Mathematics And its Applications

ISSN: 2347-1557

Int. J. Math. And Appl., **12(1)**(2024), 53–69 Available Online: http://ijmaa.in

Existence of Fixed Points for γ -FG-contractive Condition via Cyclic (α, β) -admissible Mappings in *b*-metric Like Spaces

Sudip Kumar¹, G. V. V. Jagannadha Rao^{2,*}, P. Sudheer Kumar³

¹Research Scholar, Department of Mathematics, Kalinga University, Naya Raipur, Chhattisgarh, India

²Department of Mathematics, Kalinga University, Naya Raipur, Chhattisgarh, India

³Department of Mathematics, Aditya Institute of Technology and Management, Tekkali, Srikakulam, India

Abstract

This paper extends and generalizes the results of paper Padhan [14]. We show various fixed point theorems for such mappings in a complete *b*-metric like space, and propose the novel ideas of cyclic (α , β)-admissible mapping utilising γ -*FG*-contractive mapping. Adequate illustrations are provided to validate the findings, along with the implications of the primary findings.

Keywords: *b*-metric like space; cyclic (α, β) -admissible; complete *b*-metric like space; γ -*FG*-contractive.

2020 Mathematics Subject Classification: 47H09, 54H25, 47H10.

1. Introduction

The most well-known conclusion in fixed point theory is the Banach contraction principle, which shows that every contractive mapping in a full metric space has a distinct fixed point. Many applications of this theory have been made by employing diverse contractive circumstances in different kinds of inconsistencies. There have been a lot of intriguing but distinct generalisations of the Banachcontraction principle in recent years have been provided by Wardowski [18] and Samet et al. [17]. Wardowski [18] first proposed this idea in 2012 of an F-contraction mapping and looked into whether fixed points for these mappings exist. Wardowski and Van Dung [19], in addition to Piri and Kumam [16], expanded upon the notion of F-contraction and demonstrated certain fixed and common fixed point results. Parvaneh et al. [15] recently generalised the Wardowski fixed point findings in *b*-metric and ordered *b*-metric spaces using a slightly modified family of functions, shown by $\Delta_{G,\beta}$. However, Samet et al. [17] generalised BCP by introducing the idea of α -admissible mappings and providing the idea of α - ψ -contractive mapping. Following then, a number of additional writers obtained different fixed point conclusions by using α -admissible mappings. In keeping with this vein, Alizadeh et al.

^{*}Corresponding author (dr.gvvj.rao@kalingauniversity.ac.in)

[2], Padhan et al. [7,13] established the concept of cyclic (α , β)-admissible mapping and demonstrated fundamental fixed point outcomes. In this work, we continue this line of inquiry by introducing new ideas for cyclic (α , β)-type γ -*FG*-contractive mapping and proving some fixed point theorems pertaining to such contractive mapping, supported by several instances. The cyclic mapping findings are presented with some implications. A nonlinear integral equation's solution is provided as an application, along with an example to illustrate it.

2. Preliminaries

Throughout this paper, we denote by \mathbb{N}, \mathbb{R}_+ and \mathbb{R} the sets of positive integers, nonnegative real numbers and real numbers, respectively.

Definition 2.1 ([5]). Let X be a nonempty set, let $k \ge 1$ be a given real number. A function $d : X \times X \rightarrow [0, \infty)$ is called a b-metric if for all $x, y, z \in X$ the following conditions holds:

- (S_1) d(x,y) = 0 if and only if x = y;
- $(S_2) \ d(x,y) = d(y,x);$
- $(S_3) \ d(x,y) \le k[d(x,z) + d(z,y)].$

Then (X, d) is said to be a b-metric space. The coefficient of (X, d) is $k \ge 1$.

Definition 2.2 ([20]). *Let* \mathcal{F} *be a nonempty set and a mapping* $\sigma : \mathcal{F} \times \mathcal{F} \to \mathbb{R}_+$ *is such that* $\forall u, v, z \in \mathcal{F}$ *, it satisfies*

- $(\sigma_1) \sigma(u, v) = 0$ implies u = v
- $(\sigma_2) \ \sigma(u,v) = \sigma(v,u);$
- $(\sigma_3) \ \sigma(u,v) \leq \sigma(u,z) + \sigma(z,v).$

Then (\mathcal{F}, σ) *is said to be a metric-like space.*

Examples of metric-like spaces are as follows.

Example 2.3 ([23]). Let $\mathcal{F} = \mathbb{R}$; then the mappings $\sigma_i : \mathcal{F} \times \mathcal{F} \to \mathbb{R}_+ (i \in \{2, 3, 4\})$, defined by

$$\sigma_2(u,v) = |u| + |v| + a, \qquad \sigma_3(u,v) = |u-b| + |v-b|, \qquad \sigma_4(u,v) = u^2 + v^2, \tag{1}$$

are metric-like on \mathcal{F} *, where a* \geq 0 *and b* \in \mathbb{R} *.*

Definition 2.4 ([21]). Let \mathcal{F} be a nonempty set and $k \ge 1$ be a real number. A function $\sigma_b : \mathcal{F} \times \mathcal{F} \to \mathbb{R}_+$ is *b*-metric-like if $\forall u, v, z \in \mathcal{F}$, the following assertions hold:

$$(\sigma_b 1) \ \sigma_b(u, v) = 0 \text{ implies } u = v$$

 $(\sigma_h 2) \ \sigma_h(u,v) = \sigma_h(v,u)$

 $(\sigma_b 3) \ \sigma_b(u,v) \leq k[\sigma_b(u,z) + \sigma_b(z,v)].$

The pair (\mathcal{F}, σ_b) *is called a b-metric-like space with the coefficient k.*

In a *b*-metric-like space (\mathcal{F}, σ_b) if $u, v \in \mathcal{F}$ and $\sigma_b(u, v) = 0$, then u = v, but the converse may not be true and $\sigma_b(u, u)$ may be positive for $u \in \mathcal{F}$. Clearly, every *b*-metric and every partial *b*-metric is a *b*-metric-like with the same coefficient *k*. However, the converses of these facts need not hold [22]. Every *b*-metric-like σ_b on \mathcal{F} generates a topology τ_{σ_b} on \mathcal{F} whose base is the family of all open σ_b -balls $\{B_{\sigma_b}(u, \delta) : u \in \mathcal{F}, \delta > 0\}$, where $B_{\sigma_b}(u, \delta) = \{v \in \mathcal{F} : |\sigma_b(u, v) - \sigma_b(u, u)| < \delta\}$, $\forall u \in \mathcal{F}$ and $\delta > 0$.

