

International Journal of Mathematics And its Applications

# Regular Multi-Strings Token Petri Net

### D. K. Shirley Gloria<sup>1,\*</sup> and D. K. Sheena Christy<sup>2</sup>

- 1 Department of Mathematics, Dr. Ambedkar Government Arts College, Vyasarpadi, Chennai 600 039, Tamilnadu, India.
  - 2 Department of Mathematics, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamilnadu, India.

 Abstract:
 Every regular language can be caused by Multi-Strings Token Petri Net.

 MSC:
 03D05.

 Keywords:
 Multi-Strings Token Petri Net(MSTPN), Regular Language(RL), Regular Grammar(RG).

1. Introduction

© JS Publication.

The notion of Petri net has begun in Carl Adam Petri's dissertation which was presented in the year 1962 [2]. String-Token Petri Net has its origin in [1]. Context-Free String-Token Petri Net and Parallel Context-Free String Token Petri Net can be found in [3] and [4]. Context-Free Multi-Strings Token Petri Net can be found in [5]. Here, we introduce Regular Multi-Strings Token Petri Net.

# 2. Basic Definitions

**Definition 2.1.** Regular Grammar(RG) and Regular Language(RL) are defined in [6].

**Definition 2.2.** Evolution rules are found in [3].

Definition 2.3. A MSTPN is defined in [5].

**Definition 2.4.** Many systems' activity may be characterised in terms of the system's states and modifications. A state or marking in an MSTPN is modified as per the underlying transition (firing) rules in order to imitate the dynamic response of the structure.

(i). When each input location p of a transition t includes a collection of strings containing left side terms of the transition rules, the transition is said to be activated. For example,  $t_i : A \to aB / A \to xA / B \to b / A \to a$ , then input location  $p_j$  of  $t_i$  should contain strings  $\{A, B\}$ . Suppose input location  $p_k$  of  $t_m$  consists of  $\{aAb, dB, xaB, ab\}$  then ab can be retained for the immediate firing of transition other than insertion rule, when insertion rule is applied, ab will be carried out to the next immediate location.

<sup>\*</sup> E-mail: shirleygloria1976@gmail.com

- (ii). An active transition fires.
- (iii). Suppose t: X → aY / A → xA / B → b and a collection of strings of input location p of t is {bX, B, mBYa}, then t is activated as the leftmost non-terminal in each of the string is {bX, B, mBYa} appears in the left side expression of t. So, when t fires, {bX, B, mBya} will be removed from the input location of t and {baY, b, mbYa} will be deposited in the output location of t.
- (iv). Identity rule like  $ab \rightarrow ab$  can be used in the MSTPN as far as all strings in the corresponding location become terminals.

**Example 2.5.** A Multi-Strings Token Petri Net  $N_1 = (P, T, V, F, R(t), M_0)$  causing the RL  $L(N_1)$  is demonstrated in Figure 1, where  $L(N_1) = \{a^n/n \ge 0\}$ .



Figure 1. MSTPN  $N_1$  of Example 2.1

In  $N_1$ ,  $P = \{p_1, p_2\}$ ,  $T = \{t_1, t_2\}$ ,  $V = \{S, a\}$ ,  $F = \{p_1 \rightarrow t_1, t_1 \rightarrow p_1, p_1 \rightarrow t_2, t_2 \rightarrow p_2\}$ ,  $R(t) = \{S \rightarrow aS, S \rightarrow \varepsilon\}$ ,  $M_0 = (\{S\}, \varepsilon)$ .

**Example 2.6.** A Multi-Strings Token Petri Net  $N_2 = (P, T, V, F, R(t), M_0)$  causing the RL  $L(N_2)$  is demonstrated in Figure 2, where  $L(N_2) = \{a^n b^m / n, m \ge 0\}$ .



Figure 2. MSTPN N<sub>2</sub> of Example 2.2

In  $N_2$ ,  $P = \{p_1, p_2, p_3\}$ ,  $T = \{t_1, t_2, t_3, t_4\}$ ,  $V = \{S, a, b\}$ ,  $F = \{p_1 \rightarrow t_1, t_1 \rightarrow p_1, p_1 \rightarrow t_2, t_2 \rightarrow p_2, p_2 \rightarrow t_3, t_3 \rightarrow p_2, p_2 \rightarrow t_4, t_4 \rightarrow p_3\}$ ,  $R(t) = \{S \rightarrow aS, S \rightarrow S, S \rightarrow bS, S \rightarrow \varepsilon\}$ ,  $M_0 = (\{S\}, \varepsilon, \varepsilon)$ .

# 3. Theorem on MSTPN

**Theorem 3.1.** For every RL, MSTPN 'N' can be found such that L = L(N).

*Proof.* Consider a RL 'L' which is caused by RG,  $G = (M, \Sigma, P, S)$  with rules P of the form  $S \to aS$ ,  $A \to aB$ ,  $B \to bB$ ,  $B \to b$ ,  $S \to a$ ,  $A \to \varepsilon$ , where  $S, A, B \in M$ ;  $a, b \in \Sigma$ .

Build a MSTPN  $N = (P_1, T, V, F, R(t), M_0)$  as described below:  $V = M \cup \Sigma$  is a finite collection of alphabets, T is a finite collection of transitions and each transition  $t_i \in T$  are labelled by rules in P. Segregate the rules of P as

#### (ii). NT rules.



### Figure 3(a).

The rules of the form  $S \to aS$ ,  $B \to bB$  are called as NT rules since it can be replaced indefinite time for the non-terminal on the left side of the rule appear on the right side of the rule also. Call the remaining rules as T – rules. Few of the T – rules, like  $B \to b$ ,  $A \to \varepsilon$ ,  $S \to a$  will terminate where  $a, b \in \Sigma$ .



