

Common Fixed Point Theorems in Modular Multi-Metric Spaces

Rahul S. More¹, Vishal B. Magar^{2,*}

¹Department of Mathematics, Swami Muktanand College of Science, Yeola, Nashik, Maharashtra, India

²Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Chh. Sambhajinagar, University Campus, Maharashtra, India

Abstract

In this paper, we study the existence and uniqueness of common fixed points for compatible self-mappings in modular multi-metric spaces, which generalize both modular and multi-metric spaces. We introduce contractive conditions suitable for this setting and establish a common fixed point theorem that extends classical results such as Banach's contraction principle and Jungck's theorem. An illustrative example is provided to demonstrate the applicability of the main result. The results contribute to the theory of fixed points in spaces with multiple modular structures and offer potential applications in nonlinear analysis and optimization.

Keywords: Common fixed point; Modular multi-metric space; Compatible mappings; Contractive mappings; Nonlinear analysis.

2020 Mathematics Subject Classification: 47H10, 54E35.

1. Introduction

Fixed point theory is a fundamental tool in mathematical analysis, with applications in differential equations, optimization, and dynamic systems. Classical results, such as Banach's contraction principle, provide conditions under which self-mappings have unique fixed points in metric spaces. Modular spaces extend normed spaces by replacing the norm with a modular function, providing greater flexibility in convergence and completeness. Multi-metric spaces allow multiple metrics on a single set, enabling the analysis of systems with multiple distance measures. A modular multi-metric space combines these concepts, providing a richer framework to study mappings that are simultaneously contractive under several modular metrics. In this paper, we establish a common fixed point theorem for compatible mappings in such spaces, extending several classical fixed point results.

*Corresponding author (rrahulmore1997@gmail.com)

2. Preliminaries

Definition 2.1 ([1,2,13,15]). *A modular multi-metric space is a pair $(X, \{\rho_i\}_{i=1}^m)$, where X is a nonempty set and each $\rho_i : X \times X \rightarrow [0, \infty)$ is a modular metric. The space is said to be complete if every Cauchy sequence with respect to each ρ_i converges to a point in X .*

Definition 2.2 ([2]). *A function $\rho : X \times X \rightarrow [0, \infty)$ is called a modular metric if for all $x, y, z \in X$:*

1. $\rho(x, y) = 0$ if and only if $x = y$,
2. $\rho(x, y) = \rho(y, x)$,
3. $\rho(x, z) \leq \rho(x, y) + \rho(y, z)$.

Definition 2.3 ([3,4]). *Let X be a nonempty set and let $\{\rho_i\}_{i=1}^m$ be a finite family of functions $\rho_i : X \times X \rightarrow [0, \infty)$, called modular b -metrics, each satisfying the following:*

- (i) $\rho_i(x, y) = 0 \iff x = y$.
- (ii) (Symmetry) $\rho_i(x, y) = \rho_i(y, x)$.
- (iii) (Relaxed triangle inequality) There exists $b \geq 1$ such that for all $x, y, z \in X$, $\rho_i(x, z) \leq b[\rho_i(x, y) + \rho_i(y, z)]$.

The pair $(X, \{\rho_i\}_{i=1}^m)$ is called a modular b -metric space.

Definition 2.4 ([5,6]). *A sequence $\{x_n\}$ in a modular multi-metric space $(X, \{\rho_i\}_{i=1}^m)$ is called Cauchy if for every $\varepsilon > 0$ and every $i = 1, \dots, m$, there exists N such that for all $m, n \geq N$, $\rho_i(x_m, x_n) < \varepsilon$.*

Definition 2.5 ([5,6]). *It is said to be convergent to $x \in X$ if $\rho_i(x_n, x) \rightarrow 0 \quad \forall i$.*

Definition 2.6 ([7,8]). *A mapping $T : X \rightarrow X$ is called contractive if there exists $k \in [0, 1)$ such that $\rho_i(Tx, Ty) \leq k\rho_i(x, y) \quad \forall x, y \in X, \forall i$.*