Definition 2.5 ([21,22]). *Let* (\mathcal{F}, σ_b) *be a b-metric-like space with coefficient k, let* $\{u_n\}$ *be a sequence in* \mathcal{F} *and* $u \in \mathcal{F}$. Then

- (i) $\{u_n\}$ is called convergent to u w.r.t. τ_{σ_b} , if $\lim_{n\to\infty} \sigma_b(u_n, u) = \sigma_b(u, u)$;
- (ii) $\{u_n\}$ is called a Cauchy sequence in (\mathcal{F}, σ_b) if $\lim_{n \to \infty} \sigma_b(u_n, u_m)$ exists (and is finite).
- (iii) (\mathcal{F}, σ_b) is called a complete b-metric-like space if for every Cauchy sequence $\{u_n\}$ in \mathcal{F} there exists $u \in \mathcal{F}$ such that

$$\lim_{n,m\to\infty}\sigma_b(u_n,u_m) = \lim_{n\to\infty}\sigma_b(u_n,u) = \sigma_b(u,u).$$
(2)

It is clear that the limit of a sequence is usually not unique in a *b*-metric-like space (already partial metric spaces have this property).

Proposition 2.6 ([12]). Every partial ordered b-metric-like σ_b defines a b-metric-like d_{σ_b} , where

$$d_{\sigma_b}(x,y) = 2\sigma_b(x,y) - \sigma_b(x,x) - \sigma_b(y,y), \text{ for all } x, y \in \mathcal{F}$$
(3)

Definition 2.7 ([12]). Let (\mathcal{F}, \preceq) be a partially ordered set and $\mathcal{P} \colon \mathcal{F} \to \mathcal{F}$ be a mapping. We say that \mathcal{P} is nondecreasing with respect to \preceq if

 $x, y \in \mathcal{F}, \quad x \leq y \quad \Rightarrow \mathcal{P}x \leq \mathcal{P}y.$

Definition 2.8 ([12]). Let (\mathcal{F}, \preceq) be a partially ordered set. A sequence $\{x_n\}$ is said to be a nondecreasing with respect to \preceq if $x_n \preceq x_{n+1}$. for all $n \in \natural$.

Definition 2.9 ([12]). A triple $(\mathcal{F}, \leq, \sigma_b)$ is called an ordered b-metric-like space if (\mathcal{F}, \leq) is a partially ordered set and σ_b is a b-metric-like on \mathcal{F} .

Lemma 2.10 ([6]). Let (\mathcal{F}, σ_b) be a partial b-metric-like space with the coefficient s > 1 and suppose that $\{x_n\}$ and $\{y_n\}$ are convergent to x and y, respectively. Then we have

$$\frac{1}{s^2}\sigma_b(x,y) - \frac{1}{s}\sigma_b(x,x) - \sigma_b(y,y) \le \liminf_{n \to \infty} p_b(x_n,y_n)$$

$$\leq \limsup_{n \to \infty} \sigma_b(x_n, y_n)$$

$$\leq s\sigma_b(x, x) + s^2 \sigma_b(y, y) + s^2 \sigma_b(x, y).$$

Alizadeh et al. [2] introduced the concept of cyclic (α , β)-admissible mapping as follows:

Definition 2.11 ([2]). Let X be a nonempty set, f be a self-mapping on X and $\alpha, \beta : X \to [0, \infty)$ be two mappings. We say that the mapping f is a cyclic (α, β) -admissible mapping if

 $x \in X$, with $\alpha(x) \ge 1 \Rightarrow \beta(fx) \ge 1$. $x \in X$, with $\beta(x) \ge 1 \Rightarrow \alpha(fx) \ge 1$.

3. Main Results

In this section, we extends and generalizes the results of paper Padhan et al. [14] and investigate some fixed point results for cyclic (α, β) -type γ -*FG*-contractive mappings and then we prove some fixed point results in *b*-metric like and partially ordered *b*-metric like spaces. To prove our main result we will use the following notations cited in Parvaneh et al. [15]. We will consider the following classes of functions. Δ_F will denote the set of all functions $F : \mathbb{R}_+ \to \mathbb{R}$ such that

 (Δ_1) *F* is continuous and strictly increasing;

(Δ_2) for each sequence $\{t_n\} \subseteq \mathbb{R}_+$, $\lim_{n \to \infty} t_n = 0$ iff $\lim_{n \to \infty} F(t_n) = -\infty$.

 $\Delta_{G,\gamma}$ will denote the set of pairs (G,γ) , where $G: \mathbb{R}_+ \to \mathbb{R}$ and $\gamma: [0,\infty) \to [0,1)$, such that

(Δ_3) for each sequence $\{t_n\} \subseteq \mathbb{R}_+$, $\limsup_{n \to \infty} G(t_n) \ge 0$ iff $\limsup_{n \to \infty} t_n \ge 1$;

(Δ_4) for each sequence $\{t_n\} \subseteq [0,\infty)$, $\limsup_{n \to \infty} \gamma(t_n) = 1$ implies $\lim_{n \to \infty} t_n = 0$;

(Δ_5) for each sequence $\{t_n\} \subseteq \mathbb{R}_+, \ \sum_{n=1}^{\infty} G(\gamma(t_n)) = -\infty$.

Example 3.1 ([15]). If $F(t) = G(t) = \ln t$ and $\gamma(t) = k \in (0,1)$, then $F \in \Delta_F$ and $(G,\gamma) \in \Delta_{G,\gamma}$. Let $F(t) = -\frac{1}{\sqrt{t}}$, $G(t) = \ln t$ and $\gamma(t) = \frac{1}{k}e^{-t}$ for t > 0 and $\gamma(t) = 0$. Then $F \in \Delta_F$ and $(G,\gamma) \in \Delta_{G,\gamma}$.

