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Abstract

In this paper, we study the conditions for the existence of a unique common fixed point of
generalized (i, ¢)— contractive mappings in the framework of b—metric spaces endowed with a

graph. We give some examples to support our results.
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1. Introduction

Fixed point theory is widely used in mathematics and physics. To advance it, scholars have integrated
it with graph theory. However, directed graphs complicate the structure of metric spaces (and b-metric
spaces) endowed with them, making fixed point research challenging. Extending existing fixed point
theorems and iterative algorithms to these spaces is thus theoretically significant.

In 1906, Frechet [4] first introduced the concept of metric spaces. Czerwik [3] generalized this to b-
metric spaces and proved the Banach contraction mapping principle in this type spaces. Some fixed
point results for b-metric spaces have also been extensively studied [1,13]. In 2007, Jachymski and
Jozwik [5] incorporated graph structures into metric spaces and generalized partial ordered metric
space results. Subsequent work (e.g., Bojor [2], Shukla [11] et al., Nantaporn [9] et al., Sushanta [12])
explored fixed points in graph metric spaces and graphb-metric spaces, expanding the theory [6].
Building on result of Liu [8], this paper investigates the existence and uniqueness of common fixed

points for ip-contraction and (¢, ¢)-contraction in graph b-metric spaces.

2. Preliminaries

Firstly, we recall some definitions and lemmas in b—metric space.

Definition 2.1 ([3]). Let X be a nonempty set and s > 1 be a given real number. A mapping d : X x X —
[0, +00) is said to be a b-metric if and only if, for all x,y,z € X, the following conditions are satisfied:
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(i) d(x,y) =0ifand only if x =y,
(ii) d(x,y) =d(y,x),
(iii) d(x,y) <s(d(x,z)+d(y,z)).

It is obvious that the class of b—metric spaces is effectively larger than that of metric spaces since any

metric space is a b—metric space with s = 1.
Definition 2.2. Let (X,d) be a b—metric space with parameter s > 1 and {x, } be a sequence in X. Then

(i) {xn} converges to x € X if and only if there exists x € X such that d(x,,x) — 0 as n — oo. We denote

this by lim,,_,eo X, = X 01 X, — x(n — 00).
(ii) {xn} is a Cauchy sequence if and only if d(x, x,n) — 0 when n,m — oo,
(iii) (X, d) is complete if and only if every Cauchy sequence in X is convergent.

Each convergent sequence in a b—metric space has a unique limit and it is also a Cauchy sequence.

Moreover, in general, a b—metric is not continuous.

Definition 2.3 ([7]). A pair of self mappings f and g defined on a nonempty set X are said to be weakly
compatible if for all t € X the equality ft = gt implies fgt = gft.

We next review some basic notions in graph theory.

Let (X,d) be a b—metric space. We assume that G is a reflexive digraph where the set V(G) of its
vertices coincides with X and the set E(G) of its edges contains no parallel edges. So we can identify
G with the pair (V(G), E(G)). G may be considered as a weighted graph by assigning to each edge the
distance between its vertices. By G~! we denote the graph obtained from G by reversing the direction
of edges, i.e.,, E(G™') = {(x,y) € X x X : (y,x) € E(G)}. Let G denote the undirected graph obtained
from G by ignoring the direction of edges, and E(G) = E(G)UE(G™'). If x,y are vertices of the
digraph G, then a path in G from x to y of length n(n € IN) is a sequence {x;}}_, of n 41 vertices such
that xo = x, x, = y and (x;_1,%;) € E(G) fori =1,2,---,n. A graph G is connected if there is a path
between any two vertices of G. G is weakly connected if G is connected. The graph Gy is defined by

E(Gy) = X x X.

Definition 2.4. Let A, B, S, and T be self mappings in a b—metric space (X,d) endowed with a graph G. T

and S weakly preserve edges in E(G), if (x,y) € E(G) implies (Tx,Sy) € E(G) and (Sx,Ty) € E(G). A and

B weakly preserve inverse edges in E(G), if (Ax, By) € E(G) and (Bx, Ay) € E(G) imply (x,y) € E(G).

