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Abstract

In this paper, the Fractional Differential Transform Method is modified by using the

Caputo-Hadamard fractional derivative operator, the modified method results are compared to

several existing problems. New examples are also constructed. The results of the existing problems

comparison shows that the modified fractional differential transform method is efficient in

approximating solution of fractional differential equations.
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1. Introduction

In recent years fractional differential equations are widely studied by Engineers, scientist and social

sciences.The increase in computer capability and its efficiency is one of the catalyst for this current

development from the field of fractional Calculus. As we model real life problems, often times, the

solutions of these models are needed for the better understanding and interpretation of these

models.Various solution methods are studied, some of the solution method may be analytic, semi

analytic or numerical methods. The most widely commonly used classical solution techniques for

differential equations include: the Mellin transform method [1], the fractional Green’s Function

method [2], Orthogonal polynomial method [3], Laplace transform method [4] and the Furrier

transform method [5]. Further more, there are several other solution method for solving fractional

differential equations. The most frequently used technique are: Variational Iteration method [7],

power series method [7], Adomian decomposition method [8], Fractional differential transform

method [9], Collocation shooting method [10]. One of the most famous fractional integral order

operator is the one developed by Riemman Liouville, his definition was born out of the generalization
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of the usual Riemman integral

∫ t

a
g(x)dx.

The left and right Riemman Liouville fractional integral operator are defined respectively as:

aI
βg(t) =

1
Γ(β)

∫ t

a
(t − λ)β−1g(λ)dλ,

Iβ
b g(t) =

1
Γ(β)

∫ b

t
(λ − t)β−1g(λ)dλ,

where, β > 0 m − 1 < β < m, Γ(β) represent the gamma function. The left and right fractional

derivative are defined

aD
βg(t) =

1
Γ(m − β)

(
d
dt

)m ∫ t

a
(t − λ)m−β−1g(λ)dλ,

Dβ
b g(t) =

1
Γ(m − β)

(
d
dt

)m ∫ b

t
(λ − t)m−β−1g(λ)dλ,

The derivative of a constant K is defined as:

aD
βK = K

(t − a)β

Γ(1 − β)
,

and the derivative of a power function is given by

aD
β(t − a)γ =

Γ(β + 1)(t − a)γ−β

Γ(γ − β + 1)
,

for γ > −1, β ⩾ 0. In handling the real world problems, the initial conditions interpretations

using the Riemman Liouville fractional derivative operator poses a significant challenge, to over come

this impediment, Michele Caputo proposed the left and right fractional derivative which the initial

conditions are similar to the classical derivatives. The left and right Caputo fractional derivative are

defined as follows:

C
aDβg(t) =

1
Γ(m − β)

∫ t

a
(t − λ)m−β−1

(
d
dt

)m

g(λ)dλ,

CDβ
b g(t) =

1
Γ(m − β)

∫ b

t
(λ − t)m−β−1

(
d
dt

)m

g(λ)dλ,

where, β represent the order of the derivative m − 1 < β < m. The Riemman Liouville fractional

derivative and the Caputo fractional derivatives are related by the following formulae.

C
aDβg(t) = aD

β

(
g(t)−

m−1

∑
i=0

gi(a)
Γ(i − β + 1)

(t − a)i−β

)
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CDβ
b g(t) = Dβ

b

(
g(t)−

m−1

∑
i=0

(−1)igi(b)
Γ(i − β + 1)

(b − t)i−β

)

The fractional power
(

d
dt

)β

of differentiation d
dt is the Riemman Liouville fractional derivative and

is invariant with respect to translation on the whole axis [1]. Hardamard gave a modification to the

fractional power as follows (
t

d
dt

)β

Hardamard definition was based on the nth integral generalization.

aI
m(t) =

∫ t

a

dx1

x1

∫ t1

a

dx2

x2
· · ·

∫ tm−1

a
g(tm)

dxm

xm
=

1
(m − 1)!

∫ x

a

(
log

t
x

)m−1

g(x)
dx
x

The left and right Hardamard fractional integrals of order β ∈ C, R(β) > 0 are defined respectively as

follow:

aJ
βg(t) =

1
Γ(β)

∫ t

a

(
log

t
x

)β−1

g(x)
dx
x

,

Jβ
b g(t) =

1
Γ(β)

∫ b

t

(
log

x
t

)β−1

g(x)
dx
x

.

