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Abstract

In this paper, we study the conditions for the existence of a unique common fixed point of

generalized (ψ, φ)− contractive mappings in the framework of b−metric spaces endowed with a

graph. We give some examples to support our results.
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1. Introduction

Fixed point theory is widely used in mathematics and physics. To advance it, scholars have integrated

it with graph theory. However, directed graphs complicate the structure of metric spaces (and b-metric

spaces) endowed with them, making fixed point research challenging. Extending existing fixed point

theorems and iterative algorithms to these spaces is thus theoretically significant.

In 1906, Frechet [4] first introduced the concept of metric spaces. Czerwik [3] generalized this to b-

metric spaces and proved the Banach contraction mapping principle in this type spaces. Some fixed

point results for b-metric spaces have also been extensively studied [1,13]. In 2007, Jachymski and

Jozwik [5] incorporated graph structures into metric spaces and generalized partial ordered metric

space results. Subsequent work (e.g., Bojor [2], Shukla [11] et al., Nantaporn [9] et al., Sushanta [12])

explored fixed points in graph metric spaces and graphb-metric spaces, expanding the theory [6].

Building on result of Liu [8], this paper investigates the existence and uniqueness of common fixed

points for ψ-contraction and (ψ, φ)-contraction in graph b-metric spaces.

2. Preliminaries

Firstly, we recall some definitions and lemmas in b−metric space.

Definition 2.1 ([3]). Let X be a nonempty set and s ≥ 1 be a given real number. A mapping d : X × X →

[0,+∞) is said to be a b-metric if and only if, for all x, y, z ∈ X, the following conditions are satisfied:
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(i) d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y, x),

(iii) d(x, y) ≤ s(d(x, z) + d(y, z)).

It is obvious that the class of b−metric spaces is effectively larger than that of metric spaces since any

metric space is a b−metric space with s = 1.

Definition 2.2. Let (X, d) be a b−metric space with parameter s ≥ 1 and {xn} be a sequence in X. Then

(i) {xn} converges to x ∈ X if and only if there exists x ∈ X such that d(xn, x) → 0 as n → ∞. We denote

this by limn→∞ xn = x or xn → x(n → ∞).

(ii) {xn} is a Cauchy sequence if and only if d(xn, xm) → 0 when n, m → ∞.

(iii) (X, d) is complete if and only if every Cauchy sequence in X is convergent.

Each convergent sequence in a b−metric space has a unique limit and it is also a Cauchy sequence.

Moreover, in general, a b−metric is not continuous.

Definition 2.3 ([7]). A pair of self mappings f and g defined on a nonempty set X are said to be weakly

compatible if for all t ∈ X the equality f t = gt implies f gt = g f t.

We next review some basic notions in graph theory.

Let (X, d) be a b−metric space. We assume that G is a reflexive digraph where the set V(G) of its

vertices coincides with X and the set E(G) of its edges contains no parallel edges. So we can identify

G with the pair (V(G), E(G)). G may be considered as a weighted graph by assigning to each edge the

distance between its vertices. By G−1 we denote the graph obtained from G by reversing the direction

of edges, i.e., E(G−1) = {(x, y) ∈ X × X : (y, x) ∈ E(G)}. Let G̃ denote the undirected graph obtained

from G by ignoring the direction of edges, and E(G̃) = E(G)
⋃

E(G−1). If x, y are vertices of the

digraph G, then a path in G from x to y of length n(n ∈ N) is a sequence {xi}n
i=0 of n + 1 vertices such

that x0 = x, xn = y and (xi−1, xi) ∈ E(G) for i = 1, 2, · · ·, n. A graph G is connected if there is a path

between any two vertices of G. G is weakly connected if G̃ is connected. The graph G0 is defined by

E(G0) = X × X.

Definition 2.4. Let A, B, S, and T be self mappings in a b−metric space (X, d) endowed with a graph G. T

and S weakly preserve edges in E(G̃), if (x, y) ∈ E(G̃) implies (Tx, Sy) ∈ E(G̃) and (Sx, Ty) ∈ E(G̃). A and

B weakly preserve inverse edges in E(G̃), if (Ax, By) ∈ E(G̃) and (Bx, Ay) ∈ E(G̃) imply (x, y) ∈ E(G̃).

Throughout this paper,

Φ1 = {ψ : ψ : R+ → R+ is continuous and nondecreasing, and ψ(t) = 0 if and only if t = 0},

Φ2 = {φ : φ : R+ → R+ is lower semi-continuous and nonincreasing, and φ(t) = 0 if and only if

t = 0},
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Φ3 = {ψ : ψ : R+ → R+ is upper semi-continuous, and limn→∞ an = 0 for each sequence {an}n∈N ⊂