Definition 3.2. Let (X, σ) be a b-metric like space with coefficient $k \ge 1$. Also suppose that α, β and f: $X \times X \rightarrow [0, \infty)$ are mappings. Then f is called cyclic (α, β) -type γ -FG- contractive mapping if there exist $F \in \Delta_F$, $(G, \gamma) \in \Delta_{G, \gamma}$ such that the following condition holds:

$$\alpha(x)\beta(y) \ge 1, \sigma(fx, fy) > 0 \Rightarrow \alpha(x)\beta(y)F(k^3\sigma(fx, fy)) \le F(M_k(x, y)) + G(\gamma(M_k(x, y)))$$
(4)

for all $x, y \in X$

where

$$M_k(x,y) = \max\left\{\sigma(x,y), \sigma(y,fy), \sigma(x,fx), \frac{\sigma(x,fy) + \sigma(y,fx)}{2k}\right\}.$$
(5)

- (1) one of the following conditions holds:
 - (a) There exists $x_0 \in X$ such that $\alpha(x_0) \ge 1$;
 - (b) There exists $y_0 \in X$ such that $\beta(y_0) \ge 1$;
- (2) f is σ_b -continuous;
- (3) *f* is a cyclic (α, β) -admissible mapping.

Then *f* has a unique fixed point. Moreover, if the sequence $\{x_n\}$ in X defined by $x_n = fx_{n-1}$ for all $n \in \mathbb{N}$ is such that x_0 is an initial point in condition (a) and the sequence $\{y_n\}$ in X defined by $y_n = fy_{n-1}$ for all $n \in \mathbb{N}$ is such that y_0 is an initial point in condition (b), then $\{x_n\}$ and $\{y_n\}$ converges to a fixed point of *f*.

Proof.

Case 1: Let $x_0 \in X$ such that $\alpha(x_0) \ge 1$. Define the sequence $\{x_n\}$ by $x_{n+1} = fx_n$. If there exists $n_0 \in \mathbb{N}$, such that $x_{n_0} = x_{n_0+1}$, then x_{n_0} is the fixed point of f, and hence the proof is completed. So we assume that $x_n \neq x_{n+1}$ for all $n \in \mathbb{N}$. It follows that

$$\sigma(x_n, x_{n+1}) > 0, \ \forall \ n \in \mathbb{N}$$

Now we need to prove that

$$\lim_{n \to \infty} \sigma(x_n, x_{n+1}) = 0.$$
(6)

Since *f* is cyclic (α, β) -admissible mapping, we have

$$\alpha(x_0) \ge 1 \Rightarrow \beta(x_1) = \beta(fx_0) \ge 1 \Rightarrow \alpha(x_2) = \alpha(fx_1) \ge 1.$$
(7)

By induction, we obtain

$$\alpha(x_{2k}) \ge 1 \text{ and } \beta(x_{2k+1}) \ge 1 \tag{8}$$

for all $k \in \mathbb{N}$. Since $\alpha(x_0)\beta(x_1) \ge 1$, we get

$$F(\sigma(fx_0, fx_1)) \le \alpha(x_0)\beta(x_1)F(k^3\sigma(fx_0, fx_1))$$

$$\le F(M_k(x_0, x_1)) + G(\gamma(M_k(x_0, x_1))).$$

Proceeding in the same manner, we get $\alpha(x_n)\beta(x_{n+1}) \ge 1$, for all $n \in \mathbb{N}$.

$$F(\sigma(fx_{n}, fx_{n+1})) \leq \alpha(x_{n})\beta(x_{n+1})F(k^{3}\sigma(fx_{n}, fx_{n+1})) \\ \leq F(M_{k}(x_{n}, x_{n+1})) + G(\gamma(M_{k}(x_{n}, x_{n+1}))).$$
(9)

Note that for each $n \in \mathbb{N}$, we have

$$M_{k}(x_{n}, x_{n+1}) = \max\left\{\sigma(x_{n}, x_{n+1}), \sigma(x_{n+1}, fx_{n+1}), \sigma(x_{n}, fx_{n}), \frac{\sigma(x_{n}, fx_{n+1}) + \sigma(x_{n+1}, fx_{n})}{2k}\right\}$$

$$= \max\left\{\sigma(x_{n}, x_{n+1}), \sigma(x_{n+1}, x_{n+2}), \frac{\sigma(x_{n}, x_{n+2})}{2k}\right\}$$

$$\leq \max\left\{\sigma(x_{n}, x_{n+1}), \sigma(x_{n+1}, x_{n+2}), \frac{\sigma(x_{n}, x_{n+1}) + \sigma(x_{n+1}, x_{n+2})}{2k}\right\}$$

$$\leq \max\left\{\sigma(x_{n}, x_{n+1}), \sigma(x_{n+1}, x_{n+2}), \frac{\sigma(x_{n}, x_{n+1}) + \sigma(x_{n+1}, x_{n+2})}{2}\right\}$$

$$\leq \max\left\{\sigma(x_{n}, x_{n+1}), \sigma(x_{n+1}, x_{n+2})\right\}.$$

(10)

If $M_k(x_n, x_{n+1}) = \sigma(x_{n+1}, x_{n+2})$ for some $n \in \mathbb{N}$, then inequality (9) implies that

$$F(\sigma(x_{n+1}, x_{n+2})) \le \alpha(x_n)\beta(x_{n+1})F(k^3\sigma(x_{n+1}, x_{n+2}))$$

< $F(\sigma(x_{n+1}, x_{n+2})) + G(\gamma(M_k(x_n, x_{n+1})))$

So, $G(\gamma(M_k(x_n, x_{n+1}))) \ge 0$, which implies that $\gamma(M_k(x_n, x_{n+1})) \ge 1$, a contradiction. Therefore, for all $n \in \mathbb{N}$.

$$M_k(x_n, x_{n+1}) = \sigma(x_n, x_{n+1}).$$

From (4), we have

$$F(\sigma(x_{n+1}, x_{n+2})) = \alpha(x_n)\beta(x_{n+1})F(k^3\sigma(x_{n+1}, x_{n+2}))$$

$$\leq F(\sigma(x_n, x_{n+1})) + G(\gamma(M_k(x_n, x_{n+1})))$$
(11)

for all $n \in \mathbb{N}$. Consequently, we deduce that

$$F(\sigma(x_{n+1}, x_{n+2})) \leq F(\sigma(x_{n-1}, x_n)) + G(\gamma(M_k(x_{n-1}, x_n))) + G(\gamma(M_k(x_n, x_{n+1}))).$$

Iteratively, we find that

$$F(\sigma(x_n, x_{n+1})) \le F(\sigma(x_0, x_1)) + \sum_{i=1}^n G(\gamma(M_k(x_{i-1}, x_i))).$$
(12)

