
Int. J. Math. And Appl., 8(2)(2020), 121–131

ISSN: 2347-1557

Available Online: http://ijmaa.in/
A
p
p
lications•ISSN:234

7-
15

57
•
In

te
r
n
a
ti
o
n
a
l
Jo

ur
na

l of Mathematics
A
n
d

its

International Journal ofMathematics And its Applications

Applications of Number Theory to Cryptography: A Look

Into the Diffie-Hellman Key Exchange and the RSA

Cipher

Suraj Oruganti1,∗

1 West-Windsor Plainsboro High School South, 346 Clarksville Rd, Princeton Junction, New Jersey, United States.

Abstract: Number theory is the study of integer values, and as Carl Friedrich Gauss once coined it, ”the queen of mathematics.”
More specifically, a field of study in number theory is the behavior of prime numbers. Cryptography is the development

of algorithms in order to transmit information securely. Number Theory is intertwined with, and is an integral part of

cryptography. Therefore, in this paper we will be discussing the applications of number theory to cryptography.
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1. Introduction

Number theory has many practical applications in the real world. For example, a simple situation: Alpha and Beta are

brothers and they love to play the game Detective. Alpha wants to send Beta a very important message that only Beta is

allowed to read. However, their evil sister named Gamma sits right between them, so they will have to pass the message

along through her. Since Alpha only wants Beta to decipher the message, Alpha tells Beta during lunch: I have a clever

way to outsmart Gamma. I am going to change every letter of my message with the previous letter in the alphabet, and I

will change the letter ’a’ to ’z’. To be able to read the information I send you, change each letter with the next letter in the

alphabet and replace any letter ’z’ with the letter ’a’.

During lunch, Alpha writes the following message: Fzllz rjhoodc rbgnnk!. He gives the sheet to Gamma, and tells him that it

is for Beta and to pass it. Gamma agrees, however, she takes a quick look at the sheet, but doesn’t understand the gibberish

written on it. Beta receives the information and using the rule Alpha told him on how to change the letters, the message

reads Gamma skipped school!.

The encryption process involves the changing of the original message(also known as the plaintext) Gamma skipped school!

to the encrypted message(also known as the ciphertext) Fzllz rjhoodc rbgnnk!. The decryption process involves the changing

of the encrypted message Fzllz rjhoodc rbgnnk! to the original message Gamma skipped school!

Cryptography is the scientific method of protecting information and communication through the use of algorithmic-based

codes. We use cryptography in order to make sure information is transmitted securely. The above example was a very

simple display of how basic cryptography works. A brief overview of the subject can be found here: [5]. Applications of
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cryptography include privacy of data, web browsing and secure communications(which include financial transactions and

email). Without cryptography, we wouldn’t have much security over our private information!

This paper is concerned with the uses of modern cryptographic algorithms, namely the Rivest-Shamir-Adleman algo-

rithm(RSA) and the Diffie-Hellman Key Exchange. The RSA is the most widely used algorithm of the 20th century,

but coupling the Diffie-Hellman Key Exchange with other crytographic ciphers, such as the Discrete Logarithm Problem,

has promising uses in our expanding technological world. In order to understand these complex algorithms, a strong number

theory background is necessary. These number theory concepts are outlined in Part 1 of this paper. Part 2 will highlight a

discussion about the uses and the strengths of the before mentioned ciphers.

An additional note: The familiar computer language Java is used throughout the text to come up with computer programs

that perform certain algorithms. We include our Java codes for all our algorithms in this article in boldface. Note that we

only use Java functions or methods that are in the Java database, or ones that were user created.

2. GCD: The Rules of Divisibility

Definition 2.1. Let m and n be two integers. The statements m divides n, and m is a divisor of n, are equal if there exists

an integer x such that n = mx.

For example, 5 divides 10 because 10 = 5(2).

