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Abstract: In 1903 Nesbitt introduced a famous inequality: a
b+c

+ b
c+a

+ c
a+b

≥ 3
2

for any positive real numbers a, b and c. Among
all its proofs, Mortici provided a unique approach applying the convergence of power series together with the power

means inequality. Adopting this technique, we first generalize several Nesbitt type inequalities to n variable versions. We
then combine the knowledge of power series, Young’s inequality, and the rearrangement inequality, and deduce some new

inequalities.
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1. Introduction

In 1903 Nesbitt introduced a famous inequality in [6]: a
b+c

+ b
c+a

+ c
a+b
≥ 3

2
for any positive real numbers a, b and c.

Since then this inequality has been studied and applied in many papers. There are many ways to prove this inequality.

At the time our paper was composed, nine different proofs for it have been organized in its Wikipedia page [10]. In 2012

Mortici introduced yet another proof in [5]. In the proof Mortici converted the left side fractions into convergent power

series and ingeniously found the lower bound of the limit applying the power means inequality. Very soon this method was

then adopted to analyze many other cyclic inequalities, like [3] and [9]. When studying these papers, we noticed that some

old results of Nesbitt type in [8] can all be proved using this method, and not surprisingly the new proofs are much simpler.

Therefore in this paper, we will first recall these old results and introduce new proofs using this power series approach. We

then will improve a theorem introduced by Lai in [4]. After generalizing two more inequalities according to Mortici’s results,

we will then introduce another new result inspired by Mortici’s paper.

We would like to start with some background knowledge that will be used in this paper. The first property is of course the

convergence of the power series. It can be found in many Calculus textbooks. Here we refer to [7] for the following.

Theorem 1.1 (The Convergence of Power Series). For a real variable x ∈ (−1, 1), we have

∞∑
i=0

xi =
1

1− x
and

∞∑
i=1

ixi =
x

(1− x)2
.

We will also be using several other inequalities in this paper, so we summarize them here. Interested readers may refer to

[1] or [2] for their proofs.
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Theorem 1.2 (Power Means Inequality). Let x1, x2, · · · , xn be positive real numbers, and p be a real number.

If p 6= 0, the power mean of x1, x2, · · · , xn with exponent p is defined by Mp (x1, x2, · · · , xn) =

(
1
n

n∑
i=1

xp
i

) 1
p

. If p = 0,

M0 (x1, x2, · · · , xn) =

(
n∏

i=1

xi

) 1
n

, the geometric mean.

If p > q, then

Mp (x1, x2, · · · , xn) ≥Mq (x1, x2, · · · , xn) .

The equality holds if and only if x1 = x2 = · · · = xn.

Theorem 1.3 (Rearrangement Inequality). Let a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn be real numbers. For any

permutation (x1, x2, · · · , xn) of (a1, a2, · · · , an) we have the following:

a1b1 + a2b2 + · · ·+ anbn ≥ x1b1 + x2b2 + · · ·+ xnbn ≥ anb1 + an−1b2 + · · ·+ a1bn.

Young’s inequality is another famous result mentioned and applied in many Analysis books. In most books, including

inequality focused ones like [1], it is introduced as a two variable version. In our paper we need to apply an n variable

version, so here we provide a simple proof along with the statement.

Theorem 1.4 (Generalized Young’s Inequality). Let a1, a2, · · · , an be positive real numbers and b1, b2, · · · , bn > 1 be real

numbers such that 1
b1

+ · · ·+ 1
bn

= 1. Then
n∑

i=1

abi
i

bi
≥

n∏
i=1

ai.

Equality occurs if and only if all abi
i are equal.

Proof. Since f(x) = lnx is a concave function, we have

ln

(
ab1
1

b1
+ · · ·+ abn

n

bn

)
≥ 1

b1
ln ab1

1 + · · ·+ 1

bn
ln abn

n = ln a1 + · · ·+ ln an = ln (a1a2 · · · an) .

After exponentiating both ends of the above, we then have the desired inequality.

2. Main Result

We first summarize Mortici’s proof of Nesbitt’s inequality.