R+ with an+1 ≤ ψ(an), ∀n ∈ N}

Definition 2.5. Let A, B, S, and T be self mappings in a b−metric space (X, d) endowed with a graph G. The

contractive condition is called a ψ−weakly contractive condition if the following inequation holds:

s3d(Tx, Sy) ≤ ψ(M(x, y)), (1)

where

M(x, y) = max{d(Ax, By), d(Ax, Tx), d(By, Sy),
1
2s
(d(Ax, Sy) + d(Tx, By)),

1
2
(d(Ax, By) + d(Ax, Tx)),

d(By, Sy)
1 + d(Tx, Sy)

d(Ax, Tx),

1 + d(Tx, By) + d(Ax, Sy)
1 + s(d(Ax, Tx) + d(By, Sy))

d(Ax, Tx),

1 + d(Tx, By) + d(Ax, Sy)
1 + s(d(Ax, By) + d(Tx, Sy))

d(By, Sy),
1 + d(Ax, Tx)
1 + d(Ax, By)

d(By, Sy),

(1 + d(Tx, By) + d(Ax, Sy))2 + d(Tx, By)d(Ax, Sy)
(1 + s(d(Ax, By) + d(Tx, Sy)))2 d(Ax, Tx),

(1 + d(Tx, By) + d(Ax, Sy))2 + d(Tx, By)d(Ax, Sy)
(1 + s(d(Ax, Tx) + d(By, Sy)))2 d(By, Sy)},

(2)

for all x, y ∈ X with (x, y) ∈ E(G̃), ψ ∈ Φ3.

Definition 2.6. Let A, B, S, and T be self mappings in a b−metric space (X, d) endowed with a graph G. The

contractive condition is called a (ψ, φ)−weakly contractive condition if the following inequation holds:

ψ(s3d(Tx, Sy)) ≤ ψ(M(x, y))− φ(N(x, y)), (3)

where M(x, y) satisfies (2) and

N(x, y) = max{d(Ax, By), d(Ax, Tx), d(By, Sy), d(Tx, Sy),
1
2s
(d(Ax, Sy) + d(Tx, By)),

1 + d(Tx, By) + d(Ax, Sy)
1 + s(d(Ax, Tx) + d(By, Sy))

d(By, Sy),
1 + d(Ax, Tx)
1 + d(Ax, By)

d(By, Sy)},
(4)

for all x, y ∈ X with (x, y) ∈ E(G̃), ψ ∈ Φ1, φ ∈ Φ2 and φ(t) ≤ ψ(t).

Lemma 2.7 ([10]). Let ψ ∈ Φ3. Then ψ(0) = 0 and ψ(t) < t for all t > 0.

Lemma 2.8 ([8]). Let A, B, S, and T be self mappings in a b−metric space (X, d) endowed with a graph G

satisfying

ψ(s3d(Tx, Sy)) ≤ ψ(M(x, y))− φ(M(x, y)), ∀x, y ∈ X, (5)
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where (ψ, φ) ∈ Φ1 × Φ2. Assume that I : R+ → R+ is the identity mapping and

ψ1(t) = (ψ + I)−1(ψ + I − φ)(t), ∀t ∈ R+.

Then ψ1 ∈ Φ3 and

s3d(Tx, Sy) ≤ ψ1(M(x, y)), ∀x, y ∈ X.

Remark 2.9. It follows from Lemma 2.8 that (5) relative to four mappings A, B, S and T implies (1) relative to

four mappings A, B, S and T.

3. Main Results

In this section, we assume that (X, d) is a b−metric space with the coefficient s ≥ 1, and G is a reflexive

digraph such that V(G) = X and G has no parallel edges. Let A, B, S, T: X → X be such that

T(X) ⊆ B(X), S(X) ⊆ A(X). If x0 ∈ X is arbitrary, then there exists elements x1, x2 ∈ X such that

Bx1 = Tx0, Ax2 = Sx1, since T(X) ⊆ B(X) and S(X) ⊆ A(X). Proceeding in this way, we can construct

a sequence {yn} such that y2n+1 = Bx2n+1 = Tx2n, y2n+2 = Ax2n+2 = Sx2n+1, n ∈ N. By Cn we denote

the set of all elements x0 of X such that (x0, x1) ∈ E(G̃).

Theorem 3.1. Let (X, d) be a b−metric space endowed with a graph G and the mappings A, B, S, T: X → X

satisfy ψ−weakly contractive condition. {A, T} and {B, S} are weakly compatible. T(X) ⊆ B(X) and S(X) ⊆

A(X). One of A(X), B(X), S(X) and T(X) is complete. If the following conditions hold:

(i) T and S weakly preserve edges in E(G̃), A and B weakly preserve inverse edges in E(G̃),

(ii) Cn ̸= ∅,

(iii) If {yn} is a sequence in X such that yn → z and one of z = Ax, z = Bx, z = Sx, z = Tx is satisfied,

(Tx2n, Sx2n+1) ∈ E(G̃), for all n ∈ N, then there exists a subsequence {yni} of {yn} such that

(1) (Tx, yni) ∈ E(G̃) and (yni , Sx) ∈ E(G̃),

(2) (Tz, Sx) ∈ E(G̃),

(iv) if x, y are common fixed points of A, B, S and T in X, then (x, y) ∈ E(G̃).

Then A, B, S and T have a unique common fixed point in X.

