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Abstract

This article deals with the concept of L-valued intuitionistic L-fuzzy subgeneralised lattice of the

type 3 (IFsubgl of type 3) of a generalised lattice. Introduced the concepts L-valued intuitionistic

L-fuzzy subgeneralised lattice of the type 3 (IFsubgl of type 3), L-valued intuitionistic L-fuzzy ideal

of the type 3 (IFideal of type 3), L-valued intuitionistic L-fuzzy filter of the type 3 (IFfilter of type

3), L-valued intuitionistic L-fuzzy prime ideal of the type 3 (IF prime ideal of type 3), L-valued

intuitionistic L-fuzzy prime filter of the type 3 (IF prime filter of type 3) and L-valued intuitionistic

L-fuzzy convex subgeneralised lattice of the type 3 (IF convex subgl of type 3) of a generalised

lattice. Characterized them by their (α, β)−level subsets, discussed some equivalent conditions and

their intersections.
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1. Introduction

The theory related to the concepts fuzzy set (L-fuzzy set, intuitionistic L-fuzzy set) and fuzzy lattice

(L-fuzzy lattice, intuitionistic L-fuzzy lattice) are known from [2, 3, 4, 5] and [12, 13, 14, 15, 16, 17, 18].

Mellacheruvu Krishna Murty and U. Madana Swamy [6] (Professors of Andhra University) introduced

the concept of generalised lattice and the theory of generalised lattices developed by the author

P.R.Kishore in [7, 8] that can play an intermediate role between the theories of lattices and posets.

The concepts and the corresponding theory of fuzzy generalised lattices and fuzzy generalised lattice

ordered groups [9, 10, 11] introduced and developed by the author P.R.Kishore. In [20] Gerstenkorn

and Tepavcevic introduced the concept L-valued intuitionistic L-fuzzy set of type 3. This paper deals

with the concept of L-valued intuitionistic L-fuzzy subgeneralised lattice of the type 3 (IFsubgl of type

3) of a generalised lattice. Section 2 contains some preliminaries from the references. In Section 3,
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introduced the concept L-valued intuitionistic L-fuzzy subgeneralised lattice of the type 3 (IFsubgl of

type 3), L-valued intuitionistic L-fuzzy ideal of the type 3 (IFideal of type 3), L-valued intuitionistic

L-fuzzy filter of the type 3 (IFfilter of type 3), L-valued intuitionistic L-fuzzy prime ideal of the type

3 (IF prime ideal of type 3), and L-valued intuitionistic L-fuzzy prime filter of the type 3 (IF prime

filter of type 3) Characterized them by their (α, β)−level subsets, discussed some equivalent conditions

and their intersections. In section 4 introduced the concept of L-valued intuitionistic L-fuzzy convex

subgeneralised lattice of the type 3 (IF convex subgl of type 3) of a generalised lattice. Characterized

them by their (α, β)−level subsets, discussed some equivalent conditions and their intersections.

2. Preliminaries

This section contains some preliminaries from the references those are useful in the next sections.

A lattice L is said to be a complete lattice if for any subset of L the infimum and supremum exists in L.

Every complete lattice is bounded and the least element is denoted by 0, the greatest element is denoted

by 1. Let X be a non-empty set and L is a complete lattice satisfying the infinite meet distributive law,

then any mapping from X into L is called a L−fuzzy subset (or L-fuzzy set or L-set) of X. Let µ be a

L-fuzzy subset of X, then for any α ∈ L, the set µα = {x ∈ X | µ(x) ≥ α} is called a level subset of µ.

Definition 2.1 ([12]). Let X be a non-empty set. A collection of objects in the set form

A = {(x, µA(x), νA(x)) | x ∈ X} is called an intuitionistic fuzzy set of X if (i) µA : X → [0, 1] is a fuzzy set

in X called degree of membership function on X, (ii) νA : X → [0, 1] is a fuzzy set in X called degree of

non-membership function on X and (iii) for each x ∈ X, we have 0 ≤ µA(x) + νA(x) ≤ 1.

Note 2.2. If νA is complement of µA (that is νA(x) = 1 − µA(x) for all x ∈ X), then the intuitionistic fuzzy

set A will be fuzzy set in X.