The Hardamard fractional derivatives are defined as follow:

aD
βg(t) = δm

(
aJ

m−βg
)
(t) =

(
t

d
dt

)m 1
Γ(m − β)

∫ t

a

(
log

t
x

)m−β−1

g(x)
dx
x

,

and

Dβ
b g(t) =

(
− δ

)m(
Jm−β
b g

)
(t) =

(
− t

d
dt

)m 1
Γ(m − β)

∫ b

t

(
log

x
t

)m−β−1

g(x)
dx
x

,

where, δ = t d
dt , δ0 = g(t), β ∈ C, R(β) ⩾ 0.

The Caputo-type Hardamard fractional derivative C-HFrD: Let R(β) ⩾ 0 and m = ⌊R(β)⌋ + 1, if

g(t) ∈ ACm
δ [a, b], where 0 < a < b < ∞ and ACm

δ [a, b] =
{

f : [a, b] → C, δm−1 f (t) ∈ AC[a, b], δ = t d
dt

}
.

The left and right Caputo- type Hardamard fractional derivative (C-HFrD) is defined respectively as

follow:

C
aDβg(t) = aD

β

[
g(t)−

m−1

∑
i=0

δig(a)
i!

(
log

x
a

)i]
(t) (1)

and

CDβ
b g(t) = aD

β

[
g(t)−

m−1

∑
i=0

(−1)iδig(b)
i!

(
log

b
x

)i]
(t) (2)
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The Caputo-type Hardamard fractional derivatives have some group properties: Let R(β) ⩾ 0,

⌊R(β)⌋+ 1 and R(γ) > 0, then

C
aDβ

(
log

t
a

)γ−1

=
Γ(γ)

Γ(γ − β)

(
log

t
a

)γ−β−1

,

CDβ
b

(
log

b
t

)γ−1

=
Γ(γ)

Γ(γ − β)

(
log

b
t

)γ−β−1

,

where, R(β) > m.

C
aDβ

(
log

t
a

)k

= 0

CDβ
b

(
log

b
t

)k

= 0

for K = 0, 1, 2, . . . , m − 1.

CDγ
a+

CDβ
a+g(t) = CDγ+β

a+ g(t)

for detail of the proofs see [1] and [2].

Various solutions technics are studied for example [3] implemented a well known transform technique,

the Differential Transform method, and applied it to the area of fractional Calculus, particularly

differential equations. Latter, [4] utilize the method to solve system of differential equations. Arising

from the forgoing we modified the fractional differential transform method proposed by [3] by using

the Caputo-type Hadamard fractional derivative operator.

The paper is organized as follows: In section I we give the introduction and some definitions and basic

properties of Hadamard fractional derivative operator. Section II is dedicated for the derivation of the

modified Fractional Differential Transform Method (MFrDTM). In section III we applied the derived

method to solve existing problems and new constructed examples. The summary and conclusions are

given in section IV.

2. The Modified Fractional Differential Transform Method

The generalisation of the concept of differentiation to fractional orders are approached in different

ways. The Hadamard fractional derivatives to order β of a function g(t) with respect to t with constant

of differentiation t0 is defined for a general β ∈ C for the non-negative real part is as follows:

t0
Dβg(t) =

(
t

d
dt

)m 1
Γ(m − β)

[ ∫ t

t0

(
log

t
x

)m−β−1

g(x)
dx
x

]
(3)

t0
Dβg(t) =

1
Γ(m − β)

(
t

d
dt

)m[ ∫ t

t0

1
x

g(x)
log(t − x)

1+β−m

dx
]

(4)
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for m − 1 ⩽ β < m, m ∈ Z+, t > t0. We expand the analytical and continuous function g(t) in terms of

a fractional power series as follows:

g(t) =
∞

∑
i=0

F(i)(t − t0)
i
β

(5)

where β is the fractional order and F(i) is the fractional differential transform of g(t). In most

cases, the practical applications of fractional differential equations in different branches of science

and engineering using some operators appear to difficult, due to the problem of the initial values. The

fractional initial conditions are frequently not available, and it may not be clear what there physical

meanings are. For ease of understanding, the behaviour of the model problem and efficient application,

the definition in equation (??) shall be modified to handle the integral ordered initial conditions in the

sense of Caputo-type Hadamard as follows.