Proof. Because of Cn ̸= ∅, we choose an x0 ∈ Cn and keep it fixed. Since T(X) ⊆ B(X) and S(X) ⊆

A(X), there exists a sequence {yn} such that y2n+1 = Bx2n+1 = Tx2n, y2n+2 = Ax2n+2 = Sx2n+1, n ∈ N

and (x0, x1) ∈ E(G̃). Put dn = d(yn, yn+1) for all n ∈ N. Now we prove

lim
n→∞

dn = 0. (6)
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Because of (x0, x1) ∈ E(G̃) and T and S weakly preserve edges in E(G̃), we gain (Tx0, Sx1) ∈ E(G̃),

i.e.,(Bx1, Ax2) ∈ E(G̃). And since A and B weakly preserve inverse edges in E(G̃), we get (x1, x2) ∈

E(G̃). In general, (xn, xn+1) ∈ E(G̃), (Sx2n−1, Tx2n) ∈ E(G̃) and (Tx2n, Sx2n+1) ∈ E(G̃). Using (1) and

(2), we derive

s3d2n = s3d(y2n, y2n+1) = s3d(Tx2n, Sx2n−1) ≤ ψ(M(x2n, x2n−1)) (7)

and

M(x2n, x2n−1) = max{d2n−1, d2n, d2n−1,
1
2s
(d(y2n, y2n) + d(y2n+1, y2n−1)),

1
2
(d2n−1 + d2n),

d2n−1

1 + d2n
d2n,

1 + d(y2n+1, y2n−1) + d(y2n, y2n)

1 + s(d2n + d2n−1)
d2n,

1 + d(y2n+1, y2n−1) + d(y2n, y2n)

1 + s(d2n−1 + d2n)
d2n−1,

1 + d2n

1 + d2n−1
d2n−1,

(1 + d(y2n+1, y2n−1) + d(y2n, y2n))2 + d(y2n+1, y2n−1)d(y2n, y2n)

(1 + s(d2n−1 + d2n))2 d2n,

(1 + d(y2n+1, y2n−1) + d(y2n, y2n))2 + d(y2n+1, y2n−1)d(y2n, y2n)

(1 + s(d2n + d2n−1))2 d2n−1}

= max{d2n−1, d2n,
1 + d2n

1 + d2n−1
d2n−1}

(8)

Suppose that d2n0−1 < d2n0 for some n0 ∈ N. It follows that

d2n0(1 + d2n0−1) = d2n0 + d2n0 d2n0−1 > d2n0−1 + d2n0 d2n0−1 = d2n0−1(1 + d2n0),

that is,

d2n0 > d2n0−1
1 + d2n0

1 + d2n0−1
, (9)

which implies M(x2n0 , x2n0−1) = d2n0 . By means of (7), s ≥ 1, ψ ∈ Φ3, and Lemma 2.7, we conclude

s3d2n0 ≤ ψ(M(x2n0 , x2n0−1)) = ψ(d2n0) < d2n0 ,

which is a contradiction. Consequently, we deduce

d2n ≤ d2n−1 = M(x2n, x2n−1), ∀n ∈ N. (10)

Similarly we have

d2n+1 ≤ d2n = M(x2n, x2n+1), ∀n ∈ N. (11)
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It follows from (10) and (11) that

dn+1 ≤ dn, ∀n ∈ N,

which means that the sequence {dn}n∈N is nonincreasing and bounded. So, there exists r ≥ 0 with

limn→∞ dn = r. Suppose that r > 0. It follows from (7), (10), ψ ∈ Φ3, s ≥ 1, and Lemma 2.7 that

s3r = lim sup
n→∞

s3d2n ≤ lim sup
n→∞

ψ(M(x2n, x2n−1)) = lim sup
n→∞

ψ(d2n−1) < lim sup
n→∞

d2n−1 = r,

which is inconsistent. Hence r = 0, that is, (6) holds.

In order to prove that {yn}n∈N is a Cauchy sequence, we need only to show that {y2n}n∈N is a Cauchy

sequence. Suppose that {y2n}n∈N is not a Cauchy sequence. It follows that there exist ε > 0 and two

subsequences {y2m(k)}k∈N and {y2n(k)}k∈N of {y2n}n∈N such that

2n(k) > 2m(k) > 2k, d(y2m(k), y2n(k)) ≥ ε, ∀k ∈ N, (12)

where 2n(k) is the smallest index satisfying (12). It follows that

d(y2m(k), y2n(k)−2) < ε, ∀k ∈ N. (13)

Taking advantage of (12), (13), and the triangle inequality, we get

ε ≤ d(y2m(k), y2n(k)) ≤ sd(y2m(k), y2n(k)−2) + s2d(y2n(k)−2, y2n(k)−1) + s2d(y2n(k)−1, y2n(k))

< sε + s2d2n(k)−2 + s2d2n(k)−1, ∀k ∈ N.
(14)

Letting k → ∞ in (14), we have

ε ≤ lim sup
k→∞

d(y2m(k), y2n(k)) ≤ sε. (15)

