

Certain Curvature Conditions on $N(k)$ -Contact Metric Manifold

Gajendra Nath Tripathi^{1,*}

¹Department of Mathematics, Supaul College of Engineering (Under Department of Science, Technology and Technical Education, Patna, Bihar, India), Supaul, Bihar, India

Abstract

We consider a concircularly semi-symmetric $N(k)$ -contact metric manifold and we classify $N(k)$ -contact metric manifolds satisfying the curvature conditions $\tilde{Z} \cdot S = 0$, $Q \cdot \tilde{Z} = 0$, $\tilde{Z} \cdot P = 0$.

Keywords: $N(k)$ -contact metric manifold; Einstein manifold; concircular curvature tensor; projective curvature tensor.

2020 Mathematics Subject Classification: 53C15, 53C25, 53C40.

1. Introduction

Let M be a $(2n + 1)$ -dimensional Riemannian manifold. The transformation for every geodesic circle of M into a geodesic circle is called a concircular transformation [7,11]. In [7] W. Kuhnel found that a concircular transformation is always a conformal transformation. In 1940, K. Yano [11] introduced the concircular curvature tensor \tilde{Z} defined by [10,11]:

$$\tilde{Z}(X, Y)W = R(X, Y)W - \frac{r}{(2n)(2n+1)}[g(Y, W)X - g(X, W)Y], \quad (1)$$

for $X, Y, W \in T(M)$ and r is the scalar curvature. Riemannian manifolds with vanishing concircular curvature tensor are of constant curvature.

The projective curvature tensor is an important tensor from the differential geometric point of view. Let M be a $(2n + 1)$ -dimensional Riemannian manifold. If there exists a one-to-one correspondence between each coordinate neighborhood of M and a domain in Euclidean space such that any geodesic of the Riemannian manifold corresponds to a straight line in the Euclidean space, then M is said to be locally projectively flat. For $n \geq 1$, M is locally projectively flat if and only if the well-known projective curvature tensor P vanishes. Here P is defined by [8]:

$$P(X, Y)Z = R(X, Y)Z - \frac{1}{2n}[S(Y, Z)X - S(X, Z)Y], \quad (2)$$

*Corresponding author (drgnt1979@gmail.com)

for all $X, Y, Z \in T(M)$, where R is the curvature tensor and S is the Ricci tensor. By virtue of (2), M is projectively flat if and only if it is of constant curvature. Hence, the projective curvature tensor is the measure of the failure of a Riemannian manifold to be of constant curvature.

In [2], D. E. Blair et al. studied the $N(k)$ -contact metric manifold satisfying the curvature conditions $\tilde{Z} \cdot \tilde{Z} = 0$, $\tilde{Z} \cdot R = 0$ and $R \cdot \tilde{Z} = 0$, where \tilde{Z} is the concircular curvature tensor. U. C. De et al. [6] studied $N(k)$ -contact metric manifold satisfying $\tilde{Z} \cdot S = 0$, where S is the Ricci tensor. Recently, motivated by the above studies, in this paper we consider a concircularly semi-symmetric $N(k)$ -contact metric manifold and different curvature conditions on $N(k)$ -contact manifolds $\tilde{Z} \cdot S = 0$, $Q \cdot \tilde{Z} = 0$, $\tilde{Z} \cdot P = 0$.

2. Preliminaries

A $(2n + 1)$ -dimensional differentiable manifold M is said to admit an almost contact structure if it admits a tensor field φ of type $(1, 1)$, a vector field ξ and a 1-form η satisfying [1,3]:

$$\varphi^2 = -I + \eta \otimes \xi, \quad \eta(\xi) = 1, \quad \varphi\xi = 0, \quad \eta \circ \varphi = 0. \quad (3)$$