Proposition 2.2. Let m and n be two integers. There exists a unique integer q and a unique non-negative integer r such

that m = qn+ r and r < |n|. q is the quotient and r is the remainder when n is divided by m.

For instance, if we divide 47 by 13, 47 = 3(13) + 8 and 0 ≤ 8 < 13. This means our quotient q = 3, and our remainder r = 8.

It can be noted that m divides n is equivalent to the remainder r of n divided by m being equal to 0. This is because we

get the form m = qn when r is 0, which is equivalent to our definition of divisibility.

There are Java commands for computing the quotient and remainder after the division of numbers m and n. This is executed

with the syntax m//n and m%n accordingly. As an illustration, 10//3 = 3 and 10%3 = 1. Feel free to try some of these

commands out on a Python compiler.

Notation 2.3. Let m and n be integers. The quotient and the remainder of m divided by n are denoted in this article by

m//n and m%n respectively.

Definition 2.4. Given that m1, m2, .... mn is a set of integers, the greatest common divisor of the set is denoted by

gcd(m1,m2, ....mn). This notation shows the largest positive number that divides all of these integers.

It follows that the greatest common divisor of 49 and 14 is 7. According to our notation, gcd(49, 14) = 7. Note that two

numbers m and n are relatively prime if gcd(m,n) = 1. We can now say this:

Proposition 2.5. For all integers m and n:

gcd(m,n) = gcd(n,m%n). (1)

Here is the proof of the above definition:

Let gcd(m,n) = g. Note that by Fact 1, we have that m = qn + r. Additionally, m%n = r. Now, we know that g divides

both m and n. Therefore, we know that g divides m− qn, meaning that g divides r. g must be the largest possible common

factor of r and n, because any other common factor would also have to divide m. However, g is the greatest common
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factor. Therefore, we know that g = gcd(n, r) = gcd(n,m%n), as desired. For instance, if m = 40 and n = 15, it follows

that m%n = 40%15 = 10. Equation 1 now holds, because gcd(40, 15) = gcd(15, 10) = 5.

Proposition 2.6. If there exists two integers m and n, then there must also exist integers a and b such that

gcd(m,n) = am+ bn. (2)

The numbers a and b are not pairwise unique. There indeed exist infinitely many pairs of numbers that we could pick for a

and b. One example of such a pair is gcd(40, 15) = 5 and 5 = (2)40 + (−5)15.

3. The Euclidean Algorithm

Definition 3.1. Let m and n be two positive integers. We have that:

(1). Let r0 = m.

(2). Let r1 = n.

(3). Let the index i = 1.

(4). Let ri−1 = qiri + ri+1, where qi is a random integer, such that 0 ≤ ri+1 < ri

(5). If ri+1 = 0, then gcd(m,n) = ri.

(6). If ri+1 > 0, then replace i with i+ 1 and repeat the sequence from Step IV.

For example, if m = 40 and n = 15, then r0 = 40, r1 = 15, r2 = 40%15 = 10, r3 = 15%10 = 5, and r4 = 10%5 = 0. We can

now generalize this fact:

Proposition 3.2. Let r0, r1, . . . , rc be the sequence earlier referenced, where c is the positive integer such that rc−1 6= 0 and

rc = 0. Then gcd(m,n) = rc−1.

The defined Java function headed as gcd, takes two integers m and n and returns the greatest common divisor.

public static int gcd(int m, int n)

int rp = m;

int rc = n;

while(rc != 0)

int i = rp;

rp = rc;

rc = rc % i;
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return rp;

Now, let m and n be two positive integers. Let us reference our sequence r0, r1, . . . , rc. We define sequences a0, a1, . . . , ac

and b0, b1, . . . , bc as follows:

a0 = 1, a1 = 0, for 1 ≤ i < c, ai+1 = ai−1 − (ri−1//ri)ai (3)

b0 = 0, b1 = 1, for 1 ≤ i < c, bi+1 = bi−1 − (ri−1//ri)bi. (4)