Moreover,

d(y2m(k), y2n(k)) ≤ sd(y2m(k), y2m(k)+1) + sd(y2m(k)+1, y2n(k)),

d(y2m(k)+1, y2n(k)) ≤ sd(y2m(k)+1, y2m(k)) + sd(y2m(k), y2n(k)),
(16)

putting k → ∞ in (16) and using (6) and (15), we deduce

ε

s
≤ lim sup

k→∞
d(y2m(k)+1, y2n(k)) ≤ s2ε. (17)

Similarly, we can show that

ε

s
≤ lim sup

k→∞
d(y2m(k), y2n(k)−1) ≤ s2ε (18)
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and

ε

s2 ≤ lim sup
k→∞

d(y2m(k)+1, y2n(k)−1) ≤ s3ε. (19)

So by (2) and connectivity of G, taking the limit supremum as k → ∞ in M(x2m(k), x2n(k)−1) and using

(6), (15), (17), (18) and (19), we gain

lim sup
k→∞

M(x2m(k), x2n(k)−1) = lim sup
k→∞

max{d(y2m(k), y2n(k)−1), d(y2m(k), y2m(k)+1), d(y2n(k)−1, y2n(k)),

1
2s
(d(y2m(k), y2n(k)) + d(y2m(k)+1, y2n(k)−1)),

1
2
(d(y2m(k), y2n(k)−1) + d(y2m(k), y2m(k)+1)),

d(y2n(k)−1, y2n(k))

1 + d(y2m(k)+1, y2n(k))
d(y2m(k), y2m(k)+1),

1 + d(y2m(k)+1, y2n(k)−1) + d(y2m(k), y2n(k))

1 + s(d(y2m(k), y2m(k)+1) + d(y2n(k)−1, y2n(k)))
d(y2m(k), y2m(k)+1),

1 + d(y2m(k)+1, y2n(k)−1) + d(y2m(k), y2n(k))

1 + s(d(y2m(k), y2n(k)−1) + d(y2m(k)+1, y2n(k)))
d(y2n(k)−1, y2n(k)),

1 + d(y2m(k), y2m(k)+1)

1 + d(y2m(k), y2n(k)−1)
d(y2n(k)−1, y2n(k)),

(1 + d(y2m(k)+1, y2n(k)−1) + d(y2m(k), y2n(k)))
2

(1 + s(d(y2m(k), y2n(k)−1) + d(y2m(k)+1, y2n(k))))2 d(y2m(k), y2m(k)+1)

+
d(y2m(k)+1, y2n(k)−1)d(y2m(k), y2n(k))

(1 + s(d(y2m(k), y2n(k)−1) + d(y2m(k)+1, y2n(k))))2 d(y2m(k), y2m(k)+1),

(1 + d(y2m(k)+1, y2n(k)−1) + d(y2m(k), y2n(k)))
2

(1 + s(d(y2m(k), y2m(k)+1) + d(y2n(k)−1, y2n(k))))2 d(y2n(k)−1, y2n(k))

+
d(y2m(k)+1, y2n(k)−1)d(y2m(k), y2n(k))

(1 + s(d(y2m(k), y2m(k)+1) + d(y2n(k)−1, y2n(k))))2 d(y2n(k)−1, y2n(k))}

≤ max{s2ε,
1
2s
(sε + s3ε),

1
2

s2ε} = s2ε.

Hence, by Lemma 2.7, we obtain

s2ε = s3(
ε

s
) ≤ s3 lim sup

k→∞
d(y2m(k)+1, y2n(k)) = s3 lim sup

k→∞
d(Tx2m(k), Sx2n(k)−1)

≤ lim sup
k→∞

ψ(M(x2m(k), x2n(k)−1)) ≤ ψ(s2ε) < s2ε,

which is a contradiction. So {yn}n∈N is a Cauchy sequence. Assume that A(X) is complete. Observe

that {y2n}n∈N is a Cauchy sequence in A(X). Consequently there exists z ∈ A(X) and v ∈ X with

limn→∞ y2n = z = Av. It is easy to see

z = limn→∞yn = limn→∞Tx2n = limn→∞Bx2n+1 = limn→∞Sx2n−1 = limn→∞ Ax2n. (20)
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Suppose that Tv ̸= z. By (iii), (2) and (20), there exists a subsequence {y2ni} of {y2n} such that

lim sup
i→∞

M(v, x2ni+1) ≤ max{0, d(z, Tv), 0,
1
2s

sd(Tv, z),
1
2

d(z, Tv), 0,

1 + sd(Tv, z)
1 + s(d(z, Tv) + lim supi→∞ d(Bx2ni+1, Sx2ni+1))

d(z, Tv),

0, 0,
(1 + s lim supi→∞ d(Tv, Sx2ni+1))

2

(1 + s lim supi→∞ d(Tv, Sx2ni+1))2 d(z, Tv), 0}

= d(Tv, z),

(21)

which together with (1), (20), ψ ∈ Φ3, s ≥ 1, and Lemma 2.7 give that

s2d(Tv, z) ≤ s3 lim sup
i→∞

d(Tv, y2ni+2) = s3 lim sup
i→∞

d(Tv, Sx2ni+1)