By taking $n \to \infty$ in above equation we obtain $\lim_{n\to\infty} F(\sigma(x_n, x_{n+1})) = -\infty$, since $(G, \gamma) \in \Delta_{G,\gamma}$ and since, $F \in \Delta_F$ gives

$$\lim_{n \to \infty} \sigma(x_n, x_{n+1}) = 0.$$
(13)

Next, we prove that $\{x_n\}$ is a *b*-Cauchy sequence in *X*. Arguing by contradiction, then there exists $\epsilon_0 > 0$ for which we can find subsequences $\{x_{p(r)}\}$ and $\{x_{q(r)}\}$ of $\{x_n\}$ such that $p(r) > q(r) \ge r$ and

$$\sigma(x_{p(r)}, x_{q(r)}) \ge \epsilon_0 \tag{14}$$

and q(r) is the smallest number such that (14) holds.

$$\sigma(x_{p(r)}, x_{q(r)-1}) < \epsilon_0. \tag{15}$$

By (*S*₃), (14) and (15), we get

$$\epsilon_0 \le \sigma(x_{p(r)}, x_{q(r)}) \le k\sigma(x_{p(r)}, x_{q(r)-1}) + k\sigma(x_{q(r)-1}, x_{q(r)}) < k\epsilon_0 + k\sigma(x_{q(r)-1}, x_{q(r)}).$$
(16)

Taking the limit supremum as $r \to \infty$ in above inequality, which together with (13) shows

$$\limsup_{r \to \infty} \sigma(x_{p(r)}, x_{q(r)}) < k\epsilon_0, \ \forall \ \mathbb{N},$$
(17)

using the triangular inequality and we deduce,

$$\sigma(x_{p(r)}, x_{q(r)}) \le k[\sigma(x_{p(r)}, x_{q(r)+1}) + \sigma(x_{q(r)+1}, x_{q(r)})]$$
(18)

and

$$\sigma(x_{p(r)}, x_{q(r)+1}) \le k[\sigma(x_{p(r)}, x_{q(r)}) + \sigma(x_{q(r)}, x_{q(r)+1})].$$
(19)

Letting $r \to +\infty$ in (18),(19) by (13) and (17) we obtain

$$\epsilon_0 \le k \limsup_{r \to \infty} \sigma(x_{p(r)}, x_{q(r)+1}) \tag{20}$$

and

$$\limsup_{r \to \infty} \sigma(x_{p(r)}, x_{q(r)+1}) \le k^2 \epsilon_0.$$
(21)

This implies that

$$\frac{\epsilon_0}{k} \le \limsup_{r \to \infty} \sigma(x_{p(r)}, x_{q(r)+1}) \le k^2 \epsilon_0.$$
(22)

Similarly, we obtain

$$\frac{\epsilon_0}{k} \le \limsup_{r \to \infty} \sigma(x_{q(r)}, x_{p(r)+1}) \le k^2 \epsilon_0.$$
(23)

Finally, we obtain that

$$\sigma(x_{q(r)}, x_{p(r)+1}) \le k[\sigma(x_{q(r)}, x_{q(r)+1}) + \sigma(x_{q(r)+1}, x_{p(r)+1})].$$
(24)

Taking the limit supremum as $r \rightarrow \infty$ in (24), from (13) and (22), we obtain that

$$\frac{\epsilon_0}{k^2} \le \limsup_{r \to \infty} \sigma(x_{q(r)+1}, x_{p(r)+1}) \le k^3 \epsilon_0.$$
(25)

Using the cyclic property of α , β we get

$$\alpha(x_{p(r)})\beta(x_{q(r)}) \geq 1.$$

Now

$$F(\sigma(fx_{p(r)}, fx_{q(r)})) \leq \alpha(x_{p(r)})\beta(x_{q(r)})F(k^{3}\sigma(x_{p(r)+1}, x_{q(r)+1}))$$

$$\leq F(M_{k}(x_{p(r)}, x_{q(r)})) + G(\gamma(M_{k}(x_{p(r)}, x_{q(r)}))).$$
(26)

where

$$M_{k}(x_{p(r)}, x_{q(r)}) = \max\left\{\sigma(x_{p(r)}, x_{q(r)}), \sigma(x_{p(r)}, fx_{p(r)}), \sigma(x_{q(r)}, fx_{q(r)}), \frac{\sigma(x_{p(r)}, fx_{q(r)}) + \sigma(x_{q(r)}, fx_{p(r)})}{2k}\right\}$$
(27)
$$= \max\left\{\sigma(x_{p(r)}, x_{q(r)}), \sigma(x_{p(r)}, x_{p(r)+1}), \sigma(x_{q(r)}, x_{q(r)+1}), \frac{\sigma(x_{p(r)}, x_{q(r)+1}) + \sigma(x_{q(r)}, x_{p(r)+1})}{2k}\right\}$$

for all $k \in \mathbb{N}$. Letting limit supremum as $r \to +\infty$ in (27) and using (13),(17),(22), and (23), we obtain

$$M_k(x_{p(r)}, x_{q(r)}) = \max\left\{k\epsilon_0, \frac{k^2\epsilon_0 + k^2\epsilon_0}{2k}\right\} = k\epsilon_0.$$
(28)

Now

$$F(k\epsilon_{0}) \leq F(k^{3}\frac{\epsilon_{0}}{k^{2}})$$

$$\leq F(k^{3}\limsup_{r \to \infty} \sigma(x_{q(r)+1}, x_{p(r)+1})$$

$$\leq \limsup_{r \to \infty} F(M_{k}(x_{p(r)}, x_{q(r)})) + \limsup_{r \to \infty} G(\gamma(M_{k}(x_{p(r)}, x_{q(r)})))$$

$$\leq F(k\epsilon_{0}) + \limsup_{r \to \infty} G(\gamma(M_{k}(x_{p(r)}, x_{q(r)})))$$
(29)

which implies that

$$\limsup_{r\to\infty} G(\gamma(M_k(x_{p(r)}, x_{q(r)}))) \ge 0.$$

This yields to $\limsup_{k\to\infty} \gamma(M_k(x_{p(r)}, x_{q(r)})) \ge 1$, and since $\gamma(t) < 1$ for all $t \ge 0$, we have

