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Abstract

Identifying influential nodes in complex networks has gained considerable attention because of its

significant theoretical importance and broad range of applications. The m-Ranking method

incorporates both the degree of nodes and the weights of edges to rank nodes with varying

importance levels. This approach can also be applied to unweighted networks by simply setting the

weight parameter α = 1. Furthermore, we illustrate the effectiveness of the proposed method using

a real-world air traffic network, where the rankings produced are shown to be more meaningful

compared to those obtained through existing methods.
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1. Introduction

Complex systems can often be represented as networks of interacting elements and their relationships.

These networks are typically modeled as graphs, where nodes denote the elements of the system, and

the links capture their interactions. Such representations are widely used to explore the internal

structure and behavior of social, physical, economic, climatic, and financial systems. Networks

provide valuable insight into the dynamics of the underlying systems, which naturally evolve over

time. As a system changes, these transformations are reflected in its network structure. For example,

nodes that act as highly influential hubs at one stage may lose their prominence later, while initially

less active nodes may emerge as hubs through evolving interactions within the network.

The nodes with the highest degree of connectivity in a network are often the most influential and

significant. In contact-based models of disease transmission, such hub nodes play a pivotal role, as an

infection originating from them can lead to rapid and widespread diffusion across the network.

Hence, targeting and vaccinating these highly connected nodes becomes a key strategy to control

epidemics [5]. A similar phenomenon is observed in the study of how rumors, information, or

cultural practices spread within a community. Information travels much faster when it comes from
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people who are strongly connected to others. Therefore, to understand the dynamics of information

dissemination, it is essential to examine the role and position of the central actors driving the process.

In these scenarios, the importance of nodes in shaping the behavior and outcomes of networks is

undeniable.

Importance of nodes in a network is the focus of a series of papers [1,6,8,9,11]. Some nodes which

were less important in the beginning may become most important and some other nodes which

enjoyed key position in the network may lose its status. Some individual nodes play very vital role in

the dynamics of the networks. For example hubs - nodes having degree near and around maximum

degree- in a network are known as popular. They attract the attention of other members and tend to

increase their connections further [4,7]. Ordinary members who have relatively less connections may

prefer to establish link with the hubs because of the awareness that such activity may increase their

connections in the network and that would help to improve their status.

Understanding how the importance of nodes evolves has been a central problem in the study of

complex networks. Traditionally, measures such as degree, closeness, and betweenness have been

widely employed to identify influential nodes. In recent years, several additional centrality measures

have been developed, with PageRank [3] and LeaderRank [11] serving as prominent examples.

Five important node ranking methods are defined here which are particularly important in

development of the paper. The simplest among them is the Degree Decomposition [12–14]. It is the

ranking of the nodes of a network based on the degree of each node. Nodes with greatest degree

ranked first and so on. Clearly,degree decomposition is a local metric.

In 2010, Kitsak et al. introduced an efficient node-ranking method known as k-shell decomposition

[10] for analyzing large-scale networks. The method partitions all nodes into different shells through

an iterative pruning process. First, all nodes with degree k = 1 are removed and assigned to shell

ks = 1. The procedure is then repeated for nodes with degree k = 2, which are assigned to shell

ks = 2. This iterative process continues until every node is allocated to a corresponding k-shell.

Nodes located in the innermost core are considered the most influential within the network.Variations

of this method have been studied by [15–17].

Mixed Degree Decomposition (MDD) is a decomposition method proposed by An Zeng et al. [1],

which takes into account both residual degree (number of links connecting to the remaining nodes)

and exhausted degree (number of links connecting to the removed nodes) for decomposition. For a

node i, we denote exhausted degree as k(e)i and residual degree as k(r)i . In MDD method, the nodes are

removed according the mixed degree

k(m) = k(r) + λk(e)

where λ is a parameter between 0 and 1. This method ranks nodes finer than k-shell decomposition

method. Another important ranking is based on Neighborhood coreness. There are two neighbourhood

coreness methods, which are studied by Joonhyun Bae et al.[8]. It is based on on the assumption that
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a spreader node with more connections to nodes located in the core of the network is more powerful.