≤ lim sup
i→∞

ψ(M(v, x2ni+1)) ≤ ψ(d(Tv, z)) < d(Tv, z),
(22)

which is impossible. Hence Tv = z = Av. It follows from T(X) ⊆ B(X) and S(X) ⊆ A(X) that there

exists a point w ∈ X with z = Bw = Tv. Suppose that Sw ̸= z. In light of (2), (20) and (iii), we have

lim sup
i→∞

M(x2ni , w) ≤ max{0, 0, d(z, Sw),
1
2s

sd(z, Sw), 0, 0, 0,

1 + s lim supi→∞ d(Tx2ni , Sw)

1 + s lim supi→∞ d(Tx2ni , Sw)
d(z, Sw), d(z, Sw),

0,
(1 + sd(z, Sw))2

(1 + s(lim supi→∞ d(Ax2ni , Tx2ni) + d(z, Sw)))2 d(z, Sw)}

= d(z, Sw),

(23)

which together with (1), ψ ∈ Φ3, s ≥ 1, and Lemma 2.7 yield

s2d(z, Sw) ≤ s3 lim sup
i→∞

d(y2ni+1, Sw) = s3 lim sup
i→∞

d(Tx2ni , Sw)

≤ lim sup
i→∞

ψ(M(x2ni , w)) ≤ ψ(d(z, Sw)) < d(z, Sw),
(24)

which is inconsistent, so Sw = z. Because {A, T} and {B, S} are weakly compatible, Az = ATv = TAv =

Tz and Bz = BSw = SBw = Sz hold. Suppose that Tz ̸= Sz. By (iii) and z = Av = Tv = Sw = Bw, we

deduce (Tv, yni) ∈ E(G̃) or (yni , Sw) ∈ E(G̃). Note that the connectivity of G implies (Tv, Sw) ∈ E(G̃),

i.e., (z, z) ∈ E(G̃). Then because T and S weakly preserve edges in E(G̃), we gain (Tz, Sz) ∈ E(G̃). It

follows from (2), (1), ψ ∈ Φ3, s ≥ 1 and Lemma 2.7 that

M(z, z) = max{d(Tz, Sz), 0, 0,
1
s

d(Tz, Sz),
1
2

d(Tz, Sz), 0, 0, 0, 0, 0, 0} = d(Tz, Sz)
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and

s3d(Tz, Sz) ≤ ψ(M(z, z)) = ψ(d(Tz, Sz)) < d(Tz, Sz),

a contradiction, hence Az = Tz = Sz = Bz. Suppose that Tz ̸= z. It follows from (iii) and (2) that

M(z, w) = max{d(Tz, z), 0, 0,
1
s

d(Tz, z),
1
2

d(Tz, z), 0, 0, 0, 0, 0, 0} = d(Tz, z),

which together with (1), ψ ∈ Φ3, s ≥ 1 and Lemma 2.7 imply

s3d(Tz, z) = s3d(Tz, Sw) ≤ ψ(M(z, w)) = ψ(d(Tz, z)) < d(Tz, z),

which is impossible and hence z = Tz = Sz = Az = Bz, that is , z is a common fixed point of A, B, S,

and T. Suppose that A, B, S, and T have another common fixed point u ∈ X \ {z}. It follows from (iv),

(2), (1), ψ ∈ Φ3, s ≥ 1 and Lemma 2.7 that

M(u, z) = max{d(u, z), 0, 0,
1
s

d(u, z),
1
2

d(u, z), 0, 0, 0, 0, 0, 0} = d(u, z)

and

s3d(u, z) = s3d(Tu, Sz) ≤ ψ(M(u, z)) = ψ(d(u, z)) < d(u, z),

which is a contradiction and hence z is a unique common fixed point of A, B, S, and T in X if A(X) is

complete.

Similarly we conclude that A, B, S, and T have a unique common fixed point in X if one of B(X), S(X)

and T(X) is complete. This completes the proof.

Utilizing Theorem 3.1, Lemma 2.8, and Remark 2.9, we get the following result.

Theorem 3.2. Let A, B, S and T be self mappings in a b-metric space (X, d) endowed with a graph G. Suppose

that mappings A, B, S, T satisfy (5), {A, T} and {B, S} are weakly compatible, T(X) ⊆ B(X) and S(X) ⊆ A(X),

and one of A(X), B(X), S(X) and T(X) is complete. If the conditions (i), (ii) and (iii) hold, A, B, S and T have

a unique common fixed point in X.

In the Theorem 3.2, the arguments of the functions φ(t) and ψ(t) on the right-hand side of the

contraction condition are identical. Considering the case where the arguments are different, we obtain

the following theorem.

Theorem 3.3. Let (X, d) be a b−metric space endowed with a graph G and the mappings A, B, S, T: X → X

satisfy (ψ, φ)−weakly contractive condition. Suppose that {A, T} and {B, S} are weakly compatible, T(X) ⊆
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B(X) and S(X) ⊆ A(X) and one of A(X), B(X), S(X) and T(X) is complete. If the conditions (i), (ii) and

(iii) hold, then A, B, S and T have a unique common fixed point in X.