Theorem 2.1 (Nesbitt’s Inequality). Let a, b, c be positive real numbers. Then

a

b + c
+

b

c + a
+

c

a + b
≥ 3

2
.

Proof. (Mortici) Allow s = a + b + c, a
s

= a′, b
s

= b′, and c
s

= c′. Then

a

b + c
+

b

c + a
+

c

a + b
=

a′

b′ + c′
+

b′

c′ + a′
+

c′

a′ + b′
=

a′

1− a′
+

b′

1− b′
+

c′

1− c′
.

Since a′, b′, c′ < 1,

a′

1− a′
+

b′

1− b′
+

c′

1− c′
=

∞∑
i=1

(
a′
)i

+

∞∑
i=1

(
b′
)i

+

∞∑
i=1

(
c′
)i

=

∞∑
i=1

[(
a′
)i

+
(
b′
)i

+
(
c′
)i]

.

Applying power means inequality,

∞∑
i=1

[(
a′
)i

+
(
b′
)i

+
(
c′
)i] ≥ ∞∑

i=1

3

[
a′ + b′ + c′

3

]i
=

∞∑
i=0

(
1

3

)i

=
3

2
.
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In Nesbitt’s inequality, if a = b = c, the three fractions at the left side all take value 1
2
. That is when the equality occurs. If

we consider the case of n variables with n fractions at the left side, it is very reasonable to guess the lower bound n
n−1

. The

next theorem was introduced by Wei and Wu in [8] as Theorem 2, which is the exact generalization of Nesbitt’s inequality

of n variable case.

Theorem 2.2 (Wei and Wu). Let x1, x2, · · · , xn be positive real numbers, where n ≥ 2. Then

x1

x2 + x3 + · · ·+ xn
+

x2

x1 + x3 + x4 + · · ·+ xn
+ · · ·+ xn

x1 + x2 + · · ·+ xn−1
≥ n

n− 1
.

For the original proof of this inequality in [8], Wei and Wu applied Chebyshev’s inequality. However, readers may already

notice that, we can use the same power series approach to prove this old result. Moreover, Theorems 3, 4, and 5 in [8] can

all be proved using the same technique. Here we generalize their Theorem 5 to an n variable case and provide a proof using

power series approach.

Theorem 2.3. Let x1, x2, · · · , xn be positive real numbers, x1 + x2 + · · ·+ xn = s, and r ≥ 1. Then

xr
1

x2 + x3 + · · ·+ xn
+

xr
2

x1 + x3 + x4 + · · ·+ xn
+ · · ·+ xr

n

x1 + x2 + · · ·+ xn−1
≥ n

n− 1

( s
n

)r−1

.

Proof. Allow x′i = xi
s

for all i. We then have

xr
1

s− x1
+

xr
2

s− x2
+ · · ·+ xr

n

s− xn
= sr−1

(
(x′1)

r

1− x′1
+

(x′2)
r

1− x′2
+ · · ·+ (x′n)

r

1− x′n

)
= sr−1

(
∞∑
i=0

(
x′1
)i+r

+ · · ·+
∞∑
i=0

(
x′n
)i+r

)

= sr−1
∞∑
i=0

((
x′1
)i+r

+ · · ·+
(
x′n
)i+r

)
≥ sr−1

∞∑
i=0

(
n ·
(
x′1 + · · ·+ x′n

n

)i+r
)

= sr−1
∞∑
i=0

1

ni+r−1

=
n

n− 1

( s
n

)r−1

.

Trying to generalize the Nesbitt’s inequality to the case of more than one item summing at the numerators, Lai proved the

next result in [4] using Radon’s inequality.

Theorem 2.4 (Lai). Let x1, x2, · · · , xn be positive real numbers. For positive integer k < n, let S(k)1, S(k)2, · · · , S(k)C(n,k)

be the sums of k elements in x1, x2, · · · , xn for all C(n, k) combinations respectively, and let S(n) = x1 + · · ·+ xn. Then

S(k)1
S(n)− S(k)1

+
S(k)2

S(n)− S(k)2
+ · · ·+

S(k)C(n,k)

S(n)− S(k)C(n,k)

≥ k · C(n, k)

n− k
.