With this assumption,the neighborhood coreness is defined as

Cnc(v) = ∑
w∈N(v)

ks(w)

Here N(v) is the neighborhood set of the node v and ks(w) is the k - shell value of the node w. The

extended coreness (Cnc+) [8] of a node v is defined as

Cnc(v) = ∑
w∈N(v)

Cnc(w)

In the above formula Cnc(w) is the neighborhood coreness of w, that we have already defined. Here,

Cnc+ is more refined than Cnc. But both Cnc and Cnc+ depends only on the k - shell value. However,

designing an effective method to identify the node importance is still an open issue.

In practice, most of the real networks being used in modeling problems are weighted. There is no good

centrality measure to rank nodes of a weighted network.So, we propose the new m - ranking method

for weighted complex networks. We also compare ranking of nodes obtained by the m - ranking

method with the node ranking obtained by all the methods described above. Next section contains the

details of the formula used in the determination of rank of the nodes. It is followed by an algorithm

for the calculations. We describe the method on an example graph and the ranking of nodes is given

in a table. Then we compare the ranking of nodes in the example network obtained by the methods

mentioned in the first section and the new method. We also do similar comparison on a real network

and the results are tabulated in the fourth section.

2. The m-Ranking Method for Weighted Complex Networks

In this paper we propose a new method to rank the nodes of a weighed network. The ranking is based

on the following formula, which helps us to find the total power of a node i. It is denoted by T(i).

T(i) = {α[d(0)i +
1
β ∑ d(1)i +

1
β2 ∑ d(2)i + · · · ] + (1 − α)[∑ W(0)

i +
1
β ∑ W(1)

i +
1
β2 ∑ W(2)

i + · · · ]} (1)

In the formula α = p
q is a parameter between 0 and 1, β>1 another parameter. It is good practice to

choose β an integer close to the average degree of the nodes of the graph. The first series contains at

most D+1 terms and second series contains at most D terms, where D is the diameter of the graph.

Here d(0)i is the degree of the node i, ∑ d(j)
i is the sum of the degrees of the nodes at a distance j from

i. Similarly, ∑ W(0)
i , is the sum of the weights of incident edges to i and ∑ W(j)

i is the sum of weights

of edges j away from node i. Since we are considering degree of all nodes and weights of all links,

usually total power of nodes will be different. Therefore, there are very little chance for two nodes

have equal rank. When β value is very large this method gives usual degree centrality. The following
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algorithm helps us to compute total power of each node in a network, given the weighted adjacency

matrix of the underlying weighted graph.

Algorithm: m-ranking

Input: Weighted adjacency matrix M and adjacency matrix N of the graph G = (V, E). α and β are

constants such that 0 ≤ α ≤ 1 and β > 1.

Output: The vector T containing the power of vertices

Initialize: n = Order of the matrix N

Q = 1

Matrix F = Floyd − Warshall (N)

For i = 1 to n do

dm = Dijkstra(M, i)

c = maximum o f dm

for p = 0 to c do

for r = 1 to n do

if F[i][r] = p then

s = Number of nonzero values in the ith row of Matrix M

d[i][p] = s

X = Weighted Adjacency Matrix M

k = 0

p = dequeue(Q)

while Q is not empty do

s = 0

For q = 1 to n do

if X[p][q] > 0 then

s = s + X[p][q]

enqueue(q)

X[p][q] = X[q][p] = 0

W[i][k] = s

k = k + 1

h1 = 0

t1 = 1

for p = 0 to c do

h1 = h1 + d[i][p] ∗ t1

t1 = t1/β

h1 = α ∗ h1

h2 = 0

t2 = 1
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for p = 0 to k − 1 do

h2 = h2 + W[i][p] ∗ t2

t2 = t2/β

h2 = (1 − α) ∗ h2

T[i] = h1 + h2

Next we consider the graph given in figure 1 to calculate T(i) and hence the rank of the nodes. Since

this is an unweighted graph we take α = 1 and let β = 2. Using the formula 2. 1, total power for the

nodes are calculated and the values are tabulated in table 1. Since nodes {2,3}, {4,5}, {11,12} have equal

status they are ranked equally. All other nodes have different scores. Thus we rank all the nodes with

different rank.