Proof. Because of Cn ̸= ∅, we choose an x0 ∈ Cn and keep it fixed. Since T(X) ⊆ B(X) and S(X) ⊆

A(X), there exists a sequence {yn} such that y2n+1 = Bx2n+1 = Tx2n, y2n+2 = Ax2n+2 = Sx2n+1, n ∈ N

and (x0, x1) ∈ E(G̃). Put dn = d(yn, yn+1) for all n ∈ N. Now we prove (6). Similar to Theorem 3.1, we

have (xn, xn+1) ∈ E(G̃), (Sx2n−1, Tx2n) ∈ E(G̃) and (Tx2n, Sx2n+1) ∈ E(G̃). Using (3), (2) and (4), we

derive

ψ(s3d2n) = ψ(s3d(y2n, y2n+1)) = ψ(s3d(Tx2n, Sx2n−1)) ≤ ψ(M(x2n, x2n−1))− φ(N(x2n, x2n−1)) (25)

and M(x2n, x2n−1) satisfies (8),

N(x2n, x2n−1) = max{d(y2n, y2n−1), d(y2n, y2n+1), d(y2n−1, y2n), d(y2n+1, y2n),

1
2s
(d(y2n, y2n) + d(y2n+1, y2n−1)),

1 + d(y2n+1, y2n−1) + d(y2n, y2n)

1 + s(d(y2n, y2n+1) + d(y2n−1, y2n))
d(y2n−1, y2n),

1 + d(y2n, y2n+1)

1 + d(y2n, y2n−1)
d(y2n−1, y2n)}

= max{d2n−1, d2n}.

Suppose that d2n0−1 < d2n0 for some n0 ∈ N. It follows (9) that M(x2n0 , x2n0−1) = d2n0 and

N(x2n0 , x2n0−1) = d2n0 . By means of (25), s ≥ 1, ψ ∈ Φ1, φ ∈ Φ2, we conclude

ψ(d2n0) ≤ ψ(s3d2n0) ≤ ψ(M(x2n0 , x2n0−1))− φ(N(x2n0 , x2n0−1)) = ψ(d2n0)− φ(d2n0),

which implies φ(d2n0) = 0. That is d2n0 = 0. Similar to the proof of Theorem 3.1, we obtain

dn+1 ≤ dn, ∀n ∈ N,

which means that the sequence {dn}n∈N is nonincreasing and bounded. So, there exists r ≥ 0 with

limn→∞ dn = r. Suppose that r > 0. It follows from (25), ψ ∈ Φ1, φ ∈ Φ2, s ≥ 1 that

ψ(r) ≤ ψ(s3r) = lim sup
n→∞

ψ(s3d2n) ≤ lim sup
n→∞

ψ(M(x2n, x2n−1))− lim inf
n→∞

φ(N(x2n, x2n−1))

= lim sup
n→∞

ψ(d2n−1)− lim inf
n→∞

φ(d2n−1) = ψ(r)− φ(r),

which explains φ(r) = 0. Hence r = 0, that is, (6) holds.

In order to prove that {yn}n∈N is a Cauchy sequence, we need only to show that {y2n}n∈N is a Cauchy

sequence. Suppose that {y2n}n∈N is not a Cauchy sequence. It follows that there exist ε > 0 and two

subsequences {y2m(k)}k∈N and {y2n(k)}k∈N of {y2n}n∈N such that (12) holds. Similar to the proof of
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Theorem 3.1, we can obtain

ε ≤ lim inf
k→∞

d(y2m(k), y2n(k)) ≤ lim sup
k→∞

d(y2m(k), y2n(k)) ≤ sε,

ε

s
≤ lim inf

k→∞
d(y2m(k)+1, y2n(k)) ≤ lim sup

k→∞
d(y2m(k)+1, y2n(k)) ≤ s2ε,

ε

s
≤ lim inf

k→∞
d(y2m(k), y2n(k)−1) ≤ lim sup

k→∞
d(y2m(k), y2n(k)−1) ≤ s2ε,

ε

s2 ≤ lim inf
k→∞

d(y2m(k)+1, y2n(k)−1) ≤ lim sup
k→∞

d(y2m(k)+1, y2n(k)−1) ≤ s3ε.

(26)

So by (2), (4) and connectivity of G, taking the limit supremum as k → ∞ in M(x2m(k), x2n(k)−1), taking

the limit infimum as k → ∞ in N(x2m(k), x2n(k)−1) and using (6) and (26), we gain

lim sup
k→∞

M(x2m(k), x2n(k)−1) ≤ s2ε,
ε

s
≤ lim inf

k→∞
N(x2m(k), x2n(k)−1) ≤ s2ε. (27)

Hence, by (3), we obtain

ψ(s2ε) = ψ(s3(
ε

s
)) ≤ lim sup

k→∞
ψ(s3d(y2m(k)+1, y2n(k))) = lim sup

k→∞
ψ(s3d(Tx2m(k), Sx2n(k)−1))

≤ lim sup
k→∞

ψ(M(x2m(k), x2n(k)−1))− lim inf
k→∞

φ(N(x2m(k), x2n(k)−1))

≤ ψ(s2ε)− lim inf
k→∞

φ(N(x2m(k), x2n(k)−1)),

which implies

lim inf
k→∞

φ(N(x2m(k), x2n(k)−1)) = 0,

a contradiction to (27). So {yn}n∈N is a Cauchy sequence.