#### Figure 3(b).

Among all these non-terminals production rules, collect all NT – rules. From production rules of P, we have rules like  $S \to aS, B \to bB$ . This type of rules are called as non-terminal NT – rules. From other rules, rules like  $A \to aB$  we call it as non-terminal T rules. Other rules like  $A \to \varepsilon, B \to b, S \to a$ , we call them as terminal T-rules. Let  $t_{non-terminal NT1}$  be the label of these non-terminal NT production rules. This transition  $t_{non-terminal NT1}$  can be fired indefinite time (see Figure 3(a)).



#### Figure 3(c).

If non-terminal NT rules are not there in P, then omit this construction. Now, collect all terminal T-rules. From  $P_1$ , through a transition  $t_{terminal T1}$ , connect  $P_1$  to  $P_2$ . Label  $t_{terminal T1}$  with all these terminal T-rules (see Figure 3(b)).



#### Figure 3(d).

After  $t_{terminal \ T1}$  fires, some of the words of G will be deposited in  $P_2$ . As S is the beginning symbol of G, at least one terminal T – rule will be there in P. Now, collect all non-terminal T- rules. From  $P_1$ , through a transition  $t_{non-terminal \ T1}$ , connect  $P_1$  to  $P_3$ . Label  $t_{non-terminal \ T1}$  with all these non-terminal T – rules (see Figure 3(c)). After  $t_{non-terminal \ T1}$  fires, some strings of G will be deposited in  $P_3$ . Among these strings, look at the left most non-terminal and apply that corresponding rules of P. From  $P_3$ , through transition  $t_{non-terminal \ NT2}$ , connect  $P_3$  to  $P_3$ . From  $P_3$ , there will be two paths. Connect  $P_3$  to  $P_4$ , through a transition  $t_{terminal \ T2}$ . Also, connect  $P_3$  to  $P_5$ , through a transition  $t_{non-terminal \ T2}$ . If these transitions are in need, it will be built. Otherwise it would terminate (see Figure 3(d)).



#### Figure 3(e).

In a similar way, it will be proceeded. In one stage, there will be no-more non-terminals on some locations. In that case, we will obtain all words of G(see Figure 3(e)).

Now,  $P_1$  is the collection of all locations built so far and T is the collection of all transitions built so far. A MSTPN can be built in a similar way, for any given RL. Thus, for any given RL, it is possible to build a corresponding MSTPN 'N'. Therefore, when L is a RL, L = L(N).

**Example 3.2.** Consider Example 2.5. Let us see the construction of  $N_1$ . RG for  $L(N_1)$  is  $G = (\{S\}, \{a, \varepsilon\}, S, P)$ , where  $P = \{S \rightarrow aS, S \rightarrow \varepsilon\}$ .



#### Figure 4(a).

Among these production rules of  $P, S \to \varepsilon$  is a terminal T rule. Rules like  $S \to aS$  is called as non-terminal NT rules. There are no non-terminal T rules.

Let  $N_1 = (P_1, T, V, F, R(t), M_0)$  be the MSTPN, where  $V = \{S\} \cup \{a, \varepsilon\} = \{S, a, \varepsilon\}$ . As S is the beginning symbol, build a location  $P_1$  with S as token (see Figure 4(a)). Now, collect non-terminal NT rules. Connect  $P_1$  with  $P_1$  through  $t_{non-terminal NT1}$  rule(see Figure 4(b)).



#### Figure 4(b).

Now, collect all terminal T-rules. Connect  $P_1$  to  $P_2$  with the transition  $t_{terminal T1}$  rule. Here,  $S \rightarrow \varepsilon$  is the only terminal T-rule.



#### Figure 4(c).

On  $P_1$ , only words of G will be deposited. So, no more construction is needed. Figure 4(c) is the same as Figure 1. Collect all the locations constructed so far and call it as  $P_1$ . Here,  $P_1 = \{P_2, P_3\}$ . Also, collect all the transitions constructed so far and call it as T. Here,  $T = \{t_{non-terminal NT1}, t_{terminal T1}\}$ . Initial marking is  $M_0 = (\{S\}, \varepsilon)$ . Thus,  $N_1$  is constructed and  $L(N_1) = \{a^n/n \ge 0\}$ .

## 4. Conclusion

Thus, every Multi-Strings Token Petri Net causes a Regular Language.

### References

Beulah Immanuel, K. Rangarajan and K. G. Subramanian, *String-token Petri nets*, In: Proceedings of the European Conference on Artificial Intelligence, One Day Workshop on Symbolic Networks at Valencia, Spain, (2004).

<sup>[2]</sup> James Peterson, Petrinet theory and modeling of systems, Prentice Hall, USA, (1997).

- [3] S. Devi and D. K. Shirley Gloria, Context-Free Languages Of String Token Petri Nets, International Journal of Pure and Applied Mathematics, 113(2017), 96–104.
- [4] D. K. Shirley Gloria, Beulah Immanuel and K. Rangarajan, Parallel Context-Free String-Token Petri Nets, International Journal of Pure and Applied Mathematics, 59(2010), 275-289.
- [5] D. K. Shirley Gloria and D. K. Sheena Christy, *Multi-Strings Token Petri Nets*, International Conference on Instrumentation, MEMS and Biosensing Technology, (Submitted).
- [6] Peter linz, An Introduction to Formal Languages and Automata, 5th Edition, Jones & Bartlett Learning, LLC, (2012).