An almost contact structure is said to be normal if the induced almost contact structure J on the product manifold $M \times \mathbb{R}$ defined by

$$J \left(X, \lambda \frac{d}{dt} \right) = \left(\varphi X - \lambda \xi, \eta \otimes \frac{d}{dt} \right)$$

is integrable, where X is tangent to M , t is the coordinate of \mathbb{R} and λ is a smooth function on $M \times \mathbb{R}$. The condition of almost contact metric structure being normal is equivalent to vanishing of the torsion tensor $[\varphi, \varphi] + 2d\eta \otimes \xi$, where $[\varphi, \varphi]$ is the Nijenhuis tensor of φ . Let g be the compatible Riemannian metric with almost contact structure (φ, ξ, η) , that is

$$g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y), \quad g(X, \xi) = \eta(X), \quad (4)$$

for all vector fields $X, Y \in T(M)$. A manifold M together with this almost contact metric structure is said to be an almost contact metric manifold denoted by $M(\varphi, \xi, \eta, g)$. An almost contact metric structure reduces to a contact metric structure if $g(X, \varphi Y) = d\eta(X, Y)$. Moreover, if ∇ denotes the Riemannian connection of g , then the following relation holds:

$$\nabla_X \xi = -\varphi X - \varphi h X. \quad (5)$$

A contact metric manifold is said to be η -Einstein if

$$S(X, Y) = \alpha g(X, Y) + \beta \eta(X)\eta(Y), \quad (6)$$

where α and β are smooth functions. If $\beta = 0$, then the manifold M is an Einstein manifold. Blair, Konfogiorgos and Papantonio [4] introduced the (k, μ) -nullity distribution of a contact metric manifold M that is defined by

$$N(k, \mu) : p \rightarrow N_p(k, \mu),$$

$$N_p(k, \mu) = \{W \in T_p M : R(X, Y)W = (kI + \mu h)(g(Y, W)X - g(X, W)Y)\},$$

for all $X, Y \in T(M)$, where $(k, \mu) \in \mathbb{R}^2$. A contact metric manifold M with $\xi \in N(k, \mu)$ is called a (k, μ) -contact metric manifold. If $\mu = 0$, the (k, μ) -nullity distribution reduces to k -nullity distribution [9]. The k -nullity distribution $N(k)$ of a Riemannian manifold is defined by [9]:

$$N(k) : p \rightarrow N_p(k) = \{W \in T_p(M) : R(X, Y)W = k(g(Y, W)X - g(X, W)Y)\},$$

k being a constant.

If the characteristic vector field $\xi \in N(k)$, then we call a contact metric manifold as $N(k)$ -contact metric manifold [2]. If $k = 1$, then the manifold is Sasakian and if $k = 0$, then the manifold is isometric to the product $E^{n+1}(0) \times S^n(4)$ for $n > 1$ and flat for $n = 1$ [5]. In an $N(k)$ -contact metric manifold, the following relations hold:

$$h^2 = (k - 1)\varphi^2, \quad \text{where } h = \frac{1}{2}\mathcal{L}_\xi\varphi, \quad (7)$$

$$R(X, Y)\xi = k[\eta(Y)X - \eta(X)Y], \quad (8)$$

$$S(X, Y) = 2(n - 1)g(X, Y) + 2(n - 1)g(hX, Y) + [2nk - 2(n - 1)]\eta(X)\eta(Y), \quad n \geq 1, \quad (9)$$

$$S(\varphi X, \varphi Y) = S(X, Y) - 2nk\eta(X)\eta(Y) - 4(n - 1)g(hX, Y), \quad (10)$$

$$S(X, \xi) = 2nk\eta(X), \quad (11)$$

$$r = 2n(2n - 2 + k), \quad (12)$$

$$(\nabla_X\eta)(Y) = g(X + hX, \varphi Y), \quad (13)$$

where R and S are the curvature tensor and Ricci tensor respectively with respect to Levi-Civita connection. In a $(2n + 1)$ -dimensional almost contact metric manifold, if $\{e_1, e_2, \dots, e_{2n}, \xi\}$ is a local orthonormal basis of tangent space of the manifold, then $\{\varphi e_1, \varphi e_2, \dots, \varphi e_{2n}, \xi\}$ is a local orthonormal basis. It is easy to verify that

$$\sum_{i=1}^{2n} g(e_i, e_i) = \sum_{i=1}^{2n} g(\varphi e_i, \varphi e_i) = 2n, \quad (14)$$

$$\sum_{i=1}^{2n} S(e_i, e_i) = \sum_{i=1}^{2n} S(\varphi e_i, \varphi e_i) = r - 2nk, \quad (15)$$

$$\sum_{i=1}^{2n} g(e_i, Z)S(Y, e_i) = \sum_{i=1}^{2n} g(\varphi e_i, Z)S(Y, \varphi e_i) = S(Y, Z) - 2nk\eta(Y)\eta(Z), \quad (16)$$