Throughout this paper,
®; = {¢:yp:RT — R" is continuous and nondecreasing, and ¢(t) = 0 if and only if = 0},
Py = {¢: ¢ : R" — R" is lower semi-continuous and nonincreasing, and ¢(¢) = 0 if and only if

t =0},
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P; = {y:¢p:R" — R" is upper semi-continuous, and lim,_,« a, = 0 for each sequence {a,},en C

R with a,11 < ¢(ay,),Vn € N}

Definition 2.5. Let A, B, S, and T be self mappings in a b—metric space (X, d) endowed with a graph G. The

contractive condition is called a {—weakly contractive condition if the following inequation holds:

s°d(Tx, Sy) < p(M(x,y)), (1)

where

M(x,y) = max{d(Ax, By),d(Ax, Tx),d(By, Sy), 21—s(d(Ax, Sy)+d(Tx,By)),

1 d(By, Sy)
E(d(Ax, By) +d(Ax, Tx)), md(Ax, Tx),

1+4d(Tx, By) + d(Ax, Sy)
1+ s(d(Ax, Tx) 4+ d(By, Sy))

1+4d(Tx, By) + d(Ax, Sy) 1+d(Ax, Tx) d(By, Sy) 2
1+ s(d(Ax, By) +d(Tx, Sy)) "1+ d(Ax, By) " V20
(1+d(Tx, By) + d(Ax, Sy))? + d(Tx, By)d(Ax, Sy)

d(Ax, Tx),

d(By, Sy)

(1+ s(d(Ax, By) + d(Tx, 5y)) )2 d(Ax, Tx),
(1+d(Tx, By) +d(Ax, Sy))? + d(Tx, By)d(Ax, Sy)
(1+s(d(Ax, Tx) + d(By, Sy)))? d(By, Sy)},

forall x,y € X with (x,y) € E(G), p € 3.

Definition 2.6. Let A, B, S, and T be self mappings in a b—metric space (X, d) endowed with a graph G. The

contractive condition is called a (, ¢) —weakly contractive condition if the following inequation holds:
p(s°d(Tx, Sy)) < p(M(x,y)) — p(N(x,y)), ®)
where M(x,y) satisfies (2) and
N(x,y) = max{d(Ax, By),d(Ax, Tx),d(By, Sy),d(Tx, Sy), %(d(Ax, Sy) +d(Tx, By)),

1 +d(Tx, By) +d(Ax, Sy) 1+ d(Ax, Tx) 4)
T+ s(d(Ax, Tx) + d(By, 5y))° BV V) T3 aax, By 4 BY- SY) 1

By, Sy)

forall x,y € X with (x,y) € E(G), { € 1, ¢ € Py and ¢(t) < P(t).
Lemma 2.7 ([10]). Let ¢ € ®3. Then (0) = 0 and p(t) < t for all t > 0.
Lemma 2.8 ([8]). Let A, B, S, and T be self mappings in a b—metric space (X,d) endowed with a graph G

satisfying

P(s°d(Tx, Sy)) < p(M(x,y)) — 9(M(x,y)), Vx,y € X, (5)
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where (P, @) € 1 X Oy. Assume that I : RT — R™ is the identity mapping and

Ppr(t) = (p+ 1) (Y +1—9)(t), Vt € RT.

Then 1 € Pz and
$2d(Tx, Sy) < 1 (M(x,y)), Vx,y € X.

Remark 2.9. It follows from Lemma 2.8 that (5) relative to four mappings A, B, S and T implies (1) relative to
four mappings A, B, S and T.

3. Main Results

In this section, we assume that (X, d) is a b—metric space with the coefficient s > 1, and G is a reflexive
digraph such that V(G) = X and G has no parallel edges. Let A, B, S, T: X — X be such that
T(X) € B(X), S(X) € A(X). If xp € X is arbitrary, then there exists elements x1,x, € X such that
Bxy = Txg, Axy = Sx1, since T(X) C B(X) and S(X) C A(X). Proceeding in this way, we can construct
a sequence {y, } such that yo,4+1 = Bxou11 = TX2n, Yont2 = AXopsz = Sxo441, n € IN. By C, we denote

the set of all elements x( of X such that (xo, x1) € E(G).

Theorem 3.1. Let (X, d) be a b—metric space endowed with a graph G and the mappings A, B, S, T: X — X
satisfy Y—weakly contractive condition. {A, T} and {B, S} are weakly compatible. T(X) C B(X) and S(X) C
A(X). One of A(X), B(X), S(X) and T(X) is complete. If the following conditions hold:

(i) T and S weakly preserve edges in E(G), A and B weakly preserve inverse edges in E(G),

(iii) If {yn} is a sequence in X such that y, — z and one of z = AX, z = BX, z = SX, z = TX is satisfied,

(Tx2n, Sx2n+1) € E(G), for all n € IN, then there exists a subsequence {yn,} of {yn} such that

(1) (TX,ys,) € E(G) and (yn, SX) € E(G),

(2) (Tz,S%) € E(G),

(iv) if x,y are common fixed points of A, B, S and T in X, then (x,y) € E(G).
Then A, B, S and T have a unique common fixed point in X.