Definition 2.7 ([25]). *Two mappings $T, S : X \rightarrow X$ are said to be compatible if for any sequence $\{x_n\} \subset X$ with $Tx_n \rightarrow p$ and $Sx_n \rightarrow p$, it holds that $\rho_i(TSx_n, STx_n) \rightarrow 0, \quad \forall i$.*

Definition 2.8 ([9]). *A point $x^* \in X$ is called a fixed point of a self-mapping $T : X \rightarrow X$ if $Tx^* = x^*$. A point x^* is a common fixed point of T and S if $Tx^* = Sx^* = x^*$.*

Definition 2.9 ([10]). *A pair of mappings $T, S : X \rightarrow X$ is said to satisfy the contractive condition if there exists $k \in [0, 1)$ such that $\rho_i(Tx, Sy) \leq k \max\{\rho_i(x, y), \rho_i(x, Tx), \rho_i(y, Sy)\}, \forall x, y \in X, i = 1, \dots, m$.*

Definition 2.10 ([11]). *Mappings $T, S : X \rightarrow X$ are called self-mappings of the modular b -metric space $(X, \{\rho_i\})$.*

Definition 2.11 ([11]). *Two self-mappings T and S are said to be weakly compatible if $Tx = Sx \Rightarrow TSx = STx$.*

Definition 2.12 ([12]). Given an arbitrary point $x_0 \in X$, define a sequence $\{x_n\}$ by $x_{2n+1} = Tx_{2n}$, $x_{2n+2} = Sx_{2n+1}$, $n = 0, 1, 2, \dots$.

This alternating iteration will be used to show the existence of a common fixed point.

3. Main Result

Theorem 3.1 (Common Fixed Point Theorem [17] in Modular Multi-Metric Spaces). Let $(X, \{\rho_i\}_{i=1}^m)$ be a complete modular multi-metric space. Let $T, S : X \rightarrow X$ be two self-mappings satisfying the following conditions:

1. There exists $k \in [0, 1)$ such that for all $x, y \in X$ and all $i = 1, 2, \dots, m$,

$$\rho_i(Tx, Sy) \leq k \max\{\rho_i(x, y), \rho_i(x, Tx), \rho_i(y, Sy)\}. \quad (1)$$

2. The mappings T and S are compatible [25], i.e.

$$\lim_{n \rightarrow \infty} \rho_i(TSx_n, STx_n) = 0$$

whenever $Tx_n \rightarrow p$ and $Sx_n \rightarrow p$ for some $p \in X$.

Then T and S have a unique common fixed point [25] $x^* \in X$, i.e. $Tx^* = Sx^* = x^*$.

Proof. Let $x_0 \in X$ be arbitrary. Define two sequences recursively by $x_{2n+1} = Tx_{2n}$, $x_{2n+2} = Sx_{2n+1}$, $n = 0, 1, 2, \dots$. We will show that $\{x_n\}$ is a Cauchy sequence in each modular metric ρ_i . From (1),

$$\rho_i(x_{2n+1}, x_{2n+2}) = \rho_i(Tx_{2n}, Sx_{2n+1}) \leq k \max\{\rho_i(x_{2n}, x_{2n+1}), \rho_i(x_{2n}, Tx_{2n}), \rho_i(x_{2n+1}, Sx_{2n+1})\}.$$

But $\rho_i(x_{2n}, Tx_{2n}) = \rho_i(x_{2n}, x_{2n+1})$ and $\rho_i(x_{2n+1}, Sx_{2n+1}) = \rho_i(x_{2n+1}, x_{2n+2})$. Therefore,

$$\rho_i(x_{2n+1}, x_{2n+2}) \leq k \max\{\rho_i(x_{2n}, x_{2n+1}), \rho_i(x_{2n+1}, x_{2n+2})\}.$$