We have that a0m + b0n = r0 because a0m + b0n = 1r0 + 0r1 = r0. Note that a1m + b1n = r1 because a1m + b1n =

0r0 + 1r1 = r1. In fact, we can make the following conjecture:

Proposition 3.3. We have aim+ bin = ri, and 0 ≤ i < n. Additionally, since rn−1 = gcd(m,n), we have

an−1m+ bn−1n = gcd(m,n). (5)

We can now define another function gcdr that two integers as an input, m and n and returns three integers g, a, b, such

that g = gcd(m,n) and am+ bn = g. Additionally, note that // is not the function to find a divisor in Java, we simply use

/ as a form of concatenation.

public static int[] gcdr(int m, int n)

int rp = m;

int rc = n;

int g = gcd(m,n);

int[] array = new int[3];

int i = g - m*a;

if(i%n == 0)

int b = i / n;

array[0] = a;

array[1] = b;

array[2] = g;

break;
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return array;

Using our earlier, gcdr(40, 15) returns the three numbers 2,−5, and5.

4. Prime Factorization

Definition 4.1. A positive integer p ≥ 2 is said to be prime if and only if the positive integers that divide p are 1 and p

itself.

For example, 11 is prime, since only 1 and 11 itself divide 11. However, 15 is not prime, since it is also divisible by 3 and 5,

neither of which are equal to 1 or 15.

Definition 4.2. A positive integer p ≥ 2 is said to be composite if it is not prime.

Since 15 is not a prime number, we call 15 a composite number.

Proposition 4.3. The prime factorization of an integer n is said to be a unique finite sequence of primes p1 < p2 < . . . < pk

and a unique finite sequence of positive n1, n2, . . . , nk such that n = pn1
1 pn2

2 . . . p
nk
k .

For example, 24 = 23 ∗ 3, 27 = 33, and 3 = 3 are a few examples of how the prime factorization of specific numbers is

written. Additionally, it is noteworthy that the prime factorization of a prime number is simply itself. We can also define a

function known as Euler’s totient function that is the following:

Definition 4.4. Let n have a prime factorization of n = pn1
1 pn2

2 . . . p
nk
k . Then, we can denote φ(n) as:

φ(n) = n(1− 1
p1

)(1− 1
p2

) . . . (1− 1
pk

)

This function actually counts the number of integers less than or equal to n that are coprime to n.

5. Modular Congruences

Definition 5.1. For integers m, n, and a, we can denote m ≡ n (mod a) if a divides m− n. We say that m is congruent n

modulus a. If 0 ≤ n < a, then n is the remainder when m is divided by a.

For instance, 19 is congruent 4 modulus 5, i.e. 19 ≡ 4 (mod 5) because 5 divides 19− 4 = 15. Additionally, since 0 ≤ 4 < 5,

we know that 4 is the remainder when 19 is divided by 5. Indeed, it is, because 19 = 5(3) + 4. This is further generalized

below, in a slightly different form:

Proposition 5.2. For any two integers, m and n, we have:

m ≡ m%n (modn). (6)

For example, 20 ≡ 20%6 ≡ 2 (mod 6).

Proposition 5.3. Let a, b, c, d and m be an integers such that a ≡ b (modm) and c ≡ d (modm). Then,

a+ c ≡ b+ d (modm) and ac ≡ bd (modm). (7)

For example, 17 ≡ 2 (mod 5), 12 ≡ 2 (mod 5) and 29 = 17 + 12 ≡ 4 = 2 + 2 (mod 5) and 204 = 17(12) ≡ 4 = 2(2) (mod 5).
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6. Solution to an ≡ b (modm)

We start with integers a, b and m and m > 0. We want to prove the following:

Proposition 6.1. We have an integer y = gcd(a,m), and it divides b evenly. i and j are integers existing such that

ia+ jm = y. If n = (ib/y)%m, then an ≡ b (modm) and 1 ≤ n < m.