Definition 2.3 ([16]). Let L be a lattice and A = {(x, µA(x), νA(x)) | x ∈ L} be an intuitionistic fuzzy set of

L. Then A is called an intuitionistic fuzzy sublattice of L if the following conditions satisfied: for all x, y ∈ L; (i)

µA(x∨ y) ≥ min{µA(x), µA(y)} (ii) µA(x∧ y) ≥ min{µA(x), µA(y)} (iii) νA(x∨ y) ≤ max{νA(x), νA(y)}

and (iv) νA(x ∧ y) ≤ max{νA(x), νA(y)}.

Definition 2.4 ([14]). Let X be a set and A = {(x, µA(x), νA(x)) | x ∈ X} be an intuitionistic fuzzy set of X.

Let α, β ∈ [0, 1] with α + β ≤ 1. Then the (α, β)−cut of A defined by the set Cα,β(A) = {x ∈ X | µA(x) ≥

α, νA(x) ≤ β}.

In [14] it is observed that If A and B are two intuitionistic fuzzy sets of a set X, then we have Cα,β(A) ⊆

Cδ,θ(A) if α ≥ δ and β ≤ θ.

Definition 2.5 ([20]). Let L be a complete lattice with least element 0L and greatest element 1L. Let [0, 1] be

the interval in real line. Let h : L → [0, 1] be a lattice homomorphism, that is h(α ∧ β) = min{h(α), h(β)}

and h(α ∨ β) = Max{h(α), h(β)}. Let X be a non-empty set. A collection of objects in the set form A =
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{(x, µA(x), νA(x)) | x ∈ X} is called a lattice valued intuitionistic fuzzy (L-valued intuitionistic fuzzy) set

of type-3 of X if (i) µA : X → L is a L−fuzzy set in X called degree of membership function on X, (ii)

νA : X → L is a L−fuzzy set in X called degree of non-membership function on X and (iii) for each x ∈ X, we

have 0 ≤ h(µA(x)) + h(νA(x)) ≤ 1.

The definitions of generalised lattice, subgeneralised lattice, strong ideal, prime ideal, convex subgl

and homomorphism of generalised lattices are known from [6, 7, 8, 9]. Throughout this article we shall

denote by P a generalised lattice.

3. L-valued Intuitionistic L-fuzzy Subgls of the Type 3 of a Generalised Lattice

In this section defined the concepts IFset of type 3, IFsubgl of type 3, IFideal of type 3, IFfilter of type 3,

IF prime ideal of type 3 and IF prime filter of type 3. Discussed some equivalent conditions for IFideal

of type 3, IFfilter of type 3, IF prime ideal of type 3 and IF prime filter of type 3. Characterized the

IFsubgls of type 3, IFideals of type 3, IFfilters of type 3, IF prime ideals of type 3 and IF prime filters of

type 3 by their (α, β)−level subsets. Finally proved that the intersection of any collection of IFsubgls

of type 3 (IFideals of type 3, IFfilters of type 3) is again a IFsubgl of type 3 (IFideal of type 3, IFfilter of

type 3).

Definition 3.1. Let L be a complete lattice with least element 0L and greatest element 1L. Let [0, 1] be the

interval in real line. Let h : L → [0, 1] be a lattice homomorphism, that is h(α ∧ β) = min{h(α), h(β)} and

h(α ∨ β) = Max{h(α), h(β)}. A collection of objects in the set form A = {(x, µA(x), νA(x)) | x ∈ P} is

called a L-valued intuitionistic L-fuzzy set of the type-3 (IFset of type 3) of P if (i) µA : P → L is a L−fuzzy

set in P called degree of membership function on P, (ii) νA : P → L is a L−fuzzy set in P called degree of

non-membership function on P and (iii) for each x ∈ P, we have 0 ≤ h(µA(x)) + h(νA(x)) ≤ 1.