Ca

$$\limsup_{k\to\infty}\gamma(M_k(x_{p(r)},x_{q(r)}))=1.$$

Therefore,

$$\limsup_{k\to\infty} M_k(x_{p(r)}, x_{q(r)}) = 0,$$

a contradiction because of (14) and (27). Therefore $\{x_n\}$ is a *b*-Cauchy sequence in *X*. Now by using the *b*-completeness of *b*-metric like space, there exists $x^* \in X$ such that

$$\sigma(x^*, x^*) = \lim_{n \to \infty} \sigma(x_n, x^*) = \lim_{n, m \to \infty} \sigma(x_n, x_m) = 0.$$
(30)

By σ_b -continuity of f, we get

$$\lim_{n\to\infty}\sigma(fx_n,fx)=0$$

Using (S_3) , we have

$$\sigma(x, fx) \le k[\sigma(x, fx_n) + \sigma(fx_n, fx)] \tag{31}$$

for all $n \in \mathbb{N}$. Taking the limit as $n \to \infty$ in the above inequality, we obtain

$$\sigma(x,fx)=0.$$

and then fx = x. Let x, y are fixed points of f, where $x \neq y$. Now using (7), we have $\alpha(x)\beta(y) \ge 1$, and then from

$$F(\sigma(fx, fy)) \le \alpha(x)\beta(y)F(k^{3}\sigma(fx, fy))$$

$$\le F(M_{k}(x, y)) + G(\gamma(M_{k}(x, y)))$$
(32)

where,

$$M_k(x,y) = \left\{ \sigma(x,y), \sigma(x,fx), \sigma(y,fy), \frac{\sigma(x,fy) + \sigma(fx,y)}{2k} \right\} = \sigma(x,y)$$

we get

$$F(\sigma(x,y)) \le F(\sigma(x,y)) + G(\gamma(\sigma(x,y)))$$

so $G(\gamma(\sigma(x, y))) \ge 0$ which yields that $\gamma(\sigma(x, y)) \ge 1$, a contradiction. Hence x = y. Therefore, f has unique fixed point.

Case 2: Assume that there exists $y_0 \in X$ such that $\beta(y_0) \ge 1$. Proceeding in a similar manner as above, we get the conclusion.

Taking $G(t) = \ln t$, $\gamma(t) = k$ where $k \in (0, 1)$ and putting $\tau = -\ln k$ in the above theorem, we obtain a generalization of the results from [18,19] in the setup of *b*-metric spaces.

Corollary 3.4. Let (X, σ) be a σ_b -complete b-metric like space with coefficient $k \ge 1$, let $\alpha, \beta : X \to [0, \infty)$ and $f : X \to X$ be a mapping such that the mapping f satisfying the following conditions:

- (1) one of the following conditions holds:
 - (a) There exists $x_0 \in X$ such that $\alpha(x_0) \ge 1$;
 - (b) There exists $y_0 \in X$ such that $\beta(y_0) \ge 1$;
- (2) $\alpha(x)\beta(y) \ge 1, \sigma(fx, fy) > 0 \Rightarrow \tau + \alpha(x)\beta(y)F(k^3\sigma(fx, fy)) \le F(M_k(x, y))$ for some $\tau > 0$, for all $x, y \in X$ and M_k is defined as earlier;
- (3) f is σ_b -continuous;
- (4) *f* is a cyclic (α, β) -admissible mapping.

61

Then *f* has a unique fixed point. Moreover, if the sequence $\{x_n\}$ in X defined by $x_n = fx_{n-1}$ for all $n \in \mathbb{N}$ is such that x_0 is an initial point in condition (*a*) and the sequence $\{y_n\}$ in X defined by $y_n = fy_{n-1}$ for all $n \in \mathbb{N}$ is such that y_0 is an initial point in condition (*b*), then $\{x_n\}$ and $\{y_n\}$ converges to a fixed point of *f*.

Taking $F(t) = G(t) = \ln(t)$, and $\alpha(x)\beta(y) = 1$ in the above theorem, we obtain the following result.

Corollary 3.5. Let (X, σ) be a σ_b -complete *b*-metric like space with coefficient $k \ge 1$, let $\alpha, \beta : X \to [0, \infty)$, and $f : X \to X$ be a mapping such that the mapping *f* satisfying the following conditions:

- (1) one of the following conditions holds:
 - (1) There exists $x_0 \in X$ such that $\alpha(x_0) \ge 1$;
 - (2) There exists $y_0 \in X$ such that $\beta(y_0) \ge 1$;

(2)
$$k^3\sigma(fx, fy) \leq \gamma(M_k(x, y))M_k(x, y); \sigma(fx, fy) > 0$$
 for all $x, y \in X$, and M_k is defined as earlier;

- (3) f is σ_b -continuous;
- (4) *f* is a cyclic (α, β) -admissible mapping.

Then f has a unique fixed point. Moreover, if the sequence $\{x_n\}$ in X defined by $x_n = fx_{n-1}$ for all $n \in \mathbb{N}$ is such that x_0 is an initial point in condition (a) and the sequence $\{y_n\}$ in X defined by $y_n = fy_{n-1}$ for all $n \in \mathbb{N}$ is such that y_0 is an initial point in condition (b), then $\{x_n\}$ and $\{y_n\}$ converges to a fixed point of f.

Taking $F(t) = -\frac{1}{\sqrt{t}}$ and $G(t) = \ln(t)$, and $\alpha(x)\beta(y) = 1$ in the above theorem, we obtain the following result.

Corollary 3.6. Let (X, σ) be a σ_b -complete *b*-metric like space with coefficient $k \ge 1$, let $\alpha, \beta : X \to [0, \infty)$, and $f : X \to X$ be a mapping such that the mapping *f* satisfying the following conditions:

- (1) one of the following conditions holds:
 - (a) There exists $x_0 \in X$ such that $\alpha(x_0) \ge 1$;
 - (b) There exists $y_0 \in X$ such that $\beta(y_0) \ge 1$;
- (2) $k^3 \sigma(fx, fy) \leq \frac{M_k(x,y)}{[1-\sqrt{M_k(x,y)\ln\gamma(M_k(x,y))}]^2}$ for some $\sigma(fx, fy) > 0$ for all $x, y \in X$, where $(\ln t, \gamma) \in \Delta_{G,\gamma}$, and M_k is defined as earlier;
- (3) f is σ_b -continuous;
- (4) *f* is a cyclic (α, β) -admissible mapping.