Since there are k elements at the numerator and (n − k) elements at the denominator in each fraction of the left side, we

can see where the factor k
n−k

comes from at the right side. Totally, there are C(n, k) fractions in the sum of the left side,

so that contributes to the factor C(n, k) at the right side lower bound. However, the sum of fractions at the left side of the

above result is symmetric, not cyclically arranged throughout x1, · · · , xn like the original Nesbitt’s inequality. Besides, if
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we have some big n and k, the value of C(n, k), hence the number of fractions needed, will also be big in order to reach the

lower bound. With the help of the power series technique, we can finally improve the above theorem to a cyclic version,

which is more in line with the original Nesbitt’s inequality, and more applicable in related areas. Before introducing the

next result, we would like to warn the readers about the notations in advance. Since it is an improvement of the previous

result, we adopted most of the notations. However, the notation S(k)i used for a symmetric sum in the previous result is

now used to indicate a cyclic sum in the next theorem.

Theorem 2.5. Let x1, x2, · · · , xn be positive real numbers. For a positive integer k < n, let S(k)i = xi + · · ·+xi+k−1 where

xn+j = xj, and let S(n) = x1 + · · ·+ xn. Then

S(k)1
S(n)− S(k)1

+ · · ·+ S(k)n
S(n)− S(k)n

≥ k · n
n− k

.

Proof. Similar to other proofs we had already, we let S′(k)i = S(k)i
S(n)

. Then

S(k)1
S(n)− S(k)1

+ · · ·+ S(k)n
S(n)− S(k)n

=
S′(k)1

1− S′(k)1
+ · · ·+ S′(k)n

1− S′(k)n

=

∞∑
i=1

(
S′(k)1

)i
+ · · ·+

∞∑
i=1

(
S′(k)n

)i
=

∞∑
i=1

[(
S′(k)1

)i
+ · · ·+

(
S′(k)n

)i]
≥

∞∑
i=1

n

(
S′(k)1 + · · ·+ S′(k)n

n

)i

=

∞∑
i=1

n

(
k

n

)i

=
k · n
n− k

.

Next we move on to some results requiring other inequalities. As a matter of fact, Mortici already practiced this idea in [5].

For example, the next result was introduced by Mortici, applying Young’s inequality.

Theorem 2.6 (Mortici). For a, b ∈ (0, 1) and p, q > 0 with 1
p

+ 1
q

= 1, we have

q

1− ap
+

p

1− bq
≥ pq

1− ab

and

ap

p (1− ap)2
+

bq

q (1− bq)2
≥ ab

(1− ab)2
.

Since we already proved a generalized Young’s inequality in Section 1, we then can generalize Mortici’s inequalities to an n

variable version.

Theorem 2.7. For a1, · · · , an ∈ (0, 1) and b1, · · · , bn > 0 with 1
b1

+ · · ·+ 1
bn

= 1, we have

1

b1
(

1− ab1
1

) + · · ·+ 1

bn
(

1− abn
n

) ≥ 1

1− a1a2 · · · an

and

ab1
1

b1
(

1− ab1
1

)2 + · · ·+ abn
n

bn
(

1− abn
n

)2 ≥ a1a2 · · · an

(1− a1a2 · · · an)2
.
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Proof. Applying the generalized Young’s inequality we have

1

b1
(

1− ab1
1

) + · · ·+ 1

bn
(

1− abn
n

) =
1

b1
·
∞∑
i=0

(
ab1
1

)i
+ · · ·+ 1

bn
·
∞∑
i=0

(
abn
n

)i

=

∞∑
i=0

((
ai
1

)b1
b1

+ · · ·+
(
ai
n

)bn
bn

)

≥
∞∑
i=0

(a1a2 · · · an)i

=
1

1− a1a2 · · · an
.

For the second inequality, we have

ab1
1

b1
(

1− ab1
1

)2 + · · ·+ abn
n

bn
(

1− abn
n

)2 =
1

b1
·
∞∑
i=1

i
(
ab1
1

)i
+ · · ·+ 1

bn
·
∞∑
i=1

i
(
abn
n

)i

=

∞∑
i=1

i

((
ai
1

)b1
b1

+ · · ·+
(
ai
n

)bn
bn

)

≥
∞∑
i=1

i (a1a2 · · · an)i

=
a1a2 · · · an

(1− a1a2 · · · an)2
.

The next theorem is a result applying the rearrangement inequality.

Theorem 2.8. For a1 ≤ a2 ≤ · · · ≤ an ∈ (0, 1), let b1, · · · , bn be a rearrangement of sequence {ai} in a random order. For

real numbers k > m, we have

1

1− ak
1

+ · · ·+ 1

1− ak
n

≥ 1

1− ak−m
1 bm1

+ · · ·+ 1

1− ak−m
n bmn

and

ak
1(

1− ak
1

)2 + · · ·+ ak
n

(1− ak
n)2
≥ ak−m

1 bm1(
1− ak−m

1 bm1
)2 + · · ·+ ak−m

n bmn(
1− ak−m

n bmn
)2 .

Proof. From the rearrangement inequality we know

ak
1 + · · ·+ ak

n ≥ ak−m
1 bm1 + · · ·+ ak−m

n bmn .

Therefore,

1

1− ak
1

+ · · ·+ 1

1− ak
n

=
∞∑
i=0

aki
1 + · · ·+

∞∑
i=0

aki
n

≥
∞∑
i=0

(
ak−m
1 bm1

)i
+ · · ·+

∞∑
i=0

(
ak−m
n bmn

)i
=

1

1− ak−m
1 bm1

+ · · ·+ 1

1− ak−m
n bmn

.

Similarly,

ak
1(

1− ak
1

)2 + · · ·+ ak
n

(1− ak
n)2

=

∞∑
i=1

iaki
1 + · · ·+

∞∑
i=1

iaki
n

≥
∞∑
i=1

i
(
ak−m
1 bm1

)i
+ · · ·+

∞∑
i=1

i
(
ak−m
n bmn

)i
=

ak−m
1 bm1(

1− ak−m
1 bm1

)2 + · · ·+ ak−m
n bmn(

1− ak−m
n bmn

)2 .
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Theorems 2.7 and 2.8 provide some pathways to the insight of inequalities involving sums of fractions. These type of

inequalities are often seen in Mathematics Olympiad or other Mathematics competitions. However there is a catch, which

may make these results not always applicable. Because we need to make sure the power series in the proof are convergent,

the sequence {ai} in these two theorems has to be restricted in the interval (0, 1). As for how to generalize them to the case

in other intervals, or even the whole positive real numbers, it is still open.

It is worth noting that, in case readers are interested, Xu also practiced this idea of combining power series and other

inequalities, in [9], and introduced some interesting results applying Muirhead inequality.
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[2] G. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge University Press, (1952).

[3] M. Jeong, Inequalities via Power Series and Cauchy-Schwarz Inequality, J. Korean Soc. Math. Educ., Ser. B. Pure Appl.

Math., 19(3)(2012), 305-313.

[4] W.-K. Lai, Nesbitt Type Inequalities, International Journal of Mathematics and its Applications, 6(4-B)(2018), 403-406.

[5] C. Mortici, A Power Series Approach to Some Inequality, Amer. Math. Monthly, 119(2)(2012), 147-151.

[6] A. M. Nesbitt, Problem 15114, Educational Times, 3(1903), 37-38.

[7] G. B. Thomas Jr. and R. L. Finney, Calculus and Analytic Geometry, 9th Edition, Addison-Wesley, (1996).

[8] F. Wei and S. Wu, Generalizations and analogues of the Nesbitt’s inequality, Octagon Mathematical Magazine,

17(1)(2009), 215-220.

[9] Y.-H. Xu, A Power Series Approach to An Inequality and Its Generalizations, The Teaching of Mathematics,

XIX(2)(2016), 76-83.

[10] —–, Nesbitt’s inequality, Wikipedia. https://en.wikipedia.org/wiki/Nesbitt’s inequality. Accessed June 30, (2020).

112


	Introduction
	Main Result
	References