$$\sum_{i=1}^{2n} g(R(e_i, Y)Z, e_i) = \sum_{i=1}^{2n} g(R(\varphi e_i, Y)Z, \varphi e_i) = S(Y, Z) - kg(\varphi Y, \varphi Z), \quad (17)$$

for all $Y, Z \in T(M)$. Given a non-Sasakian (k, μ) -contact manifold M , E. Boeckx [?] introduced an invariant

$$I_M = \frac{1 - \mu/2}{\sqrt{1 - k}}$$

and showed that for two non-Sasakian (k, μ) -manifolds M_1 and M_2 , we have $I_{M_1} = I_{M_2}$ if and only if up to D -homothetic deformation, the two manifolds are locally isometric as contact metric manifolds. Thus, we see that from all non-Sasakian (k, μ) -manifolds of dimension $(2n + 1)$ and for every possible value of the invariant I_M , one (k, μ) -manifold M can be obtained. If $I_M > -1$ such examples may be found from the standard contact metric structure on the tangent sphere bundle of a manifold of constant curvature c where we have $I_M = \frac{1+c}{|1-c|}$. Boeckx also gives a Lie-algebra construction for any odd dimension and value of $I_M \leq -1$.

Example 2.1 ([2]). *Using this invariant, D. E. Blair, J-S Kim and M. M. Tripathi [2] constructed an example of a $(2n + 1)$ -dimensional $N(1 - \frac{1}{n})$ -contact metric manifold, $n > 1$. The example is given as follows:*

Since the Boeckx invariant for $(1 - \frac{1}{n}, 0)$ -manifold is $\sqrt{n} > -1$, we consider the tangent sphere bundle of an $(n + 1)$ -dimensional manifold of constant curvature c so chosen that the resulting D -homothetic deformation will be a $(1 - \frac{1}{n}, 0)$ -manifold. That is, for $k = c(2 - c)$ and $\mu = -2c$ we solve

$$1 - \frac{1}{n} = \frac{k + a^2 - 1}{a^2}, \quad 0 = \frac{\mu + 2a - 2}{a}$$

for a and c . The result is

$$c = \frac{\sqrt{n} \pm 1}{n - 1}, \quad a = 1 + c.$$

Taking c and a to these values we obtain an $N(1 - \frac{1}{n})$ -contact metric manifold. The above example will be used in theorems of Section 4.

3. Concircularly Semisymmetric $N(k)$ -Contact Manifolds

Definition 3.1. *An $N(k)$ -contact metric manifold is said to be concircularly semi-symmetric if*

$$R(X, Y).\tilde{Z} = 0$$

for every vector fields X, Y .

In this section we deal with concircularly semi-symmetric $N(k)$ -contact manifolds. Suppose

$$R(X, Y).\tilde{Z} = 0. \quad (18)$$

From the above equation, we have

$$\begin{aligned} 0 &= (R(X, Y) \cdot \tilde{Z})(U, V)W \\ &= R(X, Y) \tilde{Z}(U, V)W - \tilde{Z}(R(X, Y)U, V)W - \tilde{Z}(U, R(X, Y)V)W - \tilde{Z}(U, V)R(X, Y)W. \end{aligned}$$

Put $X = \xi$, the above equation gives

$$0 = R(\xi, Y) \tilde{Z}(U, V)W - \tilde{Z}(R(\xi, Y)U, V)W - \tilde{Z}(U, R(\xi, Y)V)W - \tilde{Z}(U, V)R(\xi, Y)W.$$

In view of (8), the equation can be written as

$$\begin{aligned} 0 &= k[\tilde{Z}(U, V, W, Y)\xi - \eta(\tilde{Z}(U, V)W)Y + \eta(U)\tilde{Z}(Y, V)W \\ &\quad - g(Y, U)\tilde{Z}(\xi, V)W + \eta(V)\tilde{Z}(U, Y)W - g(Y, V)\tilde{Z}(U, \xi)W + \eta(W)\tilde{Z}(U, V)Y], \end{aligned}$$

where $\tilde{Z}(U, V, W, Y) = g(\tilde{Z}(U, V)W, Y)$. Taking inner product with ξ , we get

$$\begin{aligned} 0 &= k[\tilde{Z}(U, V, W, Y) - \eta(\tilde{Z}(U, V)W)\eta(Y) + \eta(U)\eta(\tilde{Z}(Y, V)W) \\ &\quad - g(Y, U)\eta(\tilde{Z}(\xi, V)W) + \eta(V)\eta(\tilde{Z}(U, Y)W) \\ &\quad - g(Y, V)\eta(\tilde{Z}(U, \xi)W) + \eta(W)\eta(\tilde{Z}(U, V)Y) \\ &\quad - g(Y, W)\eta(\tilde{Z}(U, V)\xi)]. \end{aligned}$$