Then f has a unique fixed point. Moreover, if the sequence $\{x_n\}$ in X defined by $x_n = fx_{n-1}$ for all $n \in \mathbb{N}$ is such that x_0 is an initial point in condition (a) and the sequence $\{y_n\}$ in X defined by $y_n = fy_{n-1}$ for all $n \in \mathbb{N}$ is such that y_0 is an initial point in condition (b), then $\{x_n\}$ and $\{y_n\}$ converges to a fixed point of f.

Taking $\gamma(t) = r$, where $r \in (0, 1)$ and $\alpha(x)\beta(y) = 1$ in the above corollary and denoting k' = -k, we obtain the following result.

Corollary 3.7. Let (X, σ) be a σ_b -complete *b*-metric like space with coefficient $k \ge 1$, let $\alpha, \beta : X \to [0, \infty)$, and $f : X \to X$ be a mapping such that the mapping *f* satisfying the following conditions:

- (1) one of the following conditions holds:
 - (a) There exists $x_0 \in X$ such that $\alpha(x_0) \ge 1$;
 - (b) There exists $y_0 \in X$ such that $\beta(y_0) \ge 1$;
- (2) $k^3\sigma(fx, fy) \leq \frac{M_k(x,y)}{[1+k'\sqrt{M_k(x,y)}]^2}$ for some $\sigma(fx, fy) > 0$ for all $x, y \in X$, where k' > 0, and M_k is defined as *earlier*.
- (3) f is σ_b -continuous;
- (4) *f* is a cyclic (α, β) -admissible mapping.

Then *f* has a unique fixed point. Moreover, if the sequence $\{x_n\}$ in *X* defined by $x_n = fx_{n-1}$ for all $n \in \mathbb{N}$ is such that x_0 is an initial point in condition (*a*) and the sequence $\{y_n\}$ in *X* defined by $y_n = fy_{n-1}$ for all $n \in \mathbb{N}$ is such that y_0 is an initial point in condition (*b*), then $\{x_n\}$ and $\{y_n\}$ converges to a fixed point of *f*.

Taking F(t) = t, G(t) = (r - 1)t, $\gamma(t) = r$ where $r \in [0, \infty)$ and putting k = 1, $\alpha(x) = 1$, $\beta(x) = 1$ in the above theorem, we obtain a following result.

Corollary 3.8. Let (X, σ) be a σ_b -complete b-metric like space with coefficient k let $\alpha, \beta : X \to [0, \infty)$, and $f : X \to X$ be a mapping such that

$$\sigma(fx, fy) \le rM(x, y))$$

for some $r \in [0,1)$ and for all $x, y \in X$, and M is defined as earlier. Then f has a fixed point. Moreover, if the sequence $\{x_n\}$ in X defined by $x_n = fx_{n-1}$ for all $n \in \mathbb{N}$ is such that x_0 is an initial point then $\{x_n\}$ converges to a fixed point of f.

Taking $k = k^3$ and $\alpha(x)\beta(y) = 1$ in Theorem 3.3, we obtain the result of Parvaneh et al. [15].

Corollary 3.9. Let (X, σ) be a σ_b -complete b-metric space with coefficient k > 1, let $\alpha, \beta : X \to [0, \infty)$, and $f : X \to X$ be a mapping such that the mapping f satisfying the following conditions:

- (1) one of the following conditions holds:
 - (a) There exists $x_0 \in X$ such that $\alpha(x_0) \ge 1$;
 - (b) There exists $y_0 \in X$ such that $\beta(y_0) \ge 1$;

$$\alpha(x)\beta(y) \ge 1, \sigma(fx, fy) > 0 \Rightarrow F(k\sigma(fx, fy)) \le F(M(x, y)) + G(\gamma(M(x, y)))$$
(33)

for all $x, y \in X$, and

$$M(x,y) = \max\left\{\sigma(x,y), \sigma(y,fy), \sigma(x,fx), \frac{\sigma(x,fy) + \sigma(y,fx)}{2}\right\};$$

(3) f is σ_b -continuous;

(4) *f* is a cyclic (α, β) -admissible mapping.

Then *f* has a unique fixed point. Moreover, if the sequence $\{x_n\}$ in *X* defined by $x_n = fx_{n-1}$ for all $n \in \mathbb{N}$ is such that x_0 is an initial point in condition (*a*) and the sequence $\{y_n\}$ in *X* defined by $y_n = fy_{n-1}$ for all $n \in \mathbb{N}$ is such that y_0 is an initial point in condition (*b*), then $\{x_n\}$ and $\{y_n\}$ converges to a fixed point of *f*.

Taking F(t) = t, G(t) = (1 - k)t, $\gamma(t) = k$ where $k \in [0, \infty)$ and putting $\alpha(x) = 1$, $\beta(x) = 1$ in the above theorem, we obtain a following result.

Corollary 3.10. Let (X, σ) be a σ_b -complete b-metric like space with coefficient $k \ge 1$, let $\alpha, \beta : X \to [0, \infty)$, and $f : X \to X$ be a mapping such that

$$k^3\sigma_b(fx, fy) \le rM_k(x, y))$$

for some $r \in [0,1)$ and for all $x, y \in X$, and M_k is defined earlier. Then f has a fixed point. Moreover, if the sequence $\{x_n\}$ in X defined by $x_n = fx_{n-1}$ for all $n \in \mathbb{N}$ is such that x_0 is an initial point then $\{x_n\}$ converges to a fixed point of f.

Example 3.11. Let $X = [0, \infty)$ and let $\sigma : X \times X \to [0, \infty)$ be defined by $\sigma(x, y) = |x - y|^2$ for all $x, y \in X$. Then (X, σ_b) is a complete b-metric like space with k = 2. Define the mappings $\alpha, \beta, : X \to [0, \infty), \gamma : [0, \infty) \to [0, 1)$ and $f : X \to X$ as follows:

$$\alpha(x) = \begin{cases} \frac{x+7}{2}, & x \in [0, \frac{1}{2}], \\ 0, & otherwise, \end{cases} \text{ and } \beta(x) = \begin{cases} \frac{x+6}{2}, & x \in [0, \frac{1}{2}], \\ 1, & otherwise \end{cases}$$

and

$$f(x) = \begin{cases} \frac{x^2}{3}, & x \in [0, \frac{1}{2}], \\ x + 0.01, & otherwise \end{cases} \text{ and } \gamma(t) = \frac{2}{9}.$$