Dβ
t0

[
g(t)−

m−1

∑
i

1
i!
(t − t0)

ig(i)(0)
]
=

1
Γ(m − β)

(
t

d
dt

)m

.


∫ t

0

[
g(t)−

m−1

∑
i=0

1
i!
(x − t0)ig(i)(0)

log
(

t
x

)1+β−m

]
dx

 (6)

Since the initial conditions are implemented to the integer order derivatives, the transformation of the

initial conditions are defined as follow.

G(i) =


i f i

β ∈ Z+ 1
( i

β )!

[
d

i
β g(t)

dt
i
β

]
t=t0

f or i = 0, 1, . . . , (mβ − 1)

i f i
β ∈ Z+ f or 0

(7)

where m is the order of the fraction differential equations (FrDE). Applying equation (3) and (5), the

theorems of fractional Differential Transform (Frc-DT) are stated below.

Theorem 2.1. If

g(t) = f (t)± q(t) then, (8)

G(i) = F(i)± Q(i) (9)

Proof.

G(i) =
∞

∑
i=0

F(i)
(

t − t0

) i
β

±
∞

∑
i=0

Q(i)
(

t − t0

) i
β

,

G(i) =
∞

∑
i=0

[
F(i)± Q(i)

](
t − t0

) i
β

. (10)
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Using the definition of the transform in (5), the result follows

G(i) = F(i)± Q(i)

Theorem 2.2. If

g(t) = f (t)q(t) then, (11)

G(i) =
i

∑
r=0

F(r)Q(i − r) (12)

Proof.

G(t) =
∞

∑
i=0

F(i)
(

t − t0

) i
β

×
∞

∑
i=0

Q(i)
(

t − t0

) i
β

,

=

[
F(0) + F(1)(t − t0)

1
β F(2)(t − t0)

2
β + · · ·+ F(m)(t − t0)

m
β

]

×
[

Q(0) + Q(1)(t − t0)
1
β Q(2)(t − t0)

2
β + · · ·+ Q(m)(t − t0)

n
β

]

= [F(0)Q(0)] +
[

F(0)Q(1) + F(1)Q(0)
]
(t − t0)

1
β +

[
F(0)Q(2) + F(1)Q(1) + F(2)Q(0)

]
(t − t0)

2
β + · · ·

+

[
F(0)Q(m) + F(1)Q(m − 1) + · · ·+ F(m − 1)Q(1) + F(m)Q(0)

]
(t − t0)

m
β

we have in general as follows

g(t) =
∞

∑
i=0

i

∑
r=0

F(r)Q(i − r)(t − t0)
i
β

Following from the definition of Differential transform, the result follows

G(i) =
i

∑
r=0

F(r)Q(i − r)

Theorem 2.3. If

g(t) = f1(t) f2(t) · · · fm−1(t) fm(t), then

G(i) =
i

∑
im−1=0

im−1

∑
im−2=0

· · ·
i3

∑
i2

i2

∑
i1

F1(i1)F2(i2 − i1) · · · Fm−1(im1 − im−2)Fm(i − im−1)
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Proof. We can write the form of g(t) by using power series expansion of f1(t), f2(t), · · · , fm(t)

g(t) =
∞

∑
i=0

F1(i)(t − t0)
i
β F2(i)(t − t0)

i
β · · ·

∞

∑
i=0

Fm−1(i)(t − t0)
i
β ×

∞

∑
m

Fm(i)(t − t0)
i
β

[
F1(0) + F1(1)(t − t0)

1
β F1(2)(t − t0)

2
β + · · ·

][
F2(0) + F2(1)(t − t0)

1
β F2(2)(t − t0)

2
β + · · ·

]
· · ·[

Fm−1(0) + Fm−1(1)(t − t0)
1
β Fm−1(2)(t − t0)

2
β + · · ·

][
Fm(0) + Fm(1)(t − t0)

1
β Fm(2)(t − t0)

2
β + · · ·

]
.