Putting $Y = U$ yields

$$0 = k[\tilde{Z}(U, V, W, U) - g(U, U)\eta(\tilde{Z}(\xi, V)W) - g(U, V)\eta(\tilde{Z}(U, \xi)W) + \eta(W)\eta(\tilde{Z}(U, V)U)].$$

Let $\{e_1, e_2, \dots, e_{2n}, \xi\}$ be a local orthonormal basis of tangent space of the manifold. Putting $U = e_i$ and summing up from 1 to $2n$, then by virtue of (1), (8), (11) and (14)–(17), the above equation reduces to

$$S(V, W) = 2nk g(V, W). \quad (19)$$

Hence, we can state the following theorem:

Theorem 3.2. *If M is a $(2n + 1)$ -dimensional concircularly semi-symmetric $N(k)$ -contact metric manifold, then the manifold is an Einstein manifold.*

4. $N(k)$ -Contact Metric Manifold Satisfying Certain Curvature Conditions $\tilde{Z}.S = 0, Q.\tilde{Z} = 0, \tilde{Z}.P = 0$

We consider an $N(k)$ -contact metric manifold M^{2n+1} satisfying the curvature condition $\tilde{Z}.S = 0$. Suppose

$$(\tilde{Z}(X, Y).S)(U, V) = 0 \quad (20)$$

implies

$$S(\tilde{Z}(X, Y)U, V) + S(U, \tilde{Z}(X, Y)V) = 0. \quad (21)$$

Put $X = V = \xi$ in (21), we have

$$S(\tilde{Z}(\xi, Y)U, \xi) + S(U, \tilde{Z}(\xi, Y)\xi) = 0. \quad (22)$$

Now, from (1),

$$\tilde{Z}(\xi, Y)U = \left(k - \frac{r}{2n(2n+1)} \right) [g(Y, U)\xi - \eta(U)Y], \quad (23)$$

$$\tilde{Z}(\xi, Y)\xi = \left(k - \frac{r}{2n(2n+1)} \right) [\eta(Y)\xi - Y]. \quad (24)$$

Using (1), (4), (8), (11), (23) and (24), we have

$$S(\tilde{Z}(\xi, Y)U, \xi) = \left(k - \frac{r}{2n(2n+1)} \right) [2nk g(Y, U) - 2nk \eta(Y)\eta(U)], \quad (25)$$

$$S(U, \tilde{Z}(\xi, Y)\xi) = \left(k - \frac{r}{2n(2n+1)} \right) [2nk \eta(Y)\eta(U) - S(U, Y)]. \quad (26)$$

Put the value of (25) and (26) in (22), we have

$$\left(k - \frac{r}{2n(2n+1)} \right) [2nk g(U, Y) - S(U, Y)] = 0. \quad (27)$$

From (27), we get

$$S(U, Y) = 2nk g(U, Y), \quad \text{if } k - \frac{r}{2n(2n+1)} \neq 0. \quad (28)$$

Hence, we can state the following theorem:

Theorem 4.1. *A $(2n+1)$ -dimensional $N(k)$ -contact metric manifold satisfying the curvature condition $\tilde{Z}.S = 0$ is an Einstein manifold provided*

$$k - \frac{r}{2n(2n+1)} \neq 0.$$

Proof. Suppose

$$Q.\tilde{Z} = 0, \quad (29)$$

then,

$$Q(\tilde{Z}(X, Y)W) - \tilde{Z}(QX, Y)W - \tilde{Z}(X, QY)W - \tilde{Z}(X, Y)QW = 0. \quad (30)$$

Put $W = \xi$ in (30), we have

$$Q(\tilde{Z}(X, Y)\xi) - \tilde{Z}(QX, Y)\xi - \tilde{Z}(X, QY)\xi - \tilde{Z}(X, Y)Q\xi = 0. \quad (31)$$