If $\rho_i(x_{2n+1}, x_{2n+2}) > \rho_i(x_{2n}, x_{2n+1})$, the inequality implies $\rho_i(x_{2n+1}, x_{2n+2}) \leq k\rho_i(x_{2n+1}, x_{2n+2})$, which is impossible unless $\rho_i(x_{2n+1}, x_{2n+2}) = 0$. Thus, for all n ,

$$\rho_i(x_{2n+1}, x_{2n+2}) \leq k\rho_i(x_{2n}, x_{2n+1}).$$

By iteration, $\rho_i(x_{n+1}, x_n) \leq k^n \rho_i(x_1, x_0)$. Hence, $\{x_n\}$ is a Cauchy sequence in (X, ρ_i) for each i , and since the space is complete, there exists $x^* \in X$ [1] such that $x_n \rightarrow x^*$ in all ρ_i . Taking limits in the recursive definition, we get:

$$Tx^* = \lim_{n \rightarrow \infty} Tx_{2n} = \lim_{n \rightarrow \infty} x_{2n+1} = x^*,$$

and

$$Sx^* = \lim_{n \rightarrow \infty} Sx_{2n+1} = \lim_{n \rightarrow \infty} x_{2n+2} = x^*.$$

Hence, $Tx^* = Sx^* = x^*$.

Uniqueness: Suppose y^* is another common fixed point [25]. Then

$$\rho_i(x^*, y^*) = \rho_i(Tx^*, Sy^*) \leq k \max\{\rho_i(x^*, y^*), \rho_i(x^*, Tx^*), \rho_i(y^*, Sy^*)\} = k\rho_i(x^*, y^*).$$

This implies $(1 - k)\rho_i(x^*, y^*) \leq 0$, so $\rho_i(x^*, y^*) = 0$ for all i , hence $x^* = y^*$. Therefore, the common fixed point is unique [25]. \square

Lemma 3.2 (Cauchy Sequence Lemma in Modular Multi-Metric Spaces). *Let $(X, \{\rho_i\}_{i=1}^m)$ be a modular multi-metric space and let $T, S : X \rightarrow X$ be two self-mappings satisfying [9]*

$$\rho_i(Tx, Sy) \leq k \max\{\rho_i(x, y), \rho_i(x, Tx), \rho_i(y, Sy)\}, \quad 0 \leq k < 1,$$

for all $x, y \in X$ and $i = 1, 2, \dots, m$. Define the sequence $\{x_n\}$ recursively by

$$x_{2n+1} = Tx_{2n}, \quad x_{2n+2} = Sx_{2n+1}, \quad n = 0, 1, 2, \dots$$

Then $\{x_n\}$ is a Cauchy sequence in each modular metric [2] ρ_i .

Proof. From the given inequality, we have

$$\rho_i(x_{2n+1}, x_{2n+2}) = \rho_i(Tx_{2n}, Sx_{2n+1}) \leq k \max\{\rho_i(x_{2n}, x_{2n+1}), \rho_i(x_{2n}, Tx_{2n}), \rho_i(x_{2n+1}, Sx_{2n+1})\}.$$

Since $x_{2n+1} = Tx_{2n}$ and $x_{2n+2} = Sx_{2n+1}$, this simplifies to

$$\rho_i(x_{2n+1}, x_{2n+2}) \leq k \max\{\rho_i(x_{2n}, x_{2n+1}), \rho_i(x_{2n+1}, x_{2n+2})\}.$$

If $\rho_i(x_{2n+1}, x_{2n+2}) > \rho_i(x_{2n}, x_{2n+1})$, we would obtain $\rho_i(x_{2n+1}, x_{2n+2}) \leq k\rho_i(x_{2n+1}, x_{2n+2})$, which is possible only if $\rho_i(x_{2n+1}, x_{2n+2}) = 0$. Therefore,

$$\rho_i(x_{2n+1}, x_{2n+2}) \leq k\rho_i(x_{2n}, x_{2n+1}).$$

By iteration, $\rho_i(x_{n+1}, x_n) \leq k^n \rho_i(x_1, x_0)$. Thus, for $m > n$,

$$\rho_i(x_m, x_n) \leq \sum_{r=n}^{m-1} \rho_i(x_{r+1}, x_r) \leq \frac{k^n}{1-k} \rho_i(x_1, x_0),$$

which tends to 0 as $n \rightarrow \infty$. Hence, $\{x_n\}$ is Cauchy in each (X, ρ_i) . \square

Corollary 3.3 (Banach Type Fixed Point Theorem in Modular Multi-Metric Spaces). *Let $(X, \{\rho_i\}_{i=1}^m)$ be*

a complete modular multi-metric space and let $T : X \rightarrow X$ be a self-mapping satisfying [9]

$$\rho_i(Tx, Ty) \leq k \max\{\rho_i(x, y), \rho_i(x, Tx), \rho_i(y, Ty)\}, \quad 0 \leq k < 1,$$

for all $x, y \in X$ and $i = 1, 2, \dots, m$. Then T has a unique fixed point [25] $x^* \in X$.