=

[
F1(0)F2(0) · · · Fm−1(0)Fm(0)

]
+

[
F1(0)F2(0) · · · Fm−1(0)Fm(0) + F1(0)F2(1) · · · Fm−1(0)Fm(0) + · · ·

+ F1(0)F2(0) · · · Fm−1(1)Fm(1) + F1(0)F2(0) · · · Fm−1(0)Fm(1)
]
(t − t0)

1
β

[
F1(1)F2(1)F3(0) · · · Fm(0)

+ F1(1)F2(0)F3(01 · · · Fm(0) + · · ·+ F1(1)F2(0)F3(0) · · · Fm(1) + F1(0)F2(1)F3(1) · · · Fm(0)

+ · · ·+ F1(0)F2(1)F3(0) · · · Fm(1) + · · ·+ F1(0)F2(0) · · · Fm−1(1)Fm(1)F1(1)F2(0) · · ·

Fm−1(0)Fm(0) + · · ·+ F1(0)F2(0) · · · Fm−1(0)Fm(2)
]
(t − t0)

2
β + · · ·

In general form we get,

g(t) =
i

∑
im−1=0

im−1

∑
im−2=0

· · ·
i3

∑
i2

i2

∑
i1

F1(i1)F2(i2 − i1) · · · Fm−1(im1 − im−2)Fm(i − im−1)(t − t0)
i
β ,

applying the definition of differential transform in equation (3) the results follows,

g(t) =
i

∑
im−1=0

im−1

∑
im−2=0

· · ·
i3

∑
i2

i2

∑
i1

F1(i1)F2(i2 − i1) · · · Fm−1(im1 − im−2)Fm(i − im−1).

Theorem 2.4. If g(t) = (t − t0)h, then G(i) = δ(i − βh), where

δ(i) =


1 i f i = 0

0 i f i /∈ 0

Proof. The expansion in terms of dirac-delta function is written for g(t) as

g(t) =
∞

∑
i=0

δ(i − βh)(t − t0)
i
β

by the definition of transform we obtained expression G(i) = δ(i − βh).

Theorem 2.5. If g(t) = Dα
t0
[ f (t)], then

F(i) =
Γ(α + 1 + i

β )

Γ(1 − m + i
β )

G(i + βα)
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Proof. By making use of equation (6), the Caputo-type Hadamard sense fractional differentiation of a

function f(t) can be written as

Dα
t0

[
f (t)

]
=

1
Γ(m − α)

(
t

d
dt

)m


[

f (t)−

m−1
∑

i=0

1
i! (x − t0)i f (i)(0)

log
(

t
x

)1+α−m

]
dx

 (13)

Using equation (5) and (7), we have

Dα
t0

[
f (t)

]
=

1
Γ(m − α)

(
t

d
dt

)m
[ ∫ t

t0

m−1
∑

i=0
G(i)(x − t0)

i
β

log
(

t
x

)1+α−m dx

]

Dα
t0

[
f (t)

]
=

1
Γ(m − α)

∞

∑
i=αβ

G(i)
(

t
d
dt

)m
[ ∫ t

t0

(x − t0)
i
β

log
(

t
x

)1+α−m dx

]
(14)

we defined the Hadamard integral Jβ
H of function f by

Jβ
H g(t) =

1
β

t∫
t0

(
log

t
x

)β−1

g(x)
dx
x

, β > 0

from equation (14), the integrand is

(x − t0)
i
β

log
(

t
x

)1+α−m =
(x − t0)ω[

log( t
x )

]1+α−m , (ω =
i
β
)

hence, from Hadamard fractional calculus theory, we have

(
t

d
dt

)m


∫ t

t0

(x − t0)ω[
log( t

x )

]1+α−m dx

 = Γ(m − α)
Γ(ω + 1)

Γ(ω − (m − α) + 1)
(t − t0)

ω−(m−α) (15)

substituting (15) into (13) we have

=
1

Γ(m − α)

∞

∑
i=αβ

G(i)
Γ(m − α)Γ( i

β + 1)

Γ( i
β − m + α + 1)

(t − t0)
i
β−m+α (16)

simplifying (16) we have

∞

∑
i=αβ

Γ( i
β + 1)

Γ( i
β − m + α + 1)