The proof is shown below:

an = a((ib/y)%m) ≡ (aib/y + jmb/y) ≡ (b/y)(ai+ jm) ≡ b (modm).

Now, we accordingly define axcm that inputs a, c and m. Note that the starting condition is gcd(a,m) divides c, and

returns x the only solution of ax ≡ c (modm) with 1 ≤ x < m.

public static int axcm(int a, int c, int m)

int[] array = gcdr(a,m);

int d = array[0];

int u = array[1];

int v = array[2];

if(d != 0)

return (u*(c/d))%m;

else

return 0;

For example, axcm(5, 4, 17) returns the the integer 11, and this is true because 5x ≡ 4 (mod 17), 5(11) − 4 = 51 = 17(3)

and thus, 17 divides 5(11)− 4.

7. Euler’s Theorem

Proposition 7.1. Consider p and q to be two prime integers and m = pq. Then, there exists an a, such that a(p−1)(q−1) ≡

1 (modm) and where gcd(a,m) = 1.

Euler’s theorem is stated by the following:

Proposition 7.2. Consider n to be a positive integer and a be a positive integer relatively prime to it. We must have the

following:

aφ(n) ≡ 1 (modn)
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Note that φ(pq) = pq(1 − 1
p
)(1 − 1

q
) = (p − 1)(q − 1), and Fact 10 follows accordingly. To demonstrate Euler’s Theorem,

we use p = 3 and q = 7. On Table 1, we show all the powers of ak modulus 21 for 1 ≤ k ≤ 12, and for all a such that

gcd(a, 21) = 1 and 1 ≤ a < 21. Notice that a(p−1)(q−1) = a12 ≡ 1 (mod 21) for all such numbers a.

a a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

1 1 1 1 1 1 1 1 1 1 1 1

2 4 8 16 11 1 2 4 8 16 11 1

4 16 1 4 16 1 4 16 1 4 16 1

5 4 20 16 17 1 5 4 20 16 17 1

8 1 8 1 8 1 8 1 8 1 8 1

10 16 13 4 19 1 10 16 13 4 19 1

11 16 8 4 2 1 11 16 8 4 2 1

13 1 13 1 13 1 13 1 13 1 13 1

16 4 1 16 4 1 16 4 1 16 4 1

17 16 20 4 5 1 17 16 20 4 5 1

19 4 13 16 10 1 19 4 13 16 10 1

20 1 20 1 20 1 20 1 20 1 20 1

Table 1. Table of powers of a modulus 21 for all a < 21 such that gcd(a, 15) = 1.

8. Solution to ak ≡ b (modm)

Proposition 8.1. Consider k, b and m be three integers that satisfy the following:

1. b and m are relatively prime.

2. There exist p and q that are prime numbers such that m = pq

3. k and (p− 1)(q − 1) are relatively prime.

There exist integers i and j such that ik + j(p− 1)(q − 1) = 1. Then, the solution that satisfies 1 ≤ a < m is

x = (bi)%m. (8)

It is noteworthy that ak = ((bi)%m)k ≡ ((bi))k (modm) ≡ (bik) (modm):

ik ≡ bik (modm). (9)

From Proposition 10, we have that b(p−1)(q−1) ≡ 1 (modm), therefore 1 ≡ 1j ≡ (b(p−1)(q−1))j ≡ bj(p−1)(q−1) (modm):

1 ≡ bj(p−1)(q−1) (modm). (10)

By multiplying the two equations above, it follows that ak ≡ bikbj(p−1)(q−1) ≡ bik+j(p−1)(q−1) ≡ b1 ≡ b (modm). The func-

tion xkbm takes k, b, p, q, andm as an input, and returns as output the integer x that satisfies xk ≡ b (modm) and 1 ≤ x < m.

public static int xkbm(int b, int k, int p, int q, int m)

int array[] = gcdr(k, (p-1)*(q-1));
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int d = array[0];

int u = array[1];

int v = array[2];

return (Math.pow(b,u))%m;

We have now learned all of the necessary number theory tools to understand how our crytpographic ciphers will function.