Figure 1: An example network

Vertex i T(i) Rank • Vertx i T(i) Rank
1 6.97 11 • 10 17.31 1
2 5.35 13 • 11 13.06 4
3 5.35 13 • 12 13.06 2
4 9.22 9 • 13 14.37 3
5 6.97 11 • 14 9.40 8
6 12.45 6 • 15 9.62 7
7 14.40 2 • 16 6.68 12
8 12.90 5 • 17 4.08 14
9 7.20 10 •

Table 1: T(i) values and ranks of nodes in the network

3. Test on Schematic Network

Here, efficiency and effectiveness of the new method (m - ranking method) is evaluated. The

m-ranking method is compared with the five well known methods, the degree centrality(d), k - shell
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decomposition (k-s), mixed degree decomposition(MDD), neighborhood coreness (Cnc) and the

extended neighborhood coreness (Cnc+). Efficiency and effectiveness are analyzed using the two

measures called monotonicity [8] and correctness [2]. Monotonicity (M) measures the resolution of a

ranking system. Its value ranges from 0 to 1. As the number of different ranks decreases,

monotonicity comes close to 0. If each node get a different rank, monotonicity is 1. It is computed

using the following formula, which was introduced by Joonhyun [8].

M(R) = (1 − ∑ nr(nr − 1)
n(n − 1)

)2 (2)

In the equation R denote the ranking vector of network nodes and nr denote the number of nodes with

same rank. Correctness of two ranks obtained by two different methods is quantified using Kendalls

τ as the rank correlation coefficient [2]. Let (a1, b1), (a2, b2), ...(an, bn) be a set of joint ranks from two

different ranking methods. Any pair (ai, bi) is concordant with (aj, bj) if either ai > aj and bi > bj or

if ai < aj and bi < bj . They are said to be discordant if ai > aj and bi < bj or if ai < aj and bi > bj.

If ai = aj or bi = bj , then the pairs are neither concordant or discordant. Then the rank correlation is

defined as

τ =
nc − nd

0.5n(n − 1)

In the following table we summarize ranks obtained by the nodes in the network given in Figure 1.

This network contains 17 nodes and 20 edges. From the table it is clear that the degree decomposition

ranks the nodes in five groups. The k − s method ranks them in only three groups. But the Cnc+

method ranks them in 12 groups. The m-ranking method is seen to be best with 14 groups, which is

the highest among all the methods.

Rank d KS MDD Cnc Cnc+ m-Rank
1 10 10,11,12,13 10 10 10 10
2 6,13 7,8 12,13 13 13 7
3 4,7,8,11,12 others 6 11,12 11,12 13
4 15,16 7 7,8 7 11, 12
5 others 15 15 8 8
6 11 4,6,14 14 6
7 8 9,16 15 15
8 4 1,2,3,5,17 6 14
9 16 9 4
10 others 4,16 9
11 1,2,3,5 1,5
12 17 16
13 2,3
14 17

Table 2: Node order of the network in fig 1 by different measures

When we compute M(R) values for the six different methods, separately using the formula 3.1, we get

the following. The m - ranking method gets the highest value among all methods, which indicates that
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this method is most efficient in ranking the nodes in the network.

Sl No. Method M-values
1 d 0.5733
2 ks 0.29
3 MDD 0.702
4 Cnc 0.77
5 Cnc+ 0.880
6 m-rank 0.97

Table 3: m - values of the six different ranks calculated using the formula 3.1

Compairing the m - ranking method with all other methods, we compute the corresponding τ - values.

These values are tabulated below. Among the correlation coefficients calculated, the value for the pair

Cnc+ and m - ranking is the highest.It means the method proposed in this paper has strong positive

correlation with the latest and modified method, that is the Cnc+ method.