Proof. Let $S = T$ in Theorem 3.1. The compatibility condition is trivially satisfied since $TS = ST = T^2$. By Lemma 3.2, define the sequence $x_{n+1} = Tx_n$. Then,

$$\rho_i(x_{n+1}, x_{n+2}) = \rho_i(Tx_n, Tx_{n+1}) \leq k \max\{\rho_i(x_n, x_{n+1}), \rho_i(x_n, Tx_n), \rho_i(x_{n+1}, Tx_{n+1})\}.$$

Since $x_{n+1} = Tx_n$, this gives $\rho_i(x_{n+1}, x_{n+2}) \leq k\rho_i(x_n, x_{n+1})$, so that $\{x_n\}$ is Cauchy in each ρ_i . By completeness, there exists $x^* \in X$ such that $x_n \rightarrow x^*$ in all ρ_i . Taking limits in $x_{n+1} = Tx_n$, we get $Tx^* = x^*$. If y^* is another fixed point of T , then

$$\rho_i(x^*, y^*) = \rho_i(Tx^*, Ty^*) \leq k \max\{\rho_i(x^*, y^*), \rho_i(x^*, Tx^*), \rho_i(y^*, Ty^*)\} = k\rho_i(x^*, y^*).$$

This implies $\rho_i(x^*, y^*) = 0$ for all i , hence $x^* = y^*$. Therefore, the fixed point is unique. \square

Corollary 3.4 (Common Fixed Point for Commuting Mappings). *Let $(X, \{\rho_i\}_{i=1}^m)$ be a complete modular multi-metric space. Let $T, S : X \rightarrow X$ be two commuting self-mappings (i.e., $TS = ST$) satisfying [9]*

$$\rho_i(Tx, Sy) \leq k \max\{\rho_i(x, y), \rho_i(x, Tx), \rho_i(y, Sy)\}, \quad 0 \leq k < 1,$$

for all $x, y \in X$ and $i = 1, 2, \dots, m$. Then T and S have a unique common fixed point [25] $x^* \in X$.

Proof. Since T and S commute, we have $TSx = STx$ for all $x \in X$. Thus, the compatibility condition of Theorem 1 is automatically satisfied. By Theorem 3.1, there exists a unique $x^* \in X$ such that

$$Tx^* = Sx^* = x^*.$$

Hence, x^* is the unique common fixed point [25] of T and S . \square

Theorem 3.5 (Common Fixed Point Theorem for Compatible Mappings in Modular b -Metric Spaces). *Let $(X, \{\rho_i\}_{i=1}^m)$ be a complete modular b -metric space. Let $T, S : X \rightarrow X$ be two self-mappings satisfying [9] the following conditions:*

1. *There exists a constant $k \in [0, 1)$ such that for all $x, y \in X$ and all $i = 1, 2, \dots, m$,*

$$\rho_i(Tx, Sy) \leq k[\rho_i(x, y) + \rho_i(x, Tx) + \rho_i(y, Sy)].$$

2. *The mappings T and S are weakly compatible [11], i.e., $Tx = Sx \implies TSx = STx$.*

Then T and S have a unique common fixed point [25] $x^* \in X$, that is, $Tx^* = Sx^* = x^*$.

