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1. Introduction

The physical properties of the celestial bodies is generally faced with two types of problems namely gravity gradient sta-

bilization and altitude stabilization of the satellites. Gravity gradient stabilization means that the portion carrying the

instrument in the satellites is always pointed towards the surface of the earth. This resulted in the formulation of the

problem of the passive altitude stabilization of the satellites in the orbit.

2. Main Results

We transform the equations of motion of the particle of mass m1 in terms of Nechvill’s co-ordinate system using the Nechvill’s

transformation given by.

ξ = ρx

η = ρy

ζ = ρz

 (1)

Where

ρ =
R

r
=

1

1 + e cos v
(2)

Here r and p are semi latus rectum (focal parameter) eccentricity of the orbit of the centre of mass of the system. For our

further study, we shall choose the true anomaly vof the centre of mass as an independent variable which is given by the

differential equation.

v =
dv

at
=

√
µr

r2
1

ρ2
(3)
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Where

√
µr

r2
remains constant for a given orbit. Let dash denote differentiations with respect to the variable v

ξ̇ =
d

at
(ρx) =

d

dv
(ρx)

dv

at

=
(
ρ′x+ ρx′

)
v̇

η̇ =
(
ρ′y + ρy′

)
v̇

ζ =
(
ρ′z + ρz′

)
v̇

(4)

Differentiating (4) again we have

ξ̈ =
(
ρ′′ex+ 2ρ′x′ + ρx′′

)
v̇2 +

(
ρ′x+ ρx′

)
v̇v̇′

η̈ =
(
ρ′′y + 2ρ′y′ + ρy′′

)
v̇2 +

(
ρ′y + ρy′

)
v̇v̇′

ζ̈ =
(
ρ′′z + 2ρ′z′ + ρz′′

)
v̇2 +

(
ρ′z + ρz′

)
v̇v̇′

(5)

From (3) we have

v̇ =

√
µr

r2
1

ρ2

v̈ =

√
µr

r2

(
−2ρρ′v̇

ρ4

)
=
−√µr
r2

.
2p′

p3
v′

2v̇2ρ′ + v̈e = 0 (6)

But v̇′ =
−2
√
µρ

r2
ρ′

ρ3
; v̈ = v̇1v̇. Putting v̈ = v1v̇ in (6) we get

v̇
(
2v̇ρ1 + ρv1

)
= 0

2v̇ρ1 + ρv1 = 0 (7)

Let us choose

√
µr

r2
= constant = a (say). Then v̇ =

a

ρ2
.

v̇1 =
2a

p3
ρ1

Also ρ′ =
1

1 + e cos v
⇒ ρ1 = eρ′ sin v

ρ′′ = 2eρρ sin v + ep2 cos v

ρ′′v̇ − ρv̇ + ρ′v̇ =
(
ep2 cos v + 2eρρ′ sin v

) a
ρ2
− pa

ρ2
+ eρ2 sin v

(
−2a

ρ3
ρ1
)

= a

(
ρ cos v − 1

ρ

)
= −a

−√µr
γ2

ρ′′v̇ − ρv̇ + ρ′v̇ =
−√µr
γ2

(8)

Also

ρ′′v̇ + ρ′v̇′ =
d

dv

(
ρ′v̇
)
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=
d

dv

(
ρ′.

a

ρ2

)
=

d

dv
(ae sin v)

= ae cos v

= a

(
1

a
− 1

)
(9)

and

R = ρρ

= ρ
d

dv

(
1

1 + e cos v

)
dv

al

= rρ′v̇ (10)

Using (1), (2), (3), (4), (5) and (10) in equation of system. We get

ρv̇2x′′ +
(
2ρ′v̇ + ρv′

)
x′v̇ −

(
v̈ρ+ 2v̇2ρ′

)
y − 2ρv̇2y +

(
ρ′′v̇ − ρ′v̇ + ρ′v̇′

)
v̇x+ a1ρρ

′v̇
−2µx

r3ρ2
− 12µk2x

ρ4r5

+ λa

[
1− ι0

ρ
√
x2 + y2 + z2

]
ρx = −

(
Q1

m1
− Q2

m2

)
µE

γ2ρ2
v̇ cos i (11)

using (7) and (8) in (11) we get

ρv̇2x′′ − 2ρv̇2y′ + a1yρ
2v̇ − 2µx

r3ρ2
− 12µk2x

ρ4r5
−
√
µr

r2
vx = −λx

[
1− ι0

ρ
√
x2 + y2 + z2

]
ρx−

(
Q1

m1
− Q2

m2

)
µE

r2ρ2
v cos i

Dividing through out by ρv̇2 we get

x′′ − 2y′ −
√
µr

r2ρ2
x

ρv̇
+
a1rρ

1

ρv̇

2µx

r3ρ3v̇2
−12µk2x

ρ5r5v̇2
=
−λa
v̇2

[
1− ι0

ρ
√
x2 + y2 + z2

]
x−

(
Q1

m1
− Q2

m2

)
µE

r2ρ3v̇
Cosi

Putting the value of v̇ we obtain the above equation of motion in the form

x′′ − 2y1 − 3ρx
12k2x

ρr2
+
a1r

3ρρ1
√
µγ

=
−λar3

µ
ρ4
[

1− ι0

ρ
√
x2 + y2 + z2

]
x−

(
Q1

m1
− Q2

m2

)
µE√
µp

1

ρ
cos i

i.e.

x′′ − 2y1 − 3xρ− 12k2x

ρr2
+ fρρ′ = −λaρ4

[
1− ι0

ρ
√
x2 + y2 + z2

]
x− B

ρ cos i
(12)

Where

f =
a1r

3

√
µr

λa =
r3

µ
λa

B =

(
Q1

m1
− Q2

m2

)
µE√
µr

(13)

Similarly 2nd and 3rd equation of (13) can be written as

y′′ + 2x′ + fρ2 +
3k2
ρr2

y = −λa

[
1− ι0

ρ
√
x2 + y2 + z2

]
ρ4y − Bρ′

ρ2
cos i........... (14)
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and

z′′ + z +
3k2z

ρr2
= −λap4

[
1− ι0

ρ
√
x2 + y2 + z2

]
z

= B

/
ρ

[
ρ1

ρ
cos(v + w) +

1

µE
(3ρ3r3 − µE)/− µE sin(v + w)

]
sin i (15)

Where v + w = argument of the latitude of the particle. Thus we get a new set of differential equation character sing the

motion of the particle o mass m1 as

x′′ − 2y′ − 3xρ+
4A

ρ
x+ fρρ1 = λaρ4

[
1− ι0

ρ
√
x2 + y2 + z4

]
x− B

ρ
cos i

y′′ + 2x1 + fρ2 − A

ρ
.y = −λaρ4

[
1− ι0

ρ
√
x2 + y2 + z2

]
y − Bρ1

ρ2
cos i

z′′ + z − A

ρz
= −λaρ4

[
1− ι0

ρ
√
x2 + y2 + z2

]
z

− B

ρ

[
ρ1

ρ
cos(v − w) +

1

µE
(3r3ρ2 − µE) sin(v + w)

]
sin i (16)

Where A =
−3µk2
r2

and f, λa and B are given by (13). The condition of constraint takes the form

x2 + y2 + z2 ≤ ι0
ρ2

(17)

3. Conclusion

The system of equation (16) describes the motion of the particle of mass m1 in rotating frame of reference in Nechvill’s

co-ordinates which is a non-linear, non-homogeneous and non-continuous whose general solution is beyond our reach.
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