Sl No. Comparison with m-R Method τ values
1 τ(d, m − R) 0.485
2 τ(ks, m − R) 0.544
3 τ(MDD, m − R) 0.65
4 τ(Cnc, m − R) 0.780
5 τ(Cnc+, m − R) 0.830

Table 4: τ value comparison

4. Real Weighted Network Example: The Air Transportation Network

We have not applied the m - ranking method for any real network yet. So, we proceed to apply it in

a real air transportation network. Spicejet is a low cost air line company in India. It has 1014 trips to

33 airports in India as on 26th March 2016. This network contains 33 Airports (nodes) and 140 routes

(links) connecting these nodes. Each edge has a weight wij , the number of flights between two airports

i and j. The data is available in [?]. The network is given in figure 2. The weights are not given in

the figure in-order to make the figure readable. We calculate T(i) value for each node using equation

2.1 and it is the basis for ranking of nodes given in table 5. The highest T value is for node 11 (Delhi)

with T(11) = 379.37 and the next highest value is for node 23 (Mumbai) with T(23) = 367.87. The

least T value is for node 29 (Tuticorin) with T(29) = 149.25. The for-most thing is that each node

gets a unique rank in the ranking system. So this is the best method available to rank the nodes in a

network according to the nodes importance. The node getting first rank is the most influential figure

in a network. The importance of other nodes decreases as they go down in the ranking system.

In the next section, we bring in the limelight the various degree of computational complexity associated

with all the methods discussed in the paper.
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Figure 2: A real network of air traffic of Spice Jet airlines between important cities in India

5. The Computational Complexity and Characteristics of Different Measures

Among the six methods explained above, d is a local metric. ks, MDD are global metrics. Cnc,

Cnc+ and m-ranking methods are hybrid methods considering local influence and global influence

simultaneously. In general, hybrid metrics can perform better than the local or global metrics. In

the new method proposed in this paper computational complexity is O(n2). In table 6 computational

complexity for different methods are given.

Rank Total Power Name of Airport Rank Total Power Name of Airport
with node number with node number

1 379.37 Delhi(11) 18 247.55 Dehradun(10)
2 367.87 Mumbai(23) 19 246.37 Udaipur(30)
3 362 Chennai(8) 20 245.5 Varanasi(31)
4 333.25 Benguluru(6) 21 240.25 Bagdogra(4)
5 331.37 Hydrabad(15) 22 239.25 Jammu(18)
6 312.25 Kolkata(20) 23 234.12 Vijayawada(32)
7 310.37 Goa(13) 24 233.12 Coimbatore(9)
8 298.12 Kochi(19) 25 231.5 Mangalre(22)
9 295.75 Ahemadabad(2) 26 228.62 Jabalpur(16)

10 283.5 Agarthala(1) 27 214.25 Belgaum(5)
11 274.75 Madhurai(21) 28 200.75 Jaipur(17)
12 267.5 srinagar(27) 29 214.25 Tirupati(28)
13 266 Guahati(14) 30 182.75 Chandigarh(7)
14 260 Pune(25) 31 174.37 Dharmasala(12)
15 254.37 Port Blair(24) 32 149.25 Rajamundry(26)
16 252.5 Amritzar(3) 33 149.25 Tuticorin(29)
17 252 Visakapatanam(33)

Table 5: Ranking of airports by total power T(i) value

Ranking measure Category Computational complexity
d local metric O(n)

KS Global metric O(n)
MDD Global metric O(n)

Cnc Global metric O(n)
Cnc+ Hybrid metric O(n2)

m-Rank Hybrid metric O(n2)

Table 6: Computational complexity of various methods
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6. Conclusions

In this paper, we propose a new method called m - ranking to find node ranking in a weighted network.

There are not many methods to find node importance of weighted complex networks. Here we are

using all node degree and all edge weights with different weights to find a nodes rank. The m-Ranking

method is a hybrid method. Its complexity is of O(n2). If β is small many nodes will have equal rank

and if β is very large, this method tends to degree centrality.
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