Proof. Let $x_0 \in X$ be arbitrary and define a sequence $\{x_n\}$ by

$$x_{2n+1} = Tx_{2n}, \quad x_{2n+2} = Sx_{2n+1}, \quad n = 0, 1, 2, \dots$$

We show that $\{x_n\}$ is a Cauchy sequence in each modular ρ_i . From condition (1),

$$\rho_i(x_{2n+1}, x_{2n+2}) = \rho_i(Tx_{2n}, Sx_{2n+1}) \leq k[\rho_i(x_{2n}, x_{2n+1}) + \rho_i(x_{2n}, Tx_{2n}) + \rho_i(x_{2n+1}, Sx_{2n+1})].$$

Since $x_{2n+1} = Tx_{2n}$ and $x_{2n+2} = Sx_{2n+1}$, we have

$$\rho_i(x_{2n+1}, x_{2n+2}) \leq k[\rho_i(x_{2n}, x_{2n+1}) + \rho_i(x_{2n}, x_{2n+1}) + \rho_i(x_{2n+1}, x_{2n+2})],$$

which implies

$$(1 - k)\rho_i(x_{2n+1}, x_{2n+2}) \leq 2k\rho_i(x_{2n}, x_{2n+1}).$$

Hence,

$$\rho_i(x_{2n+1}, x_{2n+2}) \leq \frac{2k}{1-k}\rho_i(x_{2n}, x_{2n+1}).$$

By iteration,

$$\rho_i(x_{n+1}, x_n) \leq \left(\frac{2k}{1-k}\right)^n \rho_i(x_1, x_0).$$

Since $0 \leq \frac{2k}{1-k} < 1$, the sequence $\{x_n\}$ is Cauchy. Completeness of X ensures that $x_n \rightarrow x^*$ in all ρ_i . Taking limits in the recursive definitions,

$$Tx^* = \lim_{n \rightarrow \infty} Tx_{2n} = \lim_{n \rightarrow \infty} x_{2n+1} = x^*,$$

and similarly,

$$Sx^* = \lim_{n \rightarrow \infty} Sx_{2n+1} = \lim_{n \rightarrow \infty} x_{2n+2} = x^*.$$

Hence, $Tx^* = Sx^* = x^*$.

Uniqueness. Suppose y^* is another common fixed point [25] of T and S . Then

$$\rho_i(x^*, y^*) = \rho_i(Tx^*, Sy^*) \leq k[\rho_i(x^*, y^*) + \rho_i(x^*, Tx^*) + \rho_i(y^*, Sy^*)] = k\rho_i(x^*, y^*).$$

This gives $(1 - k)\rho_i(x^*, y^*) \leq 0$, implying $\rho_i(x^*, y^*) = 0$ for all i . Thus, $x^* = y^*$. Therefore, the common fixed point is unique [25]. \square

Example 3.6. Consider $X = [0, \infty)$ with the modular b -metric

$$\rho(x, y) = \frac{|x - y|}{1 + |x - y|}.$$

Define mappings $T, S : X \rightarrow X$ by

$$Tx = \frac{x}{2}, \quad Sx = \frac{x}{3}.$$

For all $x, y \in X$, we have

$$\rho(Tx, Sy) = \frac{\left| \frac{x}{2} - \frac{y}{3} \right|}{1 + \left| \frac{x}{2} - \frac{y}{3} \right|} \leq \frac{\frac{1}{2}|x - y|}{1 + \frac{1}{2}|x - y|} \leq \frac{1}{2}\rho(x, y).$$

Hence, the condition of the corollary holds with $k = \frac{1}{2} < 1$. Therefore, by Theorem 3.6, T and S have a unique common fixed point [25] $x^* = 0$, since $Tx^* = Sx^* = 0 = x^*$.

Example 3.7. Let $X = [0, 1]$ with modulars defined by $\rho_1(x, y) = |x - y|$, $\rho_2(x, y) = |x - y|^2$. Then $(X, \{\rho_1, \rho_2\})$ is a complete modular multi-metric space.

Define the mappings:

$$Tx = \frac{x}{4}, \quad Sx = \frac{x}{2}.$$

For all $x, y \in X$,

$$\rho_1(Tx, Sy) = \left| \frac{x}{4} - \frac{y}{2} \right| = \frac{1}{4}|x - 2y| \leq \frac{1}{2}|x - y| = \frac{1}{2}\rho_1(x, y),$$

and similarly,

$$\rho_2(Tx, Sy) = \left| \frac{x}{4} - \frac{y}{2} \right|^2 \leq \frac{1}{4}|x - y|^2 = \frac{1}{2}\rho_2(x, y).$$

Hence, condition (1) holds with $k = \frac{1}{2}$. The mappings T and S are compatible, and the only common fixed point satisfying [25], $Tx = Sx = x$ is $x^* = 0$. Therefore, by the theorem, T and S have the unique common fixed point [25], $x^* = 0$.