We will now examine the RSA cipher, the Discrete Logarithm Problem and the Diffie-Hellman Key Exchange.

9. RSA Cipher

Now, let us consider a scenario with our old friends, Alpha and Beta. Alpha wants to send a more complicated encoded

message to Beta, because Gamma figured out their original pattern relatively easily. Beta will decrypt it once he receives

the message. The following algorithm is used:

(1). Right before transmitting the message, they select two large prime numbers p and q. The numbers p and q are considered

a part of the private domain, meaning that only Alpha and Beta know the identity of p and q.

(2). Alpha chooses a k accordingly to satisfy gcd(k, (p− 1)(q − 1)) = 1, and a m, such that m = pq. The numbers k and m

are considered a part of the public domain, meaning that everyone knows the identity of k and m.

(3). Alpha wants to transmit the message r < m to Beta, which is a string of numbers. However, he instead computes

f = (rk)%m and send f to Beta.

(4). Beta knows the identity of p, q and k, and since gcd(k, (p − 1)(q − 1)) = 1, he can solve for n the the equation

nk ≡ f (modm) with 1 ≤ n < m. But rk ≡ f (modm) and 1 ≤ r < m. There is only one possible value for n, so we

have that n = r, and Beta can successfully decode the message.

The values of p and q are required to decipher the equation nk ≡ f (modm) with 1 ≤ x < m. Beta is the only one(other

than Alpha) that has access to private domain, therefore Beta is the only one that can fully perform the above algorithm.

These set of steps that Alpha and Beta have used is known as the Rivest-Shamir-Adleman cipher, or more commonly known

as the RSA cipher. It has many applications in the real world, including in email, virtual private network(VPN), and even

chat apps!

This method enc encrypts the message:

public static int enc(s,k,m)

return (Math.pow(s,k)%m);

This method dec that decrypts the message:

public static int dec(k,e,p,q)

return xkbm(k,e,p,q);
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10. The Discrete Logarithm Problem

In this article we describe the theory behind the Discrete Logarithm Problem(DLP). We will be using the number theory

concepts developed in the previous chapters to discuss DLP. Before we jump right into our discussion of DLP, there is a bit

of background behind the conditions. For instance, the idea of groups, and more specifically, cyclic groups. Consider the

following definition:

Definition 10.1. A group is a set G, such that there is an operation ∗, such that for any two elements a and b in our set

G, we perform a ∗ b and add it to G. There are 3 conditions which much be satisfied for our operation ∗ :

(1). There exists an identity element c, such that c ∗ a = a ∗ c = a.

(2). The operation is associative.

(3). For every element, there exists a respective inverse in the set, such that the operation(∗) between this inverse and the

original element is the identity element.

Knowing what a group is, we can also define a cyclic group:

Definition 10.2. A cyclic group G is a group in which there exists an element of the group a, such that for every element

b of G, we have that b = an, for some integer n.

Finally, let us define what the generator of a certain group is:

Definition 10.3. A generator of a certain set G is an element g, such that any element of the group can be written of the

form ng, where n is any integer.

The generator is a primitive root. We are now ready to declare our DLP:

Definition 10.4. We are given some cyclic group G. Let the generator of group G be denoted as g. Let a be any random

element of G. We need to find a number n, such that a ≡ gn (mod p).

Note that n is referred to as the discrete logarithm of a with respect to the base g. Now, how do we solve the DLP? There

is a straightforward way of solving it:

If we are able to find the g that is our generator, and the number ng, then we can obviously find n, since n = (ng)∗g−1. g−1

is simply the inverse of g in the respective multiplicative group. However, finding the certain g and ng that work in a modulus

gets significantly harder when dealing with larger primes. That is why we need to couple DLP with the Diffie-Hellman Key

Exchange, which we will introduce in the next chapter.