Proof. Because of C, # @, we choose an xy € C, and keep it fixed. Since T(X) C B(X) and S(X) C

A(X), there exists a sequence {y, } such that y,,+1 = Bx2y+1 = Txon, Yont2 = AXopio = Sxopi1, 1 € N

and (xo,x1) € E(G). Putd, = d(yu,yn+1) for all n € N. Now we prove

lim d, = 0. (6)

n—o0
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Because of (xo,x1) € E(G) and T and S weakly preserve edges in E(G), we gain (Txo, Sx1) € E(G),

i.e.,(Bx1, Axy) € E(G). And since A and B weakly preserve inverse edges in E(G), we get (x1,x2) €

E(G). In general, (x,, x,41) € E(G), (Sx24-1, Tx24) € E(G) and (Tx2,, Sx2441) € E(G). Using (1) and

(2), we derive
53d2n - 53d(y2n/ ]/2n+1) - 53d(Tx2n/ SxZn—l) S l)b(M(xznl x2n—1)) (7)
and

1
M(x20, Xon—1) = max{da,_1,don, don_1, E(d(yzn,yzn) + d(Yon+1,Y2n-1)),

dp—1 i 14+ d(yan+1,Yon—1) +dYan, Yon) p
"T+dyy 1+ s(dan + dop—1)
14+ d(yan+1, Yon—1) + d(Yan, Yon) J 1+doy,

1+ S(dzn_l + dzn) 2n—1s 14+ dy—1
(1 +d(yans1, yan-1) +dW2n,y20))? + d(Y2ns1, Yon—1)d(Yan, Yan) p
(1 + 5(day_1 + dan))? 2

(1+d(yan+1, Yan-1) +dY2n, y2n))* + d(y2n+1,y2n—1)d(y2n,y2n)d2 3
(1 +S(d2n +d2n_1))2 n

dop_1}

2ns

1
E(d2n—1 +doy)

2n—1,

(8)

1+d2n

= maX{danl, dan H’TM

Suppose that dy,,,_1 < d2,, for some ny € IN. It follows that
d2n0(1 + d21’10—1) = dZno + d2n0d2n0—1 > d21’l0—1 + d2n0d2n0—1 = dZno—l(l + dzi’lg)/

that is,

1 + d2n0

, 9
1 + d21’1071 ( )

Aony > dong—1
which implies M (x2p,, X2n,—1) = d2n,- By means of (7), s > 1, ¢ € ®3, and Lemma 2.7, we conclude
$3dan, < P(M(x2n0, X2n,-1)) = P(dany) < don,,
which is a contradiction. Consequently, we deduce
don < doy_1 = M(x24, X24-1), Y € N. (10)

Similarly we have

dop+1 < doy = M(Xx20, X2n41), V1 € N. (11)
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It follows from (10) and (11) that
di’l+l S dn/ Vn € N/

which means that the sequence {d, },cN is nonincreasing and bounded. So, there exists ¥ > 0 with

lim, e d, = r. Suppose that r > 0. It follows from (7), (10), € ®3, s > 1, and Lemma 2.7 that

$3r = lim sup s3dy, < lim sup Y(M(x2,, x2,-1)) = limsup ¢(dpy—1) < limsupdy,—1 =7,

n—oo n—oo n—o00 n—oo

which is inconsistent. Hence r = 0, that is, (6) holds.
In order to prove that {y, },en is a Cauchy sequence, we need only to show that {y2, }nen is a Cauchy

sequence. Suppose that {y2, }nen is not a Cauchy sequence. It follows that there exist ¢ > 0 and two

subsequences {Y (k) tkeN and {2, (k) brew Of {y2n }nen such that
2n(k) > 2m(k) > 2k, d(yZm(k),yzn(k)) >¢ VkeN, (12)
where 2n(k) is the smallest index satisfying (12). It follows that
A(Yom(ky Yan(t)—2) < & Vk € N. (13)
Taking advantage of (12), (13), and the triangle inequality, we get

e < d(Yam(e) Yon(k)) < S4Wam(ey Yan(e—2) + 5 AYan(e)—2: You(k)—1) + 5°AYan(k) -1, Yan(e))