Example 3.8. Let $X = [0, 2]$ with modulares defined by $\rho_1(x, y) = |x - y|$, $\rho_2(x, y) = |x - y|^3$. Then $(X, \{\rho_1, \rho_2\})$ is a complete modular multi-metric space.

Define the mappings:

$$Tx = \frac{x}{3}, \quad Sx = \frac{x}{6}.$$

For all $x, y \in X$,

$$\rho_1(Tx, Sy) = \left| \frac{x}{3} - \frac{y}{6} \right| = \frac{1}{6}|2x - y| \leq \frac{1}{2}|x - y| = \frac{1}{2}\rho_1(x, y),$$

and similarly,

$$\rho_2(Tx, Sy) = \left| \frac{x}{3} - \frac{y}{6} \right|^3 \leq \frac{1}{8}|x - y|^3 = \frac{1}{2}\rho_2(x, y).$$

Hence, condition (1) holds with $k = \frac{1}{2}$. The mappings T and S are compatible, and the only common fixed point satisfying [25], $Tx = Sx = x$ is $x^* = 0$. Therefore, T and S have the unique common fixed point [25], $x^* = 0$.

Example 3.9. Let $X = [0, 1]$ with

$$\rho_1(x, y) = |x - y|, \quad \rho_2(x, y) = |x - y|^{1/2}.$$

Then $(X, \{\rho_1, \rho_2\})$ is a complete modular multi-metric space.

Define

$$Tx = \frac{x}{5}, \quad Sx = \frac{x}{3}.$$

Then for all $x, y \in X$,

$$\rho_1(Tx, Sy) = \left| \frac{x}{5} - \frac{y}{3} \right| = \frac{1}{15} |3x - 5y| \leq \frac{2}{3} |x - y| = \frac{2}{3} \rho_1(x, y),$$

and similarly,

$$\rho_2(Tx, Sy) = \left| \frac{x}{5} - \frac{y}{3} \right|^{1/2} \leq \left(\frac{2}{3} \right)^{1/2} |x - y|^{1/2} = \left(\frac{2}{3} \right)^{1/2} \rho_2(x, y).$$

Hence, condition (1) holds with $k = \frac{2}{3}$. The only common fixed point satisfying [25], $Tx = Sx = x$ is $x^* = 0$.

Example 3.10. Let $X = [0, 1]$ with modulares

$$\rho_1(x, y) = |x - y|, \quad \rho_2(x, y) = (x - y)^2 + |x - y|.$$

Define

$$Tx = \frac{x}{2}, \quad Sx = \frac{x}{3}.$$

Then for all $x, y \in X$,

$$\rho_1(Tx, Sy) = \left| \frac{x}{2} - \frac{y}{3} \right| = \frac{1}{6} |3x - 2y| \leq \frac{1}{2} |x - y| = \frac{1}{2} \rho_1(x, y),$$

and

$$\rho_2(Tx, Sy) = \left(\frac{x}{2} - \frac{y}{3} \right)^2 + \left| \frac{x}{2} - \frac{y}{3} \right| \leq \frac{1}{2} [(x - y)^2 + |x - y|] = \frac{1}{2} \rho_2(x, y).$$

So, condition (1) holds with $k = \frac{1}{2}$. The only common fixed point satisfying [25], $Tx = Sx = x$ is $x^* = 0$. Therefore, T and S have the unique common fixed point [25], $x^* = 0$.

Example 3.11 (Linear Maps in a Modular b -Metric Space). Let $X = \mathbb{R}$ and consider a family of modulars $\rho_i(x, y) = |x - y|^{p_i}$, $p_i \in (0, 1]$, $i = 1, \dots, m$.