Definition 3.2. Let A = {(x, µA(x), νA(x)) | x ∈ P} be an L-valued intuitionistic L-fuzzy set of the type 3

(IFset of type 3) of P. Then A is called an L-valued intuitionistic L-fuzzy subgeneralised lattice of type 3 (IFsubgl

of type 3) of P if the following conditions satisfied: for any finite subset X of P; (i) µA(s) ≥
∧

x∈X µA(x) for all

s ∈ mu(X) (ii) µA(t) ≥
∧

x∈X µA(x) for all t ∈ ML(X) (iii) νA(s) ≤
∨

x∈X νA(x) for all s ∈ mu(X) and (iv)

νA(t) ≤
∨

x∈X νA(x) for all t ∈ ML(X).

Definition 3.3. Let A be an IFsubgl of type 3 of P. Then A is called an L-valued intuitionistic L-fuzzy ideal of

type 3 (IFideal of type 3) of P if for any p, q ∈ P; p ≤ q in P implies µA(p) ≥ µA(q) and νA(p) ≤ νA(q).

Definition 3.4. Let A be an IFsubgl of type 3 of P. Then A is called an L-valued intuitionistic L-fuzzy filter of

type 3 (IFfilter of type 3) of P if for any p, q ∈ P; p ≤ q in P implies µA(p) ≤ µA(q) and νA(p) ≥ νA(q).

Definition 3.5. An IFideal of type 3 A of P is said to be an L-valued intuitionistic L-fuzzy prime ideal of type

3 (IF prime ideal of type 3) of P if for any finite subset X of P (i) µA(t) ≤
∨

x∈X µA(x) for all t ∈ ML(X) and

(ii) νA(t) ≥
∧

x∈X νA(x) for all t ∈ ML(X).
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Definition 3.6. An IFfilter of type 3 A of P is said to be an L-valued intuitionistic L-fuzzy prime filter of type

3 (IF prime filter of type 3) of P if for any finite subset X of P (i) µA(s) ≤
∨

x∈X µA(x) for all s ∈ mu(X) and

(ii) νA(s) ≥
∧

x∈X νA(x) for all s ∈ mu(X).

Theorem 3.7. Let A be an IFset of type 3 of P. Then for any p, q ∈ P and for any finite subset X of P the

following conditions are equivalent: (i) p ≤ q in P implies µA(p) ≥ µA(q) and νA(p) ≤ νA(q) (ii) µA(t) ≥∨
x∈X µA(x) and νA(t) ≤

∧
x∈X νA(x) for all t ∈ ML(X) (iii) µA(s) ≤

∧
x∈X µA(x) and νA(s) ≥

∨
x∈X νA(x)

for all s ∈ mu(X).

Proof. (i) ⇒ (ii) : Suppose the condition (i) and to prove (ii): Let t ∈ ML(X). Then for all x ∈ X,

we have t ≤ x and by (i) we get µA(t) ≥ µA(x), νA(t) ≤ νA(x). Therefore µA(t) ≥ ∨
x∈X µA(x) and

νA(t) ≤ ∧
x∈X νA(x). (ii) ⇒ (i) : Suppose the condition (ii) and to prove (i): Suppose p ≤ q, that is

ML{p, q} = {p}. Then by (ii) we get µA(p) ≥ µA(p) ∨ µA(q) ≥ µA(q) and νA(p) ≤ νA(p) ∧ νA(q) ≤

νA(q). (i) ⇒ (iii) : Suppose the condition (i) and to prove (iii): Let s ∈ mu(X). Then for all x ∈ X,

we have s ≥ x and by (i) we get µA(s) ≤ µA(x), νA(s) ≥ νA(x). Therefore µA(s) ≤
∧

x∈X{µA(x)} and

νA(s) ≥
∨

x∈X{νA(x)}. (iii) ⇒ (i) : Suppose the condition (iii) and to prove (i): Suppose p ≤ q, that is

mu{p, q} = {q}. Then by (iii) we get µA(q) ≤ µA(p) ∧ µA(q) ≤ µA(p) and νA(q) ≥ νA(p) ∨ νA(q) ≥

νA(p).

Theorem 3.8. Let A be an IFset of type 3 of P. Then for any p, q ∈ P and for any finite subset X of P the

following conditions are equivalent: (i) p ≤ q in P implies µA(p) ≤ µA(q) and νA(p) ≥ νA(q) (ii) µA(s) ≥∨
x∈X µA(x) and νA(s) ≤

∧
x∈X νA(x) for all s ∈ mu(X) (iii) µA(t) ≤

∧
x∈X µA(x) and νA(t) ≥

∨
x∈X νA(x)

for all t ∈ ML(X).