(14)
< se + Sden(k)—Z + SZdZI’l(k)—ll Vk (S~ IN.
Letting k — oo in (14), we have
£ < lirlfl sup d(Youm(k), Yon(k)) < S€- (15)
—00
Moreover,
A(Yom(k), Yonk)) < SAYom(k), Yom(k)+1) + 54 (Yam(x)+1, Yank))s 16
A(Yom(k)+1- Yon(k)) < AWamk)+1, Yom)) + 54 Yomk), Yonk))s
putting k — oo in (16) and using (6) and (15), we deduce
€ .
S < limsup d (Yo (k) +1, Yon(k)) < s%€. (17)
k—o0
Similarly, we can show that
€ .
S < lim sup d(You(k), Yan(e—1) < 5°€ (18)

k—o0
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and

€ . 3

2 < limsup d(Yau(k)+1, Y2n(k)-1) < 57¢ (19)

k—o0

So by (2) and connectivity of G, taking the limit supremum as k — 00 in M (X (x), X2n(k)—1) and using
(6), (15), (17), (18) and (19), we gain

lim sup M (X2, (k) Xon(k)—1) = lim sup max{d (Yo (i), Yon)-1)r & Yom) Yam(e)+1), 3 Yon(e) -1 Yon(k) )

k—oc0

k—oo

1

?S(d(yZm(k)/yZn(k)) + d(Y2mk)+1, Y2n()-1))/

1

E(d(yZm(k)ryZn(k)fl) + d(Yom(k)r Yom(x)+1))s
d(y2n(k)—11y2n(k))

1+ d(Yom(k)+1- Yon(k)
L+ d(Yomc) 1 Yan)—1) + AWom) Yon(x))

1+ s(d(Yomk), Yam(x)+1) + AYank) -1, Y2n(k))
L+ d(Yom) 1 Yan)—1) + AWom) Yon(k))

L+ s(d(Yomk), Yon(e)-1) T dYam(k)+1, Yon(x))

L+ d(Yom(ky Yom() +1)

] A(Yom(k)r Yam(k)+1)s

)d(yZm(k)/ y2m(k)+1)/

)d(yZn(k)—lr yZn(k))/

d n\k)—1rJzn ’
14 d(Yam(k)s Yan(e)-1) (Yan(k)-1, Yan(x))

(14 dWam@)+1, Yan(o-1) + AYame), Yan(e)))

(L + 5@t Yonty 1) + AWy 1, Yaury)) 2 V28 Yam(iy 1)
d(yZm(k)—H/y2n(k)—1)d(y2m(k)/yZn(k))

(1 + s(d(Yomk), Yan(k)—1) + AY2m(k)+1, Yon(r)

(1+ d(Yom@)+1, Yone-1) + AYom(k) Yanir)))?

d n —17 n
(1 + s(d(Wamk) Yamy+1) + AW2n) =1, Yonk))))? W2uii)-1: Yantt))
AYom(k)+1 Yon(k)—1)4 Y2m(k)r Yon(k))
(1 + s(d(Wam(x) Yam(m)+1) + AY2ne) =1, Yank))))?

d(]/Zn(k)—lr Yon(k) )}t

1 1
< max{s, 2—5(55 +5%), 2s%} = s%.

2

Hence, by Lemma 2.7, we obtain

£ . .
53(;) < 2 lim sup d (Yo () +1, Yan(ey) = $° Timsup d (T k), SXon () —1)

k—o0 k—o0

< Tim sup (M (Xop(k), Xan(i)-1)) < P(s%€) < %,

k—oc0

)))2d(y2m(k)/y2m(k)+l)/

which is a contradiction. So {y,}»en is a Cauchy sequence. Assume that A(X) is complete. Observe

that {y2, }nen is a Cauchy sequence in A(X). Consequently there exists z € A(X) and v € X with

limy, 0 Yo = z = Av. It is easy to see

zZ= Zimn%ooyn = limy e Tx2y = limn%ooBXZn—s—l = liMy 400SX0n—1 = liMy 00 AX2y.

(20)
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Suppose that Tv # z. By (iii), (2) and (20), there exists a subsequence {y2,.} of {y2,} such that

, %d(z, Tv),0,
1+4sd(Tv,z)

14 s(d(z, Tv) + limsup; ., d(BxXan,+1, SX2n,41))

(1+slimsup; , . d(Tv, Sxop+1))?