Define two mappings

$$Tx = \frac{1}{2}x, \quad Sx = \frac{1}{4}x.$$

We compute

$$\rho_i(Tx, Sy) = \left| \frac{1}{2}x - \frac{1}{4}y \right|^{p_i}$$

and

$$\rho_i(x, Tx) = \left| x - \frac{1}{2}x \right|^{p_i} = \frac{|x|^{p_i}}{2^{p_i}}, \quad \rho_i(y, Sy) = \left| y - \frac{1}{4}y \right|^{p_i} = |y|^{p_i} \left(\frac{3}{4} \right)^{p_i}.$$

Choosing $k = \frac{1}{2}$, the inequality $\rho_i(Tx, Sy) \leq k(\rho_i(x, y) + \rho_i(x, Tx) + \rho_i(y, Sy))$ holds for all $x, y \in X$. Thus the contractive - type inequality hold. If $Tx = Sx$, then $\frac{1}{2}x = \frac{1}{4}x$, hence $x = 0$. At this point,

$$TSx = T(0) = 0, \quad STx = S(0) = 0.$$

Thus T and S are weakly compatible. Solving $Tx = x$ gives $x = 0$, and solving $Sx = x$ also gives $x = 0$. Hence the unique common fixed point [25], is $x^* = 0$.

Example 3.12 (Nonlinear Maps on $[0, 2]$). Let $X = [0, 2]$ and define the modular $\rho(x, y) = |x - y|^2$.

Define two mappings

$$Tx = \sqrt{x}, \quad Sx = \frac{x+1}{2}.$$

We have

$$\begin{aligned} \rho(Tx, Sy) &= \left| \sqrt{x} - \frac{y+1}{2} \right|^2, \\ \rho(x, Tx) &= |x - \sqrt{x}|^2, \quad \rho(y, Sy) = \left| \frac{y-1}{2} \right|^2. \end{aligned}$$

For $k = \frac{1}{2}$, one checks that $\rho(Tx, Sy) \leq k(\rho(x, y) + \rho(x, Tx) + \rho(y, Sy))$ for all $x, y \in [0, 2]$. Thus the contractive inequality holds. If $Tx = Sx$, then

$$\sqrt{x} = \frac{x+1}{2},$$

which gives $x = 1$. At $x = 1$, $TSx = T(1) = 1$, $STx = S(1) = 1$. Thus the mappings are weakly compatible. Solving $Tx = x$ yields $x = 0$ or 1 , whereas $Sx = x$ implies $x = 1$. Thus the unique common fixed point [25], is $x^* = 1$.

Example 3.13 (Piecewise Maps on $[0, 1]$). Let $X = [0, 1]$ and define the modular $\rho(x, y) = |x - y|^{1/2}$.

Define

$$Tx = \begin{cases} \frac{x}{3}, & x \leq \frac{1}{2}, \\ \frac{1}{2}, & x > \frac{1}{2}, \end{cases} \quad Sx = \begin{cases} \frac{x}{4}, & x \leq \frac{1}{2}, \\ \frac{1}{2}, & x > \frac{1}{2}. \end{cases}$$

For $x, y \leq \frac{1}{2}$,

$$\rho(Tx, Sy) = \left| \frac{x}{3} - \frac{y}{4} \right|^{1/2} \leq \frac{1}{2} (\rho(x, y) + \rho(x, Tx) + \rho(y, Sy)).$$

For $x, y > \frac{1}{2}$, we have $Tx = Sy = \frac{1}{2}$, so

$$\rho(Tx, Sy) = 0,$$

and the inequality holds trivially. To ensure compatibility, define $Tx = Sx = \frac{1}{2}$ for all $x > 1/2$. Then

$$TSx = STx = \frac{1}{2},$$

and weak compatibility holds. To find common fixed points solve:

$$Tx = x, \quad Sx = x.$$

Both functions satisfy $Tx = Sx = \frac{1}{2}$ only at

$$x^* = \frac{1}{2}.$$

Thus, $x^* = \frac{1}{2}$ is the unique common fixed .

4. Conclusion

We have established a common fixed point theorem in modular multi-metric spaces for compatible contractive mappings. This result generalizes classical fixed point theorems and provides a flexible framework for studying mappings in spaces with multiple modular metrics. Applications may include nonlinear equations, iterative processes, and optimization problems in multi-criteria settings.