11. The Diffie-Hellman Key Exchange

The Diffie-Hellman Key Exchange works as follows:

Definition 11.1. A prime number p is decided among the two parties, as is a primitive root of p, namely g. Note that

anybody can access p and g. Next, they each pick two random numbers a and b, which is private information. One of the

parties computes ga(mod p), and the other one computes gb(mod p). They send it to each other. Then, they each raise it to

the bth and ath powers respectively, and obtain gab(mod p), and this number is the key.
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For instance, let us assume Alpha and Beta agree on p = 293 and g = 34. Alpha will choose the secret key of a = 128 and

Beta will choose the secret key of b = 245. Alpha computes 34128 ≡ 137(mod 293). Beta computes 34245 ≡ 130(mod 293).

They send each other these newly computed numbers, and then they both end up computing:

130128 ≡ 137245 ≡ 191(mod 293). 191 is the key.

Now obviously, this is very easy to compute with a computer, which is why the difficulties of cracking the Diffie-Hellman

key exchange start when the prime number modulus is very large, around 100 bits!

12. Discussion: Putting it All Together

When looking at the Diffie-Hellman Key Exchange and the RSA cipher, there are clear similarities. For instance, both are

the most widely-used forms of encryption and security today. As far as the performance of each set of ciphers goes, both

a standard 1024-bit Diffie-Hellman key and a 1024-bit RSA key would have an equal efficiency. The real difficulties that

comes with cracking an RSA cipher and a Diffie-Hellman Key Exchange is the factorization of large numbers, especially

when these large numbers have large prime factors. However, there are differences in how each one is attacked and how

each one can have a breach of security. The Diffie-Hellman Key Exchange can be solved by using the Discrete Logarithm

Problem. The reason why this is beneficial is because using the Discrete Logarithm Problem allows for more randomness,

and it makes the encryption less predictable, as displayed below:

The above illustration indicates the randomness of the discrete logarithm, when picking viable numbers a and n that satisfy

the DLP conditions in our discrete logarithm formula of n = logg(a) [2]. There is no clear-cut trend among the data here,

when picking 2 relatively prime numbers for our operation. Here is a data description of picking prime numbers p and q for

our RSA operation:

The above is a graph showing the results of picking two prime numbers for RSA calculation. Notice the trend in the data

[4].
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We see that in the intersection of the red and blue regions of this graph, there is a clear trend. There is an uphill, a peak

in the data and then there is a downhill. RSA on its own may be susceptible to hacker attacks by using the behavior of

these prime numbers together. Although it may be stronger when using larger prime moduli, there are still behaviors among

prime numbers in which onlookers can observe through modular arithmetic.

Although the RSA cipher is the more well known and more widely-used cipher, the Diffie-Hellman Key Exchange when

coupled with discrete logarithms is also very effective. However, the Diffie-Hellman Key Exchange may also be susceptible

to an attack known as ”the man-in the middle” attacks(MITM). This is because there is no private domain in the Diffie-

Hellman Key Exchange, so an onlooker could potentially break the cipher using a key pair of numbers. An example of such

an attack would be the baby-step giant-step algorithm, in which we refer the reader to [3]

On the other hand, the RSA cipher has both domains, so there is information that is unknown to the public. However,

there are problems and holes in the RSA cipher, one of which is its malleability. If we change the key in certain ways, the

exponents will also change in a certain way, which will allow for someone to be able to find a connection between the old key

and the new key. Recently this problem has been fixed with the use of digital signatures, which allows for a larger private

domain in order to further strengthen the cipher. The reader can find more information on digital signatures here: [1].

In conclusion, the RSA cipher is a lot more secure than the Diffie-Hellman Key Exchange, however coupling the Diffie-

Hellman Key Exchange with discrete logarithms is a promising part of our technological security that can be further looked

at and implemented.
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