Note 3.9. By Definition 3.3 and Theorem 3.7 we can say that, an IFsubgl of type 3 of P is an IFideal of type 3

of P if it satisfies any one of the three conditions of Theorem 3.7. Similarly by Definition 3.4 and Theorem 3.8 we

can say that, an IFsubgl of type 3 of P is an IFfilter of type 3 of P if it satisfies any one of the three conditions of

Theorem 3.8.

Note 3.10. By Definition 3.2 and Note 3.9 we have, an IFset of type 3 of P is an IFideal of type 3 of P if and

only if for any finite subset X of P we have µA(s) =
∧

x∈X µA(x) and νA(s) =
∨

x∈X νA(x) for all s ∈ mu(X).

Similarly we have, an IFset of type 3 of P is an IFfilter of type 3 of P if and only if for any finite subset X of P

we have µA(t) =
∧

x∈X µA(x) and νA(t) =
∨

x∈X νA(x) for all t ∈ ML(X).

Theorem 3.11. Let A be an IFideal of type 3 of P. Then for any finite subset X of P, the following conditions

are equivalent: (i) A is an IF prime ideal of type 3 of P (ii) µA(t) =
∨

x∈X µA(x) and νA(t) =
∧

x∈X νA(x) for

all t ∈ ML(X) (iii) there exists x, y ∈ X such that h(µA(t)) = h(µA(x)) and h(νA(t)) = h(νA(y)) for all

t ∈ ML(X).

Proof. (i) ⇒ (ii) : Suppose A is an IF prime ideal of type 3 of P. By Definition 3.5 and Theorem 3.7, we

get (ii). (ii) ⇒ (i) : Clear. (iii) ⇒ (ii) : Suppose the condition (iii) and to prove (ii). Let t ∈ ML(X).
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Then by (iii) there exists x, y ∈ X such that µA(t) = µA(x) and νA(t) = νA(y). Since t ≤ z for all z ∈ X

and A is an IFideal of type 3, we have µA(t) ≥ µA(z) for all z ∈ X. This implies µA(t) ≥
∨

z∈X µA(z).

Since x ∈ X, it is clear that
∨

z∈X µA(z) ≥ µA(x) = µA(t). Therefore µA(t) =
∨

z∈X µA(z). Similarly we

can prove νA(t) =
∧

z∈X νA(z). (ii) ⇒ (iii) : Suppose the condition (ii) and to prove (iii). Let t ∈ ML(X).

Then by (ii) we have µA(t) =
∨

x∈X µA(x) and νA(t) =
∧

x∈X νA(x). This implies, since X is finite

and by definition 3.1, we have h(µA(t)) = h(
∨

x∈X µA(x)) =
∨

x∈X h(µA(x)) = Maxx∈X{h(µA(x))}

and h(νA(t)) = h(
∧

x∈X νA(x)) =
∧

x∈X h(νA(x)) = minx∈X{h(νA(x))}. Therefore for all t ∈ ML(X)

there exists x ∈ X such that h(µA(t)) = µA(x) and for all t ∈ ML(X) there exists y ∈ X such that

h(νA(t)) = νA(y).

Theorem 3.12. Let A be an IFideal of type 3 of P. Then for any finite subset X of P, the following conditions

are equivalent: (i) A is an IF prime filter of type 3 of P (ii) µA(s) =
∨

x∈X µA(x) and νA(s) =
∧

x∈X νA(x) for

all s ∈ mu(X) (iii) there exists x, y ∈ X such that h(µA(s)) = h(µA(x)) and h(νA(s)) = h(νA(y)) for all

s ∈ mu(X).

Definition 3.13. Let A = {(x, µA(x), νA(x)) | x ∈ P} be an IFset of type 3 of P. Let α, β ∈ L with h(α) +

h(β) ≤ 1. Then the (α, β)−cut of A defined by the set Cα,β(A) = {x ∈ P | µA(x) ≥ α, νA(x) ≤ β}.