(14 slimsup,_, . d(Tv, Sx24,11))?

1
lim sup M(v, x2,,,+1) < max{0,d(z, Tv),0, —Ssd(TU,z)

i—so0 2

d(z,To),
(21)

0,0, d(z,Tv),0}

=d(Tv,z),

which together with (1), (20), ¢ € ®3, s > 1, and Lemma 2.7 give that

szd(Tv,z) < $%lim supd(Tv, Yon,42) = s lim sup d(Tv, Sxop,41)
i—00 i—00

(22)
< lim sup (M(v, X25,41)) < $(d(T0,2)) < d(Tv,z),

1—00

which is impossible. Hence Tv = z = Av. It follows from T(X) C B(X) and S(X) C A(X) that there
exists a point w € X with z = Bw = Tv. Suppose that Sw # z. In light of (2), (20) and (iii), we have

1
lim sup M(x2,,, w) < max{0,0,d(z, Sw), Esd(z, Sw),0,0,0,

1—00
1+sli d(Tx, S
ts %msupHoo (Txa, w)d(z,Sw),d(z, Sw),
1+ slimsup, . d(Tx2,, Sw) (23)
0 (1+sd(z, Sw))?
" (1+s(limsup;_,, d(Axap, Tx2n,) +d(z, Sw)))

=d(z,Sw),

5d(z,Sw)}

which together with (1), ¢ € ®3,s > 1, and Lemma 2.7 yield

s%d(z, Sw) < s> limsup d(yzy, +1, Sw) = s° lim sup d(Txz,,, Sw)

1—00 1—00 (24)
< limsup P(M(x2n,w)) < ¢p(d(z, Sw)) < d(z, Sw),

which is inconsistent, so Sw = z. Because {A, T} and {B, S} are weakly compatible, Az = ATv = TAv =

Tz and Bz = BSw = SBw = Sz hold. Suppose that Tz # Sz. By (iii) and z = Av = Tv = Sw = Bw, we

deduce (Tv,y,,) € E(G) or (v, Sw) € E(G). Note that the connectivity of G implies (Tv, Sw) € E(G),

ie., (z,z) € E(G). Then because T and S weakly preserve edges in E(G), we gain (Tz, Sz) € E(G). It
follows from (2), (1), ¢ € 3,5 > 1 and Lemma 2.7 that

M(z,z) = max{d(Tz, Sz),0,0, %d(Tz, Sz), %d(Tz, $z),0,0,0,0,0,0} = d(Tz, Sz)
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and
$°d(Tz,Sz) < w(M(z,z)) = ¢(d(Tz,Sz)) < d(Tz,Sz),
a contradiction, hence Az = Tz = Sz = Bz. Suppose that Tz # z. It follows from (iii) and (2) that
M(z,w) = max{d(Tz,z),0,0, %d(Tz,z), %d(Tz,z),O, 0,0,0,0,0} = d(Tz,2),
which together with (1), € ®3,s > 1 and Lemma 2.7 imply
$°d(Tz,z) = s°d(Tz, Sw) < v(M(z,w)) = ¢(d(Tz,z)) < d(Tz,z),

which is impossible and hence z = Tz = Sz = Az = Bz, that is , z is a common fixed point of A, B, S,
and T. Suppose that A, B, S, and T have another common fixed point u € X \ {z}. It follows from (iv),
(2), (1), p € 3,5 > 1 and Lemma 2.7 that

M(u,2) = max{d(u, z),0,0, %d(u,z), %d(u,z),o, 0,0,0,0,0} = d(u,z)

and
$°d(u,z) = s°d(Tu,Sz) < p(M(u,z)) = ¢(d(u,z)) < d(u,z),

which is a contradiction and hence z is a unique common fixed point of A, B, S, and T in X if A(X) is
complete.
Similarly we conclude that A, B, S, and T have a unique common fixed point in X if one of B(X), S(X)

and T(X) is complete. This completes the proof. O
Utilizing Theorem 3.1, Lemma 2.8, and Remark 2.9, we get the following result.

Theorem 3.2. Let A, B, S and T be self mappings in a b-metric space (X, d) endowed with a graph G. Suppose
that mappings A, B, S, T satisfy (5), { A, T} and { B, S} are weakly compatible, T(X) C B(X) and S(X) C A(X),
and one of A(X), B(X), S(X) and T(X) is complete. If the conditions (i), (ii) and (iii) hold, A, B, S and T have

a unique common fixed point in X.