Assume that A(X) is complete. Observe that {y2n}n∈N is a Cauchy sequence in A(X). Consequently

there exists z ∈ A(X) and v ∈ X with limn→∞ y2n = z = Av. It is easy to get (20). Suppose that Tv ̸= z.

By (iii), (2), (4) and (20), there exists a subsequence {y2ni} of {y2n} such that (21) and

lim inf
i→∞

N(v, x2ni+1) ≤ max{0, d(z, Tv), 0, sd(Tv, z),
1
2

d(Tv, z), 0, 0} = sd(Tv, z),

which together with (3), ψ ∈ Φ1, φ ∈ Φ2, give

ψ(d(Tv, z)) ≤ ψ(s2d(Tv, z)) ≤ lim sup
i→∞

ψ(s3d(Tv, y2ni+2)) = lim sup
i→∞

ψ(s3d(Tv, Sx2ni+1))

≤ lim sup
i→∞

ψ(M(v, x2ni+1))− lim inf
i→∞

φ(N(v, x2ni+1)) ≤ ψ(d(Tv, z))− φ(sd(Tv, z)),

which implies φ(sd(Tv, z)) = 0. Hence Tv = z = Av. It follows from T(X) ⊆ B(X) and S(X) ⊆ A(X)

that there exists a point w ∈ X with z = Bw = Tv. Suppose that Sw ̸= z. In light of (2), (4), (20) and
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(iii), we have (23) and

lim inf
i→∞

N(x2ni , w) ≤ max{0, 0, d(z, Sw), sd(z, Sw),
1
2

d(z, Sw), d(Bw, Sw),

lim inf
i→∞

1 + sd(z, Sw)

1 + s(d(Ax2ni , Tx2ni) + d(z, Sw))
d(z, Sw)}

= sd(z,Sw),

which together with (3), ψ ∈ Φ1, φ ∈ Φ2 yield

ψ(d(z, Sw)) ≤ ψ(s2d(z, Sw)) ≤ lim sup
ni→∞

ψ(s3d(y2ni+1, Sw)) = lim sup
ni→∞

ψ(s3d(Tx2ni , Sw))

≤ lim sup
ni→∞

ψ(M(x2ni , w))− lim inf
ni→∞

φ(N(x2ni , w)) ≤ ψ(d(z, Sw))− φ(sd(z, Sw)),

which implies φ(sd(z, Sw)) = 0, so Sw = z. Because {A, T} and {B, S} are weakly compatible, Az =

ATv = TAv = Tz and Bz = BSw = SBw = Sz hold. Suppose that Tz ̸= Sz. By (iii) and z = Av = Tv =

Sw = Bw, we deduce (Tv, yni) ∈ E(G̃) or (yni , Sw) ∈ E(G̃). Note that the connectivity of G implies

(Tv, Sw) ∈ E(G̃), i.e., (z, z) ∈ E(G̃). Then because T and S weakly preserve edges in E(G̃), we gain

(Tz, Sz) ∈ E(G̃). It follows from (2), (4), (3), ψ ∈ Φ1 and φ ∈ Φ2 that

ψ(d(Tz, Sz)) ≤ ψ(s3d(Tz, Sz)) ≤ ψ(M(z, z))− φ(N(z, z)) = ψ(d(Tz, Sz))− φ(d(Tz, Sz)),

which explains φ(d(Tz, Sz)) = 0, hence Az = Tz = Sz = Bz.

Suppose that Tz ̸= z. It follows from (iii), (2), (4) and (3) that

ψ(d(Tz, z)) ≤ ψ(s3d(Tz, z)) = ψ(s3d(Tz, Sw)) ≤ ψ(M(z, w))− φ(N(z, w)) = ψ(d(Tz, z))− φ(d(Tz, z)),

which implies φ(d(Tz, z)) = 0 and hence z = Tz = Sz = Az = Bz, that is , z is a common fixed point

of A, B, S, and T in X.

Suppose that A, B, S, and T have another common fixed point u ∈ X \ {z}. It follows from (2), (4), (3),

ψ ∈ Φ1 and φ ∈ Φ2 that

ψ(d(u, z)) ≤ ψ(s3d(u, z)) = ψ(s3d(Tu, Sz)) ≤ ψ(M(u, z))− φ(N(u, z)) = ψ(d(u, z))− φ(d(u, z)),

which explains φ(d(u, z)) = 0. Hence u = z. So z is a unique common fixed point of A, B, S, and T.

Similarly we conclude that A, B, S, and T have a unique common fixed point in X if one of B(X), S(X)

and T(X) is complete. This completes the proof.