References

- [1] H. Nakano, *Modulared Semi-Ordered Linear Spaces*, Tokyo Mathematical Book Series, (1950).
- [2] J. Musielak, *Orlicz Spaces and Modular Spaces*, Lecture Notes in Mathematics, vol. 1034, Springer, (1983).
- [3] I. A. Bakhtin, *The contraction mapping principle in quasimetric spaces*, Functional Analysis, Gos. Ped. Inst. Unianowsk, 30(1989), 26–37.
- [4] S. Czerwinski, *Contraction mappings in b-metric spaces*, Acta Mathematica et Informatica Universitatis Ostraviensis, 1(1993), 5–11.
- [5] W. M. Kozłowski, *Modular Function Spaces*, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, (1988).
- [6] M. A. Khamsi, *Quasimetric spaces and fixed point theorems*, Nonlinear Analysis, 47(4)(2001), 2673–2682.
- [7] S. Banach, *Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales*, Fundamenta Mathematicae, 3(1922), 133–181.
- [8] L. B. Ćirić, *Generalized contractions and fixed point theorems*, Publ. Inst. Math. (Beograd), 14(28)(1974), 19–26.
- [9] M. S. Khan, M. Swaleh and S. Sessa, *Fixed point theorems by altering distances*, Bulletin of the Australian Mathematical Society, 30(1)(1984), 1–9.

[10] G. Jungck and B. E. Rhoades, *Fixed point theorems for occasionally weakly compatible mappings*, Fixed Point Theory, 3(2)(1996), 87–93.

[11] S. Sessa, *On weak commutativity condition in fixed point considerations*, Publ. Inst. Math. (Beograd), 32(46)(1982), 149–153.

[12] I. A. Rus, *Generalized Contractions and Applications*, Cluj-Napoca University Press, (1979).

[13] R. P. Agarwal, D. O'Regan and M. A. Khamsi, *Fixed Point Theory in Metric Type Spaces*, Springer, (2013).

[14] S. Shukla, *Fixed points in generalized metric spaces*, Fixed Point Theory and Applications, 92(2014).

[15] J. R. Morales and J. S. Rey, *Multi-metric spaces and fixed point theorems*, Fixed Point Theory, 16(2)(2015), 447-456.

[16] V. Chistyakov, *Modular spaces and modular convergence*, De Gruyter, (2014).

[17] K. P. Das and D. R. Sahu, *Fixed Point Theory in Metric Type Spaces*, Nonlinear Analysis Forum, (2009).

[18] A. Amini-Harandi and M. Fakhar, *Fixed points in modular spaces*, Fixed Point Theory and Applications, (2012).

[19] S. Gähler, *2-Metric spaces and their generalizations*, Math. Nachr., (1963).

[20] M. Abbas and G. Jungck, *Common fixed point theorems for noncommuting mappings in metric spaces*, J. Math. Anal. Appl., (2008).

[21] M. A. Khamsi and W. M. Kozlowski, *Banach spaces and modular spaces*, Nonlinear Analysis, 14(11)(1990), 935-950.

[22] W. M. Kozlowski, *Modular Function Spaces*, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 122, Marcel Dekker, New York, (1988).

[23] I. A. Bakhtin, *The contraction mapping principle in quasi-metric spaces*, Functional Analysis, 30(1989), 26-37.

[24] S. Czerwinski, *Contraction mappings in b-metric spaces*, Acta Mathematica et Informatica Universitatis Ostraviensis, 1(1993), 5-11.

[25] G. Jungck, *Compatible mappings and common fixed points*, International Journal of Mathematics and Mathematical Sciences, 9(4)(1986), 771-779.

[26] G. Jungck and B. E. Rhoades, *Common fixed points for noncontinuous nonself maps on nonmetric spaces*, Proceedings of the American Mathematical Society, 117(3)(1993), 727-730.

[27] S. Shukla, *Some fixed point theorems in modular b-metric spaces*, Journal of Nonlinear Analysis and Optimization, 5(2)(2014), 33-41.

[28] M. Abbas, B. E. Rhoades and T. Nazir, *Fixed point results in modular b-metric spaces with applications*, Fixed Point Theory and Applications, 2018(2018).