Theorem 3.14. Let A be an IFset of type 3 of P. Then A is an IFsubgl of type 3 of P if and only if Cα,β(A) is a

subgl of P for all α, β ∈ L with h(α) + h(β) ≤ 1.

Proof. Suppose A is an IFsubgl of type 3 of P and let α, β ∈ L with h(α)+ h(β) ≤ 1. To show that Cα,β(A)

is a subgeneralised lattice of P : Let X be a finite subset of Cα,β(A). Let s ∈ mu(X) and t ∈ ML(X).

By Definition 3.2 we have µA(s), µA(t) ≥ ∧
x∈X µA(x) ≥ α and νA(s), νA(t) ≤ ∨

x∈X νA(x) ≤ β. This

implies s, t ∈ Cα,β(A). Then mu(X), ML(X) ⊆ Cα,β(A). Therefore Cα,β(A) is a subgeneralised lattice

of P. Conversely suppose the condition. To show that A is an IFsubgl of type 3 of P : Let X be

a finite subset of P. Then α =
∧

x∈X µA(x) ∈ L, β =
∨

x∈X νA(x) ∈ L, h(α) = h(
∧

x∈X µA(x)) =

min{h(µA(x)) | x ∈ X} and h(β) = h(
∨

x∈X νA(x)) = Max{h(νA(x)) | x ∈ X}. By Definition 3.1,

we have 0 ≤ h(µA(x)) + h(νA(x)) ≤ 1, that is h(µA(x)) ≤ 1 − h(νA(x)) for all x ∈ X. Consider

h(α) = min{h(µA(x)) | x ∈ X} ≤ min{1− h(νA(x)) | x ∈ X} = 1− Max{h(νA(x)) | x ∈ X} = 1− h(β).

This implies h(α) + h(β) ≤ 1. Since α ≤ µA(x) and β ≥ νA(x) for all x ∈ X, by Definition 3.13 we have

x ∈ Cα,β(A) for all x ∈ X, that is X ⊆ Cα,β(A). Since by hypothesis Cα,β(A) is a subgeneralised lattice

of P, we have ML(X), mu(X) ⊆ Cα,β(A). This implies µA(s) ≥ α and νA(s) ≤ β for all s ∈ mu(X).

Similarly µA(t) ≥ α and νA(t) ≤ β for all t ∈ ML(X). Therefore by Definition 3.2 A is an IFsubgl of

type 3 of P.

Theorem 3.15. Let A be an IFset of type 3 of P. Then A is an IFideal of type 3 of P if and only if Cα,β(A) is a

strong ideal of P for all α, β ∈ L with h(α) + h(β) ≤ 1.

Proof. Suppose A is an IFideal of type 3 of P. Let α, β ∈ L with h(α) + h(β) ≤ 1. To show that Cα,β(A)

is a strong ideal of P : Since A is an IFsubgl of type 3 of P, by Theorem 3.14 we have Cα,β(A) is a
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subgl of P. Then for any finite subset X of Cα,β(A) we have mu(X) ⊆ Cα,β(A). To show that Cα,β(A)

is an initial segment of P : Let p ∈ Cα,β(A), that is µA(p) ≥ α, νA(p) ≤ β. Let q ∈ P and suppose

q ≤ p. Since A is an IFideal of type 3 we have, µA(q) ≥ µA(p) ≥ α and νA(q) ≤ νA(p) ≤ β, that

is q ∈ Cα,β(A). Therefore Cα,β(A) is a strong ideal of P. Conversely suppose the condition. Then

by Theorem 3.14 we have A is an IFsubgl of type 3 of P. To show that A is an IFideal of type 3

of P : Let p, q ∈ P and p ≤ q. Let µA(p) = α1, νA(p) = β1, µA(q) = α2 and ν(q) = β2. Then p ∈

Cα1,β1(A), q ∈ Cα2,β2(A), h(µA(p)) = h(α1), h(νA(p)) = h(β1), h(µA(q)) = h(α2) and h(νA(q)) = h(β2).