Example 3.4. Let X = R+ and define d : X × X → R+ by d(x, y) = |x − y|2 for all x, y ∈ X. Then (X, d) is

a b−metric space with the coefficient s = 2. Let G be a digraph such that V(G) = X and E(G) = {(x, x) : x ∈
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X} ∪ {(0, 1
2n√16

), (0, 17m
2n√16

) : m ∈ R, n = 0, 1, 2, · · · }. Let A, B, S and T:X → X be defined by

Ax =
√

x, Bx = 17x, Tx = 0, ∀x ∈ X, Sx =


0, ∀x ∈ R+ \ { 1

16},

1
16 , x = 1

16 .

Now we use Theorem 3.1 to prove the existence of common fixed points of A, B, S, and T in X. Obviously,

T(X) ⊆ B(X) and S(X) ⊆ A(X). {A, T} and {B, S} are weakly compatible. 0 ∈ Cn.

If (x, y) ∈ E(G̃), then Tx = Ty = 0, Sy and Sx is equal to 0 or 1
16 and so (Tx, Sy) ∈ E(G̃), (Sx, Ty) ∈ E(G̃).

For (Ax, By) ∈ E(G̃) and (Bx, Ay) ∈ E(G̃), we have (x, y) = (0, 0), ( 1
172 , 1

172 ), (0, 1
2n√16

) and

( 1
2n√16

, 0),(0, 17m
2n√16

) and ( 17m
2n√16

, 0). So (x, y) ∈ E(G̃).

Define ψ : R+ → R+ by

ψ(t) =


√

t
2 , ∀t ∈ [1,+∞) ,

t
2 , ∀t ∈ [0, 1)

In order to verify (1), we consider two cases as follows:

Case 1. x ∈ R+, y ∈ R+ \ { 1
16}. It is clear that

s3d(Tx, Sy) = 0 ≤ ψ(M(x, y)).

Case 2. x ∈ R+, y = 1
16 . We have

s3d(Tx, Sy) = 8 | 0 − 1
16

|2= 1
32

≤ ψ(d(By, Sy)) =
1
2
≤ ψ(M(x, y)).

That is, (1) holds. Hence there is a sequence, {0}, satisfying the conditions of Theorem 3.1. So it follows from

Theorem 3.1 that A, B, S, and T possess a unique common fixed point 0 ∈ X.

Example 3.5. Let X =
[ 18

5 ,+∞
)

and define d : X × X → R+ by d(x, y) = |x − y|2 for all x, y ∈ X.

Then (X, d) is a b−metric space with the coefficient s = 2. Let G be a digraph such that V(G) = X and

E(G) = {(x, x), ( 2n·3l x
16m·18k , 2n·3ly

16m·18k ) : x, y ∈ X, k, l, m, n ∈ R}. Let A, B, S and T:X → X be defined by

Ax =
x
2

, Bx =
x
3

, Tx =
x

16
, Sx =

x
18

, ∀x ∈ X.

Now we use Theorem3.3 to prove the existence of common fixed points of A, B, S, and T in X. Obviously,

T(X) ⊆ B(X) and S(X) ⊆ A(X). {A, T} and {B, S} are weakly compatible. 0 ∈ Cn.

If (x, y) ∈ E(G̃), we get (Tx, Sy) = (x, x) or ( 2n·3l x
16m·18k , 2n·3ly

16m·18k ) and (Sx, Ty) = (x, x) or ( 2n·3l x
16m·18k , 2n·3ly

16m·18k ). Then

(Tx, Sy) ∈ E(G̃), (Sx, Ty) ∈ E(G̃).

For (Ax, By) ∈ E(G̃) and (Bx, Ay) ∈ E(G̃), we have (x, y) = (x, x) or ( 2n·3l x
16m·18k , 2n·3ly

16m·18k ). So (x, y) ∈ E(G̃).
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Define ψ : R+ → R+ and φ : R+ → R+ by

ψ(t) = t, ∀t ∈ R+ φ(t) =


0, t = 0,

2−t, t ∈ (0,+∞).

In order to verify (3), for all x, y ∈ X we consider:

ψ(s3d(Tx, Sy)) = 8| x
16

− y
18

|2 ≤ 1
32

max{x2, y2},

ψ(M(x, y)) ≥ max{d(Ax, Tx), d(By, Sy)} = max{| x
2
− x

16
|2, |y

3
− y

18
|2} ≥ (

5
18

)2 max{x2, y2},

N(x, y) ≥ max{d(Ax, Tx), d(By, Sy)} = max{| x
2
− x

16
|2, |y

3
− y

18
|2} ≥ (

5
18

)2 max{x2, y2},

φ(N(x, y)) ≤ 2−( 5
18 )

2 max{x2,y2} ≤ 1
2
· ( 5

18
)2 max{x2, y2}.

Hence,

ψ(s3d(Tx, Sy)) ≤ 1
32

max{x2, y2} ≤ (
5
18

)2 max{x2, y2} − 1
2
· ( 5

18
)2 max{x2, y2}

≤ ψ(M(x, y))− φ(N(x, y))

That is, (3) holds. So it follows from Theorem3.3 that A, B, S, and T in X possess a unique common fixed point

0 ∈ X.
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