Now, from (1),

$$\tilde{Z}(X, Y)\xi = \left(k - \frac{r}{2n(2n+1)} \right) [\eta(Y)X - \eta(X)Y]. \quad (32)$$

Using equations (1), (4), (8), (11) and (32), we have

$$\begin{aligned} Q(\tilde{Z}(X, Y)\xi) &= \left(k - \frac{r}{2n(2n+1)} \right) [2(n-1)X\eta(Y) + 2(n-1)hX\eta(Y) \\ &\quad - 2(n-1)Y\eta(X) - 2(n-1)hY\eta(X)], \end{aligned} \quad (33)$$

$$\begin{aligned} \tilde{Z}(QX, Y)\xi &= \left(k - \frac{r}{2n(2n+1)} \right) [2(n-1)X\eta(Y) + 2(n-1)hX\eta(Y) \\ &\quad + \{2(1-n) + 2nk\}\eta(X)\eta(Y)\xi - 2nk\eta(X)Y], \end{aligned} \quad (34)$$

$$\begin{aligned} \tilde{Z}(X, QY)\xi &= \left(k - \frac{r}{2n(2n+1)} \right) [2nk\eta(Y)X - 2(n-1)Y\eta(X) \\ &\quad - 2(n-1)hY\eta(X) - \{2(1-n) + 2nk\}\eta(X)\eta(Y)\xi], \end{aligned} \quad (35)$$

$$\tilde{Z}(X, Y)Q\xi = 2nk \left(k - \frac{r}{2n(2n+1)} \right) [\eta(Y)X - \eta(X)Y]. \quad (36)$$

Put the value of (33)–(36) in (31), we have

$$4nk \left(k - \frac{r}{2n(2n+1)} \right) [\eta(X)Y - \eta(Y)X] = 0. \quad (37)$$

Now, $[\eta(Y)X - \eta(X)Y] \neq 0$ in a contact metric manifold, in general. Therefore, from (37) gives either $k = 0$ or

$$k = \frac{r}{2n(2n+1)}. \quad (38)$$

Using (12) in (38) we get

$$k = 1 - \frac{1}{n}. \quad (39)$$

Hence, from (39) M is locally isometric to Example 1 for $n > 1$ and flat for $n = 1$. \square

In view of the above discussion, we have the following theorem:

Theorem 4.2. *A $(2n+1)$ -dimensional $N(k)$ -contact metric manifold M satisfying the curvature condition $Q.\tilde{Z} = 0$ is either flat or locally isometric to Example 2.1.*

Proof. Consider a $(2n+1)$ -dimensional $N(k)$ -contact metric manifold satisfying $\tilde{Z}.P = 0$. Therefore,

we have

$$(\tilde{Z}(X, Y).P)(U, V)W = 0,$$

which implies

$$\tilde{Z}(X, Y)P(U, V)W - P(\tilde{Z}(X, Y)U, V)W - P(U, \tilde{Z}(X, Y)V)W - P(U, V)\tilde{Z}(X, Y)W = 0. \quad (40)$$

Put $X = V = \xi$ in (40),

$$\tilde{Z}(\xi, Y)P(U, \xi)W - P(\tilde{Z}(\xi, Y)U, \xi)W - P(U, \tilde{Z}(\xi, Y)\xi)W - P(U, \xi)\tilde{Z}(\xi, Y)W = 0. \quad (41)$$

Now,

$$\begin{aligned} \tilde{Z}(\xi, Y)P(U, \xi)W &= R(\xi, Y)P(U, \xi)W - \frac{r}{2n(2n+1)}[g(Y, P(U, \xi)W)\xi - g(\xi, P(U, \xi)W)Y] \\ &= \left(k - \frac{r}{2n(2n+1)}\right)[g(Y, P(U, \xi)W)\xi - \eta(P(U, \xi)W)Y], \end{aligned} \quad (42)$$

$$P(\tilde{Z}(\xi, Y)U, \xi)W = \left(k - \frac{r}{2n(2n+1)}\right)[g(Y, U)P(\xi, \xi)W - \eta(U)P(Y, \xi)W], \quad (43)$$

$$P(U, \tilde{Z}(\xi, Y)\xi)W = \left(k - \frac{r}{2n(2n+1)}\right)[\eta(Y)P(U, \xi)W - P(U, Y)W], \quad (44)$$

$$P(U, \xi)\tilde{Z}(\xi, Y)W = \left(k - \frac{r}{2n(2n+1)}\right)[g(Y, W)P(U, \xi)\xi - \eta(W)P(U, \xi)Y]. \quad (45)$$