In the Theorem 3.2, the arguments of the functions ¢(t) and ¥(t) on the right-hand side of the
contraction condition are identical. Considering the case where the arguments are different, we obtain

the following theorem.

Theorem 3.3. Let (X, d) be a b—metric space endowed with a graph G and the mappings A, B, S, T: X — X
satisfy (, ¢)—weakly contractive condition. Suppose that {A, T} and {B, S} are weakly compatible, T(X) C
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B(X) and S(X) C A(X) and one of A(X), B(X), S(X) and T(X) is complete. If the conditions (i), (ii) and
(iii) hold, then A, B, S and T have a unique common fixed point in X.

Proof. Because of C, # @, we choose an xy € C, and keep it fixed. Since T(X) C B(X) and S(X) C
A(X), there exists a sequence {y, } such that yp,11 = Bxo,+1 = Tx2n, Yont+2 = AXopyo = Sxopi1, 1 €N

and (xo,x1) € E(G). Putd, = d(yu, yn+1) for all n € N. Now we prove (6). Similar to Theorem 3.1, we

have (x,,x,11) € E(G), (Sx2u—1, Tx2n) € E(G) and (Tx24, Sx2,41) € E(G). Using (3), (2) and (4), we

derive

¥(dan) = Y(s°d(yan, Yont1)) = Y(°d(Txon, Sx2n—1)) < P(M(x2n, X20-1)) — @(N(x2n, X20-1))  (25)
and M(x2,, x2,—1) satisfies (8),

N (x2n, X2n—1) = max{d(Yan, Y2n—1), A(Y2n, Yon+1), A(Y2n-1,Y2n), d(Y2n+1, Yon),

1

%(d(yZn/yZn) +d(Yon+1,Y2n-1)),
14+ d(yan+1, Yon—1) + d(Yon, Yon)

14 s(d(y2n, Yont1) + d(Yon—1,Y2n)

1 + d(]/an ]/2n+1)

14 d(yan, Y2n-1)

= max{da,_1,don}-

) d(]/Zn—ll yZI’l)/

d(Yon—1,Y2n) }

Suppose that dp,,—1 < dan, for some nyp € IN. It follows (9) that M(xon,, X2n,—1) = day, and

N (X2, X2ny—1) = dan,- By means of (25), s > 1, ¢ € &, ¢ € P,, we conclude

P(dony) < P(s°dany) < P(M(x2n0, X2n-1)) — P(N (X2, X2n0-1)) = P(dony) — @(dony),
which implies ¢(d2y,,) = 0. That is dp,, = 0. Similar to the proof of Theorem 3.1, we obtain
dﬂ—‘rl S dn/ Vn € N/

which means that the sequence {d, },cN is nonincreasing and bounded. So, there exists ¥ > 0 with

limy, e d, = r. Suppose that r > 0. It follows from (25), € @1, ¢ € 3, s > 1 that

¥(r) < (s°r) = limsup ¢(s°da,) < limsup ¢(M(x2n, X2u-1)) — limgfq)(N(xz,l,xz”,l))

n—00 n—oo

= limsup ¢(day—1) — liﬂglfq)(dzn—l) =9(r) — o(r),

n—oo

which explains ¢(r) = 0. Hence r = 0, that is, (6) holds.
In order to prove that {y, },en is a Cauchy sequence, we need only to show that {y2, }nen is a Cauchy
sequence. Suppose that {y2, }nen is not a Cauchy sequence. It follows that there exist ¢ > 0 and two

subsequences {Y2y(x) }ken and {Yon(x) bken Of {¥2u}uen such that (12) holds. Similar to the proof of
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Theorem 3.1, we can obtain

e < liminfd(yam k), Yan(r)) < H00Sup d(Yam k), Yan(k)) < se,

k—o0

(¢}

5 S Hminfd (Yo )11, Yan)) < Hmsup d (Yo 11 Yan(r)) < s%¢,
—® k—o0
(26)
< Wminf d(Yop(x), Yan(ey-1) < Umsup d(amiey, Yany 1) < s,

k—00

nwilm ©n

S .. .
o S Uminfd (Yo k)11, Yan(y 1) < HMSup (Yo 11, Yan(r) 1) < s’e.
— k—c0

So by (2), (4) and connectivity of G, taking the limit supremum as k — oo in M (x2m(k), xz,,l(k),l), taking
the limit infimum as k — oo in N(X2,,(k), X2n(k)—1) and using (6) and (26), we gain