By Definition 3.1 we have 0 ≤ h(µA(p)) + h(νA(p)) ≤ 1 and 0 ≤ h(µA(q)) + h(νA(q)) ≤ 1. Then

h(α1) + h(β1) ≤ 1 and h(α2) + h(β2) ≤ 1. By hypothesis we have Cα1,β1(A), Cα2,β2(A) are strong ideals

of P, that is Cα2,β2(A) is an initial segments of P. Since q ∈ Cα2,β2(A) and p ≤ q, we have p ∈ Cα2,β2(A).

Then µA(p) ≥ α2 = µA(q) and νA(p) ≤ β2 = νA(q). Therefore A is an IFideal of type 3 of P.

Theorem 3.16. Let A be an IFset of type 3 of P. Then A is an IFfilter of type 3 of P if and only if Cα,β(A) is a

strong filter of P for all α, β ∈ L with h(α) + h(β) ≤ 1.

Theorem 3.17. Let A be an IFset of type 3 of P. Then A is an IF prime ideal of type 3 of P if and only if Cα,β(A)

is a prime strong ideal of P for all α, β ∈ L with h(α) + h(β) ≤ 1.

Proof. Suppose A is an IF prime ideal of type 3 of P. Let α, β ∈ L with h(α) + h(β) ≤ 1. Since by

Definition 3.5 A is an IF ideal of type 3 of P, by Theorem 3.15 we have Cα,β(A) is a strong ideal of P. To

show that Cα,β(A) is a prime strong ideal of P : Let p, q ∈ P − Cα,β(A). Then µA(p) ≱ α or νA(p) ≰ β

and µA(q) ≱ α or νA(q) ≰ β. This implies clearly µA(p) ∨ µA(q) ≱ α and νA(p) ∧ νA(q) ≰ β. Let r ∈

ML{p, q}. Then by Theorem 3.11 we have µA(r) = µA(p) ∨ µA(q) ≱ α and νA(r) = νA(p) ∧ νA(q) ≰ β.

That is r ≤ p, q and r ∈ P−Cα,β(A). Therefore Cα,β(A) is a prime strong ideal of P. Conversely suppose

the condition. Then by Theorem 3.15 A is an IF ideal of type 3 of P. To show that A is an IF prime

ideal of type 3 of P : Assume that A is not prime. Then by Theorem 3.11 there exists p, q ∈ P and

r ∈ ML{p, q} such that h(µA(r)) ̸= h(µA(p)) and h(µA(r)) ̸= h(µA(q)), or h(νA(r)) ̸= h(νA(q)) and

h(νA(r)) ̸= h(νA(p)). Let α = µA(r) and β = νA(r). Then r ∈ Cα,β(A), h(α) + h(β) ≤ 1, h(µA(p)) ≱

h(α) or h(νA(p)) ≰ h(β), and h(µA(q)) ≱ h(α) or h(νA(q)) ≰ h(β). This implies µA(p) ≱ α or νA(p) ≰

β, and µA(q) ≱ α or νA(q) ≰ β. That is p, q ∈ P − Cα,β(A). Now we have (by hypothesis) Cα,β(A) is

a prime strong ideal of P, r ∈ Cα,β(A), r ≤ p, q, and p, q ∈ P − Cα,β(A). This leads contradiction to the

prime concept of Cα,β(A). Therefore the assumption is false. Therefore A is an IF prime ideal of type 3

of P.

Theorem 3.18. Let A be an IFset of type 3 of P. Then A is an IF prime filter of type 3 of P if and only if Cα,β(A)

is a prime strong filter of P for all α, β ∈ L with h(α) + h(β) ≤ 1.

Theorem 3.19. Let {Ai} be any family of IFsubgls of type 3 of P. Then
⋂

Ai is an IFsubgl of type 3 of P.

Theorem 3.20. Let {Ai} be any family of IFideals of type 3 of P. Then
⋂

Ai is an IFideal of type 3 of P.

Theorem 3.21. Let {Ai} be any family of IFfilters of type 3 of P. Then
⋂

Ai is an IFfilter of type 3 of P.
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4. L-valued Intuitionistic L-fuzzy Convex Subgeneralised Lattices of the Type 3 of a

Generalised Lattice

In this section defined the concept IF convex subgl of type 3, characterized it by its (α, β)−level sets

and observed that every IFideal of type 3 (IFfilter of type 3) is a IF convex subgl of type 3. Finally

proved that the intersection of any collection of IF convex subgls of type 3 is again a IF convex subgl

of type 3.

