A ∩ B.

Taking F(t) = G(t) = ln(t), and α(x)β(y) = 1 in theorem 3.15, we obtain the following Corollary.

Corollary 3.17. Let A and B be two nonempty subsets of the complete b-metric like space (X, σ) with coefficient

k ≥ 1 and f : A ∪ B → A ∪ B be a mapping such that

k3σ( f x, f y) ≤ Mk(x, y))γ(Mk(x, y)), (37)

for all x ∈ A, y ∈ B and Mk is defined as earlier. Then f has a fixed point in A ∩ B.
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