< limian(xM(k),xZn(k)_l) < 528. (27)

li M , ) < s%,
im sup M(Xom(k), Xon(k)-1) < 5°€ mIr

€
k— 00 5

Hence, by (3), we obtain

€ . .
P(s%) = 1/)(53(§)) < Timsup Y (s°d (Yo (k)1 Yon(r))) = limsup (s> (Txop(k), SXon(i)-1))

k—o0 k—o0

< lim sup (M (xXpm(k), Xan(k)—1)) — Hminf @(N (o), X2n(k)-1))

k— o0 k—o0

< (s%) — lilggf (N (X2m (k) Xon(k)—1) )

which implies

lim infqo(N(me(k),xzn(k)—l)) =0,

k—o0
a contradiction to (27). So {yx }nen is a Cauchy sequence.
Assume that A(X) is complete. Observe that {y2, }nen is a Cauchy sequence in A(X). Consequently
there exists z € A(X) and v € X with lim,_, Y2, = z = Av. It is easy to get (20). Suppose that Tv # z.
By (iii), (2), (4) and (20), there exists a subsequence {y2y, } of {y2,} such that (21) and

liminf N (v, x5, 41) < max{0,d(z,Tv),0,sd(Tv,z), %d(TU,Z),0,0} =sd(Tv,z),
1— 00
which together with (3), P € &1, ¢ € P, give

¥(d(Tv,z)) < ¢(s*d(To,z)) < lim sup (s°d(To, yan,+2)) = limsup ¢ (s*d(Tv, Sxz4,41))

i—oc0 i—oc0

< limsup (M(v, x29,4+1)) — liminf (N (v, x2p,41)) < P(d(Tv,z)) — @(sd(Tv,z)),

i—o0 1—00

which implies ¢(sd(Tv,z)) = 0. Hence Tv = z = Av. It follows from T(X) C B(X) and S(X) C A(X)
that there exists a point w € X with z = Bw = Tv. Suppose that Sw # z. In light of (2), (4), (20) and
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(iii), we have (23) and

1
liminf N (x2,, w) < max{0,0,d(z, Sw),sd(z, Sw), Ed(z, Sw),d(Bw, Sw),

1—00
L inf 1+ sd(z, Sw)
iseo 14 s(d(Axan,, Txon,) +d(z, Sw))

= sd(z,Sw),

d(z,Sw)}

which together with (3), ¥ € &1, ¢ € P, yield

P(d(z,Sw)) < ¢¥(s*d(z, Sw)) < limsup P(s°d(yau,+1,Sw)) = limsup (s°d(Txz,,, Sw))

n;i—oo n;j—00

< limsup P(M(x2,,;, w)) — liminf ¢(N(x2,, w)) < ¢(d(z, Sw)) — @(sd(z, Sw)),

nj—»00 nj—o0

which implies ¢(sd(z, Sw)) = 0, so Sw = z. Because {A, T} and {B, S} are weakly compatible, Az =
ATv = TAv = Tz and Bz = BSw = SBw = Sz hold. Suppose that Tz # Sz. By (iii) and z = Av = Tv =

Sw = Bw, we deduce (Tv,y,,) € E(G) or (yn,Sw) € E(G). Note that the connectivity of G implies

(Tv,Sw) € E(G), i.e., (z,z) € E(G). Then because T and S weakly preserve edges in E(G), we gain

(Tz,Sz) € E(G). It follows from (2), (4), (3), ¢ € ®; and ¢ € P, that

p(d(Tz,Sz)) < p(s°d(Tz,52)) < Y(M(z,2)) — ¢(N(z,2)) = Y(d(Tz Sz)) — ¢(d(Tz5z)),

which explains ¢(d(Tz,Sz)) = 0, hence Az = Tz = Sz = Bz.
Suppose that Tz # z. It follows from (iii), (2), (4) and (3) that

p(d(Tz,2)) < P(s°d(Tz,2)) = p(s°d(Tz, Sw)) < P(M(z,w)) — 9(N(z,w)) = P(d(Tz 2)) — ¢(d(Tz,2)),

which implies ¢(d(Tz,z)) = 0 and hence z = Tz = Sz = Az = Bz, that is , z is a common fixed point

of A, B,S,and T in X.