Now, we will prove that f *is a cyclic* (α, β) *-admissible mapping. For* $x \in [0, \frac{1}{2}]$ *, we have*

$$\alpha(x) \ge 1 \Rightarrow \beta(fx) = \beta\left(\frac{x^2}{3}\right) = \left(\frac{\left(\frac{x+6}{2}\right)^2}{3}\right) \ge 1$$

and

$$\beta(x) \ge 1 \Rightarrow \alpha(fx) = \alpha\left(\frac{x^2}{3}\right) = \left(\frac{\left(\frac{x+7}{2}\right)^2}{3}\right) \ge 1.$$

Therefore, f is a cyclic (α, β) -admissible mapping. Next, we will prove that f satisfy the contractive condition (33), with the mappings $F, G : \mathbb{R}^+ \to \mathbb{R}$ as $F(t) = G(t) = \ln t$, for all $t \in [0, \infty)$, Assume that $x, y \in X$ are such that $\alpha(x)\beta(y) \ge 1$. Then we have $x, y \in [0, \frac{1}{2}]$ and hence

$$k\sigma(fx, fy) = 2 \left| \frac{x^2}{3} - \frac{y^2}{3} \right|^2$$

$$\leq \frac{2}{9} |x^2 - y^2|^2$$

$$\leq \frac{2}{9} (|x - y|^2)$$

$$\leq \gamma(M(x, y))\sigma(x, y)$$

$$\leq \gamma(M(x, y))M(x, y)$$

and hence,

$$F(k\sigma(fx, fy)) \le F(M(x, y)) + G(\gamma(M(x, y))).$$

Therefore, f satisfies all the conditions of Corollary 3.9, hence f has a unique fixed point $x^* = 0$.

Example 3.12. Let $X = [0, \infty)$ and let $\sigma : X \times X \to [0, \infty)$ be defined by $\sigma(x, y) = |x - y|^2$ for all $x, y \in X$. Then (X, σ) is a complete b-metric like space with k = 2. Define the mappings $\alpha, \beta, : X \to [0, \infty), \gamma : [0, \infty) \to [0, 1)$ and $f : X \to X$ as follows:

$$\alpha(x) = \begin{cases} \frac{x^2+3}{2}, & x \in [0,1], \\ 0, & otherwise, \end{cases} \text{ and } \beta(x) = \begin{cases} \frac{2x^2+5}{4}, & x \in [0,1], \\ 1, & otherwise \end{cases}$$

and

$$f(x) = \begin{cases} \frac{x}{3\sqrt{3+x^2}}, & x \in [0,1], \\ 2x, & otherwise \end{cases} \text{ and } \gamma(t) = \frac{8}{9}.$$

Now, we will prove that f *is a cyclic* (α, β) *-admissible mapping. For* $x \in [0, 1]$ *, we have*

$$\alpha(x) \ge 1 \Rightarrow \beta(fx) = \beta\left(\frac{x}{3\sqrt{3+x^2}}\right) = \left(\frac{\left(2\frac{x^2}{9(3+x^2)}\right) + 5}{4}\right) \ge 1$$

and

$$\beta(x) \ge 1 \Rightarrow \alpha(fx) = \alpha\left(\frac{x}{3\sqrt{3+x^2}}\right) = \left(\frac{\left(\frac{x^2}{9(3+x^2)}\right) + 3}{2}\right) \ge 1.$$

Therefore, f is a cyclic (α, β) -admissible mapping. Next, we will prove that f satisfy the contractive condition (4), with the mappings $F, G : \mathbb{R}^+ \to \mathbb{R}$ as $F(t) = G(t) = \ln t$, for all $t \in [0, \infty)$. Assume that $x, y \in X$ are such that $\alpha(x)\beta(y) \ge 1$. Then we have $x, y \in [0, 1]$ and hence

$$k^{3}\sigma(fx, fy) = 8 \left| \frac{x}{3\sqrt{3 + x^{2}}} - \frac{y}{3\sqrt{3 + y^{2}}} \right|^{2}$$

$$\leq \frac{8}{9}|x-y|^2$$

$$\leq \gamma(M(x,y))\sigma(x,y)$$

$$\leq \gamma(M(x,y))M(x,y)$$

and hence,

$$F(k^{3}\sigma(fx, fy)) \leq F(M(x, y)) + G(\gamma(M(x, y))).$$

Therefore, f satisfies all the conditions of Theorem 3.3, hence f has a unique fixed point $x^* = 0$.

In the following, we give some fixed point results involving cyclic mappings which can be regarded as consequences of the previous results.

Definition 3.13. [9] Let A and B be nonempty subsets of a set X. A mapping $f : A \cup B \rightarrow A \cup B$ is called cyclic if $f(A) \subseteq B$ and $f(B) \subseteq A$.

Definition 3.14. Let (X, σ) be a b-metric like space with coefficient $k \ge 1$. We say that a mapping $f : A \cup B \rightarrow A \cup B$ is a (A, B)- γ -FG- contractive mapping if there exist $F \in \Delta_F$, $(G, \gamma) \in \Delta_{G, \gamma}$ such that the following condition holds:

$$A(x)B(y) \ge 1, \sigma(fx, fy) > 0 \Rightarrow A(x)B(y)F(k^{3}\sigma(fx, fy)) \le F(M_{k}(x, y)) + G(\gamma(M_{k}(x, y)))$$
(34)

for all $x \in A$ and $y \in B$, where,

$$M_k(x,y) = \max\left\{\sigma(x,y), \sigma(y,fy), \sigma(x,fx), \frac{\sigma(x,fy) + \sigma(y,fx)}{2k}\right\}$$
(35)

Theorem 3.15. Let A and B be two nonempty subsets of the complete b-metric like space (X, σ) with coefficient $k \ge 1$ and $f : A \cup B \to A \cup B$ is a (A, B)- γ -FG-contractive mapping. Then f has a fixed point in $A \cap B$.