G(i)(t − t0)
i
β−m+α (17)
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starting the index of the series from i − 0, we obtained the equation,

f (t) =
∞

∑
i=0

Γ(α + i
β + 1)

Γ( i
β − m + 1)

G(i + βα)(t − t0)
i
β , (18)

from the definition of transform in equation (5) we have the expression

F(i) =
Γ(α + 1 + i

β )

Γ(1 − m + i
β )

G(i + βα)

Theorem 2.6. The most general form of fractional derivatives are produce if

g(t) =
dα1

dtα1

[
f1(t)

]
dα2

dtα2

[
f2(t)

]
· · · dαm−1

dtαm−1

[
fm−1(t)

]
dαm

dtαm

[
fm(t)

]

then,

G(i) =
i

∑
im−1=0

im−1

∑
im−2=0

· · ·
i3

∑
i2=0

i2

∑
i1−0

Γ[α1 + 1 + i
β ]

Γ[1 + i
β − m]

Γ[α2 + 1 + (i2−i1)
β ]

Γ[1 + (i2−i1)
β − m]

· · ·
Γ[αm−1 + 1 + (im−1−im−2)

β ]

Γ[1 + (im−1−im−2)
β − m]

Γ[αm + 1 + (i−im−1)
β ]

Γ[1 + (i−im−1)
β − m]

F1(i1 + βα1)F2((i2 − i1) + βα2) · · · Fm−1(im−1 − im−2) + βαm−1)

.Fm(im − im−1) + βαm)

where βαj ∈ Z+ for j = 1, 2, · · · , m.

Proof. We let the differential transform (DTr) of dα j

dtαj

[
f j(t)

]
be β j(i) at t − t0 for j − 1, 2, · · · , m, then by

making use of Theorem (2.3) we have the modified fractional differential transform (MFrDTr) of g(t) as

follows

G(i) =
i

∑
im−1=0

im−1

∑
im−2=0

· · ·
i3

∑
i2=0

i2

∑
i1=0

B1(i1)B2(i2 − i1) · · · Bm−1(im−1 − im−2)Bm(i − im−1) (19)

and applying Theorem ??, we can deduced that

B1(i1) =
Γ[α1 +

i1
β + 1]

Γ[ i1
β + 1 − m]

F1(i1 + βα)

B2(i2 − i1) =
Γ[α2 +

i2−i1
β + 1]

Γ[ i2−i1
β + 1 − m]

F2(i2 − i1 + βα)

Bm−1(im−1 − im−2) =
Γ[αm−1 +

im−1−im−2
β + 1]

Γ[ im−1−im−1
β + 1 − m]

Fm−1(im−1 − im−2 + βαm−1)
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Bm(i − im−1) =
Γ[αm + i−im−1

β + 1]

Γ[ i−im−1
β + 1 − m]

Fm−1(i − im−1 + βαm)

substituting the B(j) for j = 1, 2, · · · , m into equation (19) we have

G(i) =
i

∑
im−1=0

im−1

∑
im−2=0

· · ·
i3

∑
i2=0

i2

∑
i1=0

B1(i1)B2(i2 − i1) · · · Bm−1(im−1 − im−2)Bm(i − im−1) (20)

where βαk ∈ Z+ for k = 1, 2, · · · , m

From our proved theorem one can see that Differential transform (DTrM) is sitting right inside

Fractional Differential Transform Method (MFrDTrM) for the special case β = 1.

3. Numerical Examples

Under this section, we construct Examples to demonstrate the applicability and the efficiency of the

modified method.

Example 3.1. Consider the fractional differential equation [3,5,6]

A1
d2x(t)

dt2 + A2
d

3
2 x(t)

dt
3
2

+ A3X(t) = g(t)

where g(t) = A3(t + 1) and the boundary conditions x(0)− 1x
′
(0) = 1. We take the β = 2 we transform the

boundary values using equation (7) as follows:

X(0) = x(0) = 0

X(2) =
1
1

! = 1

X(i) = 0, f or i ∈ (0, 2)

using Theorem 2.4 and 2.5, we find the recurrence relation,

A1
Γ(3 + i

2 )

Γ(1 + i
2 )

X(i + 4) + A2
Γ( 5

2 +
i
2 )