Definition 4.1. Let A be an L-valued intuitionistic L-fuzzy subgeneralised lattice of type 3 (IFsubgl of type 3) of

P. Then A is said to be an L-valued intuitionistic L-fuzzy convex subgeneralised lattice of type 3 (IF convex subgl

of type 3) of P if for every interval [a, b] ⊆ P, we have µA(x) ≥ µA(a) ∧ µA(b) and νA(x) ≤ νA(a) ∨ νA(b)

for all x ∈ [a, b].

Theorem 4.2. Let A be an IFset of type 3 of P. Then A is an L-valued intuitionistic L-fuzzy convex

subgeneralised lattice of type 3 (IF convex subgl of type 3) of P if and only if Cα,β(A) is a convex subgeneralised

lattice of P for all α, β ∈ L with h(α) + h(β) ≤ 1.

Proof. Suppose A is an L-valued intuitionistic L-fuzzy convex subgeneralised lattice of type 3 (IF convex

subgl of type 3) of P. Then by Definition 4.1 A is an L-valued intuitionistic L-fuzzy subgeneralised

lattice of type 3 (IFsubgl of type 3) of P. Let α, β ∈ L with h(α) + h(β) ≤ 1. Then by Theorem 3.14

Cα,β(A) is a subgeneralised lattice of P. To show that Cα,β(A) is a convex subgeneralised lattice of P :

Let a, b ∈ Cα,β(A) and a < b. Then µA(a) ≥ α, νA(a) ≤ β, µA(b) ≥ α, νA(b) ≤ β. This implies by

Definition 4.1 we have µA(x) ≥ µA(a) ∧ µA(b) ≥ α and νA(x) ≤ νA(a) ∨ νA(b) ≤ β for all x ∈ [a, b],

that is [a, b] ⊆ Cα,β(A). Therefore Cα,β(A) is a convex subgeneralised lattice of P. Conversely suppose

the condition. Then by Theorem 3.14 we have A is an IF subgl of type 3 of P. To show that A is

an IF convex subgl of type 3 of P : Let [a, b] be an interval in P and let α = µA(a) ∧ µA(b), β =

νA(a)∨ νA(b). By Definition 3.1 we have 0 ≤ h(µA(a))+ h(νA(a)) ≤ 1 and 0 ≤ h(µA(b))+ h(νA(b)) ≤ 1.

Consider h(α) = h(µA(a) ∧ µA(b)) = min{h(µA(a)), h(µA(b))} ≤ min{1 − h(νA(a)), 1 − h(νA(b))} =

1 − Max{h(νA(a)), h(νA(b))} = 1 − h(νA(a) ∨ νA(b)) = 1 − h(β). Then h(α) + h(β) ≤ 1 and that

implies a, b ∈ Cα,β(A). Since by hypothesis Cα,β(A) is a convex subgeneralised lattice of P, we have

[a, b] ⊆ Cα,β(A). Then for any x ∈ [a, b], we have µA(x) ≥ α = µA(a) ∧ µA(b) and νA(x) ≤ β =

νA(a) ∨ νA(b). Therefore A is an IF convex subgl of type 3 of P.

Theorem 4.3. In a genralised lattice, every L-valued intuitionistic L-fuzzy ideal of type 3 (IF ideal of type 3) is

a L-valued intuitionistic L-fuzzy convex subgeneralised lattice of type 3 (IF convex subgl of type 3).

Theorem 4.4. In a genralised lattice, every L-valued intuitionistic L-fuzzy filter of type 3 (IF filter of type 3) is

a L-valued intuitionistic L-fuzzy convex subgeneralised lattice of type 3 (IF convex subgl of type 3).

Theorem 4.5. Let {Ai} be any family of IF convex subgls of type 3 of P. Then
⋂

Ai is an IF convex subgl of

type 3 of P.
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Theorem 4.6. Let A be an IF ideal of type 3 and B be an IF filter of type 3 of P. Then A ∩ B is an IF convex

subgl of type 3 of P.
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