Proof. Define mappings $\alpha, \beta : A \cup B \rightarrow [0, \infty)$ by

$$\alpha(x) = \begin{cases} 1, & x \in A \\ 0, & \text{otherwise} \end{cases} \text{ and } \beta(x) = \begin{cases} 1, & x \in B \\ 0, & \text{otherwise} \end{cases}$$

For $x, y \in A \cup B$ such that $\alpha(x)\beta(y) \ge 1$, we get $x \in A$ and $y \in B$. Then we have

$$\alpha(x)\beta(y) \ge 1, \sigma(fx, fy) > 0 \Rightarrow \alpha(x)\beta(y)F(k^{3}\sigma(fx, fy)) \le F(M_{k}(x, y)) + G(\gamma(M_{k}(x, y)))$$

and thus the condition (4) holds. Therefore, f is an (α, β) - γ -FG-contractive mapping. It is easy to see that f is a cyclic (α, β) -admissible mapping. Since A and B are nonempty subsets, there exists $x_0 \in A$ such that $\alpha(x_0) \ge 1$ and there exists $y_0 \in B$ such that $\beta(y_0) \ge 1$. Now, all conditions of Theorem 3.3

holds, so *f* has a fixed point in $A \cup B$, say *z*. If $z \in A$, then $z = fz \in B$. Similarly, if $z \in B$, then $z \in A$. Hence $z \in A \cup B$.

Similarly, by replacing $M_k(x, y) = \sigma(x, y)$ we obtain the following corollary.

Corollary 3.16. Let A and B be two nonempty subsets of the complete b-metric like space (X, σ) with coefficient $k \ge 1$ and $f : A \cup B \to A \cup B$ be a mapping such that

$$A(x)B(y) \ge 1, \sigma(fx, fy) > 0 \Rightarrow A(x)B(y)F(k^{3}\sigma(fx, fy)) \le F(\sigma(x, y)) + G(\gamma(\sigma(x, y))),$$
(36)

Then f has a fixed point in $A \cap B$.

Taking $F(t) = G(t) = \ln(t)$, and $\alpha(x)\beta(y) = 1$ in theorem 3.15, we obtain the following Corollary.

Corollary 3.17. *Let A and B be two nonempty subsets of the complete b-metric like space* (X, σ) *with coefficient* $k \ge 1$ *and* $f : A \cup B \rightarrow A \cup B$ *be a mapping such that*

$$k^{3}\sigma(fx, fy) \le M_{k}(x, y))\gamma(M_{k}(x, y)), \tag{37}$$

for all $x \in A$, $y \in B$ and M_k is defined as earlier. Then f has a fixed point in $A \cap B$.

References

- [1] A. Aghajani, M. Abbas and J. R. Roshan, *Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces*, Math. Slovaca, 64(2014), 941-960.
- [2] S. Alizadeh, F. Moradlou and P. Salimi, *Some fixed point results for* $(\alpha \beta) (\psi, \phi)$ *-contractive mappings*, Filomat, 28(2014), 635-647.
- [3] D. Baleanu, S. Rezapour and M. Mohammadi, *Some existence results on nonlinear fractional differential equations*, Philos. Trans. A, 371(2013), Article ID 20120144.
- [4] M. Boriceanu, M. Bota and A. Petrusel, *Mutivalued fractals in b-metric spaces*, Cent. Eur. J. Math., (2010), 367-377.
- [5] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, (1993), 5-11.
- [6] N. Hussain, J. R. Roshan, V. Parvaneh and Z. Kadelburg, *Fixed points of contractive mappings in b-metric-like spaces*, The Scientific World Journal, 2014(2014), Article ID 471827, 15 pages.
- [7] G. V. V. Jagannadha Rao, Hemant K. Nashine and Zoran Kadalburg, *Best proximity point results via simulation functions in metric-like spaces*, Kragujevac Journal of Mathematics, Serbia, 44(3)(2020), 401–413.

- [8] E. Karapinar and B. Samet, Generalized $(\alpha \psi)$ contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal., 2012(2012), Article ID 793486.
- [9] W. A. Kirk, P. S. Srinivasan and P. Veeramani, *Fixed points for mappings satisfying cyclical contractive conditions*, Fixed Point Theory, 4(2003), 79-89.
- [10] L. Budhia, P. Kumam, J. Martínez-Moreno and D. Gopal, *Extensions of almost-F*, *F-Suzuki* contractions with graph and some applications to fractional calculus, Fixed Point Theory Appl., 2016(2016).
- [11] G. Mınak, A. Helvacı and I. Altun, Cirić type generalized F-contractions on complete metric spaces and fixed point results, Filomat, 28(6)(2014), 1143-1151.
- [12] A. Mukheimer, $\alpha \psi \varphi$ contractive mappings in ordered partial b-metric spaces, J. Nonlinear Sci. Appl., 7(2014), 168-179.
- [13] S. K. Padhan, G. V. V. Jagannadha Rao, Hemant K. Nashine and Ravi P. Agarwal, *Some fixed point* results for $(\beta \Psi_1 \Psi_2)$ -contractive conditions in ordered b-metric-like spaces, Filomat, 31(14)(2017), 4587–4612.
- [14] S. K. Padhan, G. V. V. Jagannadha Rao, Ahmed Al-Rawashdeh, Hemant K. Nashine and Ravi P. Agarwal, *Existence of fixed points for* γ -*FG-contractive condition via cyclic* (α , β)*-admissible mappings in b-metric spaces*, Journal of Nonlinear Sciences and Applications, 10(10)(2017), 5495–5508.
- [15] V. Parvaneh, N. Hussain and Z. Kadalburg, Generalized wardowski type fixed point theorems via αadmissible FG-contractions in b-metric spaces, Acta Mathematica Scientia, (2016).
- [16] H. Piri and P. Kumam, Some fixed point theorems concerning F-contraction in complete metric spaces, Fixed Point Theory Appl. 2014(2014).
- [17] B. Samet, C. Vetro and P. Vetro, *Fixed point theorems for α ψ-contactive type mappings*, Nonlinear Analysis, 2012(2012), 2154-2165.
- [18] D. Wardowski, Fixed point theory of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012(2012), Article ID 94.
- [19] D. Wardowski and N. Van Dung, Fixed points of f-weak contractions on complete metric spaces, Demonstr. Math., 1(2014), 146-155.
- [20] A. Amini-Harandi, Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl., 2012(2012), Article Id 204.
- [21] M. A. Alghamdi, N. Hussain and P. Salimi, Fixed point and coupled fixed point theorems on b-metriclike spaces, J. Inequ. Appl., 2013(2013), Article ID 402, 25 pages.

- [22] S. Shukla, Partial b-metric spaces and fixed point theorems, Mediterranean J. Math., 11(2)(2014), 703-711.
- [23] N. Shobkolaei, S. Sedghi, J. R. Roshan and N. Hussain, Suzuki type fixed point results in metric-like spaces, J. Function Spaces Appl., 2013(2013), Article ID 143686, 9 pages.