Using equations (42)–(45) in (41), yields

$$\begin{aligned} &\left(k - \frac{r}{2n(2n+1)}\right)[g(Y, P(U, \xi)W)\xi - \eta(P(U, \xi)W)Y - g(Y, U)P(\xi, \xi)W \\ &+ \eta(U)P(Y, \xi)W - \eta(Y)P(U, \xi)W + P(U, Y)W - g(Y, W)P(U, \xi)\xi + \eta(W)P(U, \xi)Y] = 0. \end{aligned} \quad (46)$$

Therefore, either $k = \frac{r}{2n(2n+1)}$, or

$$\begin{aligned} &g(Y, P(U, \xi)W)\xi - \eta(P(U, \xi)W)Y - g(Y, U)P(\xi, \xi)W + \eta(U)P(Y, \xi)W \\ &- \eta(Y)P(U, \xi)W + P(U, Y)W - g(Y, W)P(U, \xi)\xi + \eta(W)P(U, \xi)Y = 0. \end{aligned} \quad (47)$$

Using (2), (4), (8) and (11) in (47), and taking inner product with ξ we have

$$\eta(W)[S(U, Y) - 2nk g(U, Y)] = 0 \quad (48)$$

for all vector fields Y, U, W . Since $\eta(W) \neq 0$, equation (48) yields

$$S(U, Y) = 2nk g(U, Y).$$

Thus, $\tilde{Z}.P = 0$ implies $r = 2n(2n+1)k$ or Einstein manifold. Comparing the above value of r from (12), we have

$$k = 1 - \frac{1}{n},$$

and hence M is locally isometric to the manifold of Example 2.1 for $n > 1$ and flat for $n = 1$. \square

In view of the above discussion we have the following:

Theorem 4.3. *If a $(2n+1)$ -dimensional non-Sasakian $N(k)$ -contact metric manifold M satisfies $\tilde{Z}.P = 0$, then either M is an Einstein manifold or M is locally isometric to Example 1 for $n > 1$ and flat for $n = 1$.*

References

- [1] D. E. Blair, *Contact manifolds in Riemannian Geometry*, Lecture Notes in Math. 509, Springer-Verlag, (1976).
- [2] D. E. Blair, J. S. Kim and M. M. Tripathi, *On the concircular curvature tensor of a contact metric manifold*, J. Korean Math. Soc., 42(2005), 883-892.
- [3] D. E. Blair, *Riemannian Geometry of Contact and Symplectic Manifolds*, Prog. Math. 203, Birkhäuser Boston, Inc., Boston, MA, (2002).
- [4] D. E. Blair, T. Koufogiorgos and B. J. Papantoniou, *Contact metric manifolds satisfying a nullity condition*, Israel J. Math., 91(1995), 189-214.
- [5] D. E. Blair, *Two remarks on contact metric structures*, Tohoku Math. J., 29(1977), 319-324.
- [6] U. C. De, A. Yildiz and S. Ghosh, *On a class of $N(k)$ -contact metric manifolds*, Math. Reports, 16(66)(2014), 207-217.
- [7] W. Kuhnel, *Conformal transformations between Einstein spaces*, in: *Conformal Geometry, Aspects Math.* 12, Vieweg, Braunschweig, (1988), 105-146.
- [8] G. Soós, *Über die geodätischen Abbildungen von Riemannschen Räumen auf projektiv symmetrische Riemannsche Räume*, Acta Math. Acad. Sci. Hungar., 9(1958), 359-361.
- [9] S. Tanno, *Ricci curvature of contact Riemannian manifolds*, Tohoku Math. J., 40(1988), 441-448.
- [10] K. Yano and S. Bochner, *Curvature and Betti numbers*, Ann. Math. Stud. 32, Princeton University Press, (1953).
- [11] K. Yano, *Concircular geometry I: Concircular transformations*, Proc. Imp. Acad. Tokyo, 16(1940), 195-200.