Γ(1 + i
2 − m)

X(i + 3) + A3X(i) = A3δX(i) + A3δ(i − 2)

making X(i + 4) the subject of formula we have

X(i + 4) =
Γ(1 + i

2 )

A1Γ(3 + i
2 )

[
A3δX(i) + A3δ(i − 2)− A2

Γ( 5
2 +

i
2 )

Γ(1 + i
2 − m)

X(i + 3)
]

(21)

using the transformed boundary conditions and equation (23) and evaluating up to certain number of terms and
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applying the inverse transform we found the x(t) to be

x(t) =
∞

∑
i=0

X(i)(t − t0)
i
β =

∞

∑
i=0

X(i))t
i
β

x(t) = X(0)t0 + X(2)t
1
2 = t + 1

The result is exactly same with the work of [3,5] and [6].

Example 3.2. Consider the non-homogeneous fractional differential equation

B1
d2y
dx2 + B2

dαy
dxα

+ B3y = cos(x) (22)

where x > 0, 0 < α ≤ 2 with the initial conditions u(0) = 0 and u
′
(0) = 0. Using equation (22), Theorem 2.4

and Theorem 2.5 we have the transform results

Y(i + 4) =
∞

∑
m=0

(−1)m

(2m)!
δ(i − 4m)− Γ(3/2 + i/2)

Γ(i/2 − 1)
X(i + 1)− X(i) (23)

We transform the initial conditions by using Theorem 2.4, Y(0) = y(0), Y(2) = 1/1!y
′
(0) = 0. By applying

equation (23) and the transform initial conditions we find Y(i) and inverse transform is used to find the y(x).

The graph of the y(x) is shown in Figure 1

Figure 1: The graph of the approximate solution for Example 3.2

Example 3.3 ([3,7]). The fractional ricatti equation that is frequently encountered in optimal control problem is

consider,

dαz
dzα

− 2z − z2 + 1, 0 < α < 1, (24)

z(0) = 0, (25)

with the initial conditions x(0) = 0. Using Theorem 2.2, 2.4 and 2.5, equation (24) is transform,

Z(i + αβ) =
Γ( i

α )

Γ(α + i
β )

[
2Z(i)−

i

∑
i1

Z(i)Z(i − i1) + δ(i)

]
(26)
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The initial condition in equation 25 is also transform using Theorem 2.4,

Z(i) = 0, for i = 0, 1, · · · , αβ − 1 (27)

We take the value of α = 2 and β − 1/2 the transform equation (26) and (27) are evaluated and Z(i) is also

evaluated to certain number of i. Finally by using the inverse transform definition given equation (5), we find

z(x)

z(x) =
2√

πx1/2
+ 2x +

16(π − 1)
3π3/2 x3/2 +

π − 4
π

x3 − 32(3π2 + 44π − 32)
45π5/2 x5/2 +

(
128
9π2 − 71

9π
− 37

4

)
x3 + · · ·

Using MATLAB software we graph the solution as shown below

Figure 2: The graph of the approximate solution for Example 3.3

Example 3.4.

Dγx = x2 + 1, m − 1 < γ < m, 0 < t < 1 (28)

xk(0) = 0, k = 0 · · · , m − 1 (29)

We using Theorem 2.2 and 2.5 the non-linear fractional differential equation is transform.

X(k + βγ) =
Γ(1 +−m + k/β)

Γ(1 + γ + k
β )

[
∞

∑
k1=0

X(k − k1)− δ(k)

]
(30)

by using Theorem 2.4, we transform the initial conditions as follows,

X(k) = 0, f or k = 0, 1, · · · , γβ − 1 (31)

We obtained X(k) for different values of γ by using equation (30) and equation (31). We find the inverse

transform x(t) by using (5), x(t) is evaluated and the numerical results are shown in Table 1. This result is

compared with other existing results given by the method of Adomian decomposition and Fractional differential

transform.
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4. Summary and Conclusion

A fractional differential transform method for solving fractional differential equation is modified by

using the Caputo type Hadamard fractional derivative operator. The modified fractional differential

transform method (MFrTrM) is applied to existing problems in literature and new constructed

examples. The results show a good agreement with results of some selected methods.
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