Suppose that A, B, S, and T have another common fixed point u € X \ {z}. It follows from (2), (4), (3),

¢ € @ and ¢ € P, that

p(d(u,2)) < p(°d(u,2)) = p(s°d(Tu, Sz)) < Pp(M(1,2)) — ¢(N(1,2)) = (d(1,2)) — ¢(d(u,2)),

which explains ¢(d(u,z)) = 0. Hence u = z. So z is a unique common fixed point of A, B, S, and T.

Similarly we conclude that A, B, S, and T have a unique common fixed point in X if one of B(X), S(X)

and T(X) is complete. This completes the proof.

O

Example 3.4. Let X = R and defined : X x X — R by d(x,y) = |x —y|? forall x,y € X. Then (X, d) is
a b—metric space with the coefficient s = 2. Let G be a digraph such that V(G) = X and E(G) = {(x,x) : x €
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X}U{(0, =), (0, ;&E) meR,n=0,1,2,---}. Let A, B, S and T:X — X be defined by

0, VxeR"\{%&}
Ax =/x, Bx = 17x, Tx =0, VxeX, Sx =

1 — 1
60 X = 16

Now we use Theorem 3.1 to prove the existence of common fixed points of A,B,S, and T in X. Obuviously,
T(X) C B(X) and S(X) C A(X). {A, T}and (B, S} are weakly compatible. 0 € C,.

If (x,y) € E(G), then Tx = Ty = 0, Sy and Sx is equal to 0 or = and so (Tx, Sy) € E(G), (Sx,Ty) € E(G).
For (Ax,By) € E(G) and (Bx,Ay) € E(G), we have (x,y) = (0,0), (172, 1;2) (0,%16) and
(e 00, 4Z5c) and (4252,0). 50 (x,) € E(C).

Define ¢ : RT™ — R* by

Y v e [1,40),
P =9
5, Vte[o,1)
In order to verify (1), we consider two cases as follows:

Case 1. x € R,y € R\ {}. It is clear that

$3d(Tx, Sy) = 0 < p(M(x,y)).

Case 2. x € RY, y = &. We have

$3d(Tx,Sy) =80 — i ?= ~< < ¢(d(By, Sy)) =

= < < p(M(x,y)).

N\P—‘

That is, (1) holds. Hence there is a sequence, {0}, satisfying the conditions of Theorem 3.1. So it follows from
Theorem 3.1 that A, B, S, and T possess a unique common fixed point 0 € X.

Example 3.5. Let X = [, +00) and define d : X x X — RT by d(x,y) = |x —y|? for all x,y € X.
Then (X,d) is a b—metric space with the coefficient s = 2. Let G be a digraph such that V(G) = X and

E(G) = {(x,x), (%, %) cx,y € X, k,1,m,n € R}. Let A, B, S and T:X — X be defined by

Tx = — szi, Vx € X.

X
Ax = 3’ 16’ 18

g, Bx =
Now we use Theorem3.3 to prove the existence of common fixed points of A,B,S, and T in X. Obviously,
T(X) € B(X) and S(X) C A(X). {A, T}and {B, S} are weakly compatible. 0 € C,,.

n ql on.3l n ql on.3l
If (x,y) € E(G), we get (Tx, Sy) = (x,x) or (2%, 230 and (x,Ty) = (x,x) or (3%, Z%). Then
(Tx,Sy) € E(G), (Sx,Ty) € E(G).

For (Ax, By) € E(G) and (Bx, Ay) € E(G), we have (x,y) = (x,x) or (126';,3118,(, 126';3118,{) So (x,vy) € E(G).
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Define ¢ : R — Rt and ¢ : Rt — R™" by

p(t) =t VteR"' p(t) =

In order to verify (3), for all x,y € X we consider:

3 g Y 1 2 .2
lp(s d(Tx’ Sy)) - 8|16 18’ — 32 max{x /]/ }’
x X 5
P(M(x,y)) > max{d(Ax, Tx),d(By, Sy)} = max{|3 — 1% |2 = L} = (05) max{x?, 1},
x X 5
N(x,y) > max{d(Ax, Tx),d(By, Sy)} = max{|5 — 2 |5 = T} > (1) max{x%, %},

P(N(xy)) <2 FFmto < (22 max(a?, ),

Hence,

1 5 1 /5
P(SA(Tx, Sy)) < 35 max(2,7} < (o Pmax{ad P} — 5 - ()

< p(M(x,y)) — ¢(N(x,y))

zmax{x?,y*}

That is, (3) holds. So it follows from Theorem3.3 that A, B, S, and T in X possess a unique